1
|
Jiang X, Gong M, Jia Y, Adu-Frimpong M, Wang X, Hua Q, Li T, Li J, Pan P, Toreniyazov E, Yu J, Cao X, Wang Q, Xu X. Preparation, in vitro and in vivo evaluation and anti-renal injury effects of Niazimicin-loaded mixed polymeric micelles. J Pharm Sci 2025; 114:103703. [PMID: 39988296 DOI: 10.1016/j.xphs.2025.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) has become one of the major life-threatening conditions. Moringa seeds have been reported to exhibit renoprotective effects, with Niazimicin as its characteristic component. OBJECTIVE To investigate the anti-renal injury effects of Niazimicin and its mixed micelles (N-M) that composed of monomethyl ether poly (ethylene glycol)-polycaprolactone (mPEG-PCL) and polyethylene glycolated chitosan (PEG-CS) on adenine-induced CKD mice. METHODS PEG-CS was prepared via formaldehyde linkage method. The thin film dispersion method was employed for the preparation of N-M before it was characterized in vivo and in vitro. The anti-renal injury effects were evaluated by analyzing the serum levels of creatinine (Cr), p-Cresol sulphate (pCs), indole sulphate (IS) and hematoxylin-eosin (HE)-stained sections of hepatic and renal pathological tissues in CKD mice. RESULTS The N-M were spherical micelles of uniform size and highly dispersed with particle size of 42.94 ± 0.58 nm, encapsulation efficiency (EE) of 97.73 ± 2.33% and drug loading (DL) of 16.17 ± 0.28%, as well as good stability, and a very low critical micelle concentration (CMC) value of 0.00731 mg/mL. The N-M had a delayed-release effect and higher oral bioavailability compared to Niazimicin. CONCLUSION In CKD mice, Niazimicin exhibited an anti-renal injury effect, while the renoprotective effect of N-M was superior to that of Niazimicin.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Mingie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Yue Jia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK, 0215-5321, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | - Pengfei Pan
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China
| | | | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, CN, PR China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, CN, PR China.
| |
Collapse
|
2
|
Villegas-Vazquez EY, Gómez-Cansino R, Marcelino-Pérez G, Jiménez-López D, Quintas-Granados LI. Unveiling the Miracle Tree: Therapeutic Potential of Moringa oleifera in Chronic Disease Management and Beyond. Biomedicines 2025; 13:634. [PMID: 40149610 PMCID: PMC11939887 DOI: 10.3390/biomedicines13030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Moringa oleifera (MO) has gained recognition as a potent natural intervention for preventing and managing chronic diseases (CDs) due to its diverse phytochemical composition and pharmacological properties. Rich in antioxidants, polyphenols, flavonoids, and glucosinolates, MO exerts anti-inflammatory, anti-hyperglycemic, cardioprotective, and anti-obesity effects. These properties make it a valuable therapeutic agent for CDs, including diabetes, cardiovascular diseases, obesity, neurodegenerative disorders, and cancer. MO's ability to modulate oxidative stress and inflammation-key drivers of CDs-highlights its significant role in disease prevention and treatment. MO enhances insulin sensitivity, regulates lipid profiles and blood pressure, reduces inflammation, and protects against oxidative damage. MO also modulates key signaling pathways involved in cancer and liver disease prevention. Studies suggest that MO extracts possess anticancer activity by modulating apoptosis, inhibiting tumor cell proliferation, and interacting with key signaling pathways, including YAP/TAZ, Nrf2-Keap1, TLR4/NF-κB, and Wnt/β-catenin. However, challenges such as variability in bioactive compounds, taste acceptability, and inconsistent clinical outcomes limit their widespread application. While preclinical studies support its efficacy, large-scale clinical trials, standardized formulations, and advanced delivery methods are needed to optimize its therapeutic potential. MO's multifunctional applications make it a promising and sustainable solution for combating chronic diseases, especially in resource-limited settings.
Collapse
Affiliation(s)
- Edgar Yebran Villegas-Vazquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Esquina Fuerte de Loreto, Ciudad de México 09230, Mexico;
| | - Rocio Gómez-Cansino
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Calzada Ermita Iztapalapa 4163, Colonia Lomas de Zaragoza, Ciudad de México 09620, Mexico;
| | - Gabriel Marcelino-Pérez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Domingo Jiménez-López
- Departamento de Nutrición, Universidad Global Latinoamericana, Av. Vía Adolfo López Mateos 73, Misiones, Naucalpan de Juárez, Méx., Mexico 53250, Mexico
- Departamento de Investigación y Desarrollo, Soluciones Orgánicas, Fertilizantes y Servicios para el Agro (SOFESA), Av. Revolución, No. 1267, Ciudad de México 01040, Mexico
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Av. La Corona 320, Colonia La Palma, Ciudad de México 00000, Mexico
| |
Collapse
|
3
|
Badal R, Ranjan S, Kumar L, Shekhawat L, Patel AK, Yadav P, Prajapati PK. Alzheimer's disease: A case study involving EEG-based fE/I ratio and pTau-181 protein analysis through nasal administration of Saraswata Ghrita. J Alzheimers Dis Rep 2024; 8:1763-1774. [PMID: 40034345 PMCID: PMC11863747 DOI: 10.1177/25424823241306771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that impairs memory, language, and cognitive functions and currently has no definitive cure. Saraswata Ghrita (SG), a traditional Ayurvedic remedy administered nasally, offers a holistic approach and is believed to directly affect brain functions through its unique delivery route. Objective This study aimed to evaluate the effectiveness of SG in improving cognitive function and neurochemical biomarkers in a patient with AD. Key outcomes included electroencephalography-based excitation/inhibition (fE/I) ratio, and levels of phosphorylated Tau-181 (pTau-181), serotonin, dopamine, acetylcholine, and dehydroepiandrosterone (DHEA). Methods A 90-day proof-of-concept clinical trial was conducted with one AD patient. Nasal administration of SG was performed twice daily. Measurements included EEG spectral power analysis across 1-48 Hz, cognitive function assessed by Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Quality of Life in Alzheimer's Disease (QoL-AD) scales, and biochemical analyses of pTau-181, serotonin, dopamine, acetylcholine, and DHEA. Results Notable improvements were observed: ADAS-Cog score decreased from 40 to 36, QoL-AD score increased from 23 to 31, MMSE score improved from 13 to 18, and MoCA score increased from 8 to 13. Biochemical markers showed a decrease in pTau-181 (12.50 pg/ml to 6.28 pg/ml), an increase in acetylcholine (13.73 pg/ml to 31.83 pg/ml), while serotonin and DHEA levels rose, and dopamine levels decreased (39.14 pg/ml to 36.21 pg/ml). Conclusions SG demonstrated potential in enhancing cognitive functions and neurochemical markers in AD, with the nasal route proving safe and effective. These findings suggest the value of traditional Ayurvedic treatments in contemporary AD management.
Collapse
Affiliation(s)
- Robin Badal
- Department of Rasashastra & Bhaishajya Kalpana, All India Institute of Ayurveda, New Delhi, India
| | - Shivani Ranjan
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Lalan Kumar
- Department of Electrical Engineering, Bharti School of Telecommunication, and Yardi School of Artificial Intelligence,
Indian Institute of Technology Delhi,
New Delhi, India
| | - Lokesh Shekhawat
- Department of Psychiatry, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr Ram Manohar Lohia Hospital,
New Delhi, India
| | - Ashok Kumar Patel
- School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Pramod Yadav
- Department of Rasashastra & Bhaishajya Kalpana, All India Institute of Ayurveda, New Delhi, India
| | | |
Collapse
|
4
|
Medhat D, El-Bana MA, El-Tantawy El-Sayed I, Ahmed AAS, El-Naggar ME, Hussein J. Investigating the Anti-inflammatory Effect of Quinoline Derivative: N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine Hydrochloride Loaded Soluble Starch Nanoparticles Against Methotrexate-induced Inflammation in Experimental Model. Biol Proced Online 2024; 26:16. [PMID: 38831428 PMCID: PMC11149278 DOI: 10.1186/s12575-024-00240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND It is necessary to develop advanced therapies utilizing natural ingredients with anti-inflammatory qualities in order to lessen the negative effects of chemotherapeutics. RESULTS The bioactive N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine hydrochloride (NIQBD) was synthesized. After that, soluble starch nanoparticles (StNPs) was used as a carrier for the synthesized NIQBD with different concentrations (50 mg, 100 mg, and 200 mg). The obtained StNPs loaded with different concentrations of NIQBD were coded as StNPs-1, StNPs-2, and StNPs-3. It was observed that, StNPs-1, StNPs-2, and StNPs-3 exhibited an average size of 246, 300, and 328 nm, respectively. Additionally, they also formed with homogeneity particles as depicted from polydispersity index values (PDI). The PDI values of StNPs-1, StNPs-2, and StNPs-3 are 0.298, 0.177, and 0.262, respectively. In vivo investigation of the potential properties of the different concentrations of StNPs loaded with NIQBD against MTX-induced inflammation in the lung and liver showed a statistically substantial increase in levels of reduced glutathione (GSH) accompanied by a significant decrease in levels of oxidants such as malondialdehyde (MDA), nitric oxide (NO), advanced oxidation protein product (AOPP), matrix metalloproteinase 9/Gelatinase B (MMP-9), and levels of inflammatory mediators including interleukin 1-beta (IL-1β), nuclear factor kappa-B (NF-κB) in both lung and liver tissues, and a significant decrease in levels of plasma homocysteine (Hcy) compared to the MTX-induced inflammation group. The highly significant results were obtained by treatment with a concentration of 200 mg/mL. Histopathological examination supported these results, where treatment showed minimal inflammatory infiltration and congestion in lung tissue, a mildly congested central vein, and mild activation of Kupffer cells in liver tissues. CONCLUSION Combining the treatment of MTX with natural antioxidant supplements may help reducing the associated oxidation and inflammation.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt.
| | - Mona A El-Bana
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | | | - Abdullah A S Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, 32511, Shebin El Koom, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Alanazi IS, Altyar AE, Zaazouee MS, Elshanbary AA, Abdel-Fattah AFM, Kamel M, Albaik M, Ghaboura N. Effect of moringa seed extract in chlorpyrifos-induced cerebral and ocular toxicity in mice. Front Vet Sci 2024; 11:1381428. [PMID: 38659447 PMCID: PMC11041635 DOI: 10.3389/fvets.2024.1381428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphosphate-based (OP) insecticides. Its wide use has led to higher morbidity and mortality, especially in developing countries. Moringa seed extracts (MSE) have shown neuroprotective activity, antioxidant, anti-inflammatory, and antibacterial features. The literature lacks data investigating the role of MSE against CPF-induced cerebral and ocular toxicity in mice. Therefore, we aim to investigate this concern. A total of 40 mature male Wistar Albino mice were randomly distributed to five groups. Initially, they underwent a one-week adaptation period, followed by a one-week treatment regimen. The groups included a control group that received saline, MSE 100 mg/kg, CPF 12 mg/kg, CPF-MSE 50 mg/kg, and CPF-MSE 100 mg/kg. After the treatment phase, analyses were conducted on serum, ocular, and cerebral tissues. MSE100 and CPF-MSE100 normalized the pro-inflammatory markers (interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and AChE serum levels. CPF-MSE50 significantly enhanced these serum levels compared to CPF; however, it showed higher levels compared to the control. Moreover, the tissue analysis showed a significant decrease in oxidative stress (malondialdehyde (MDA) and nitric oxide (NO)) and an increase in antioxidant markers (glutathione (GSH), glutathione peroxidase (GSH-PX)), superoxide dismutase (SOD), and catalase (CAT) in the treated groups compared to CPF. Importantly, the significance of these effects was found to be dose-dependent, particularly evident in the CPF-MSE100 group. We conclude that MSE has a promising therapeutic effect in the cerebral and ocular tissues of CPF-intoxicated mice, providing a potential solution for OP public health issues.
Collapse
Affiliation(s)
- Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | | | | | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mai Albaik
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Nehmat Ghaboura
- Pharmacy Practice Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Nazari-Serenjeh M, Baluchnejadmojarad T, Hatami-Morassa M, Fahanik-Babaei J, Mehrabi S, Tashakori-Miyanroudi M, Ramazi S, Mohamadi-Zarch SM, Nourabadi D, Roghani M. Kolaviron neuroprotective effect against okadaic acid-provoked cognitive impairment. Heliyon 2024; 10:e25564. [PMID: 38356522 PMCID: PMC10864987 DOI: 10.1016/j.heliyon.2024.e25564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is acknowledged as the main causative factor of dementia that affects millions of people around the world and is increasing at increasing pace. Okadaic acid (OA) is a toxic compound with ability to inhibit protein phosphatases and to induce tau protein hyperphosphorylation and Alzheimer's-like phenotype. Kolaviron (KV) is a bioflavonoid derived from Garcinia kola seeds with anti-antioxidative and anti-inflammation properties. The main goal of this study was to assess whether kolaviron can exert neuroprotective effect against okadaic acid-induced cognitive deficit. Rats had an intracerebroventricular (ICV) injection of OA and pretreated with KV at 50 or 100 mg/kg and examined for cognition besides histological and biochemical factors. OA group treated with KV at 100 mg/kg had less memory deficit in passive avoidance and novel object discrimination (NOD) tasks besides lower hippocampal levels of caspases 1 and 3, tumor necrosis factor α (TNFα) and interleukin 6 (IL-6) as inflammatory factors, reactive oxygen species (ROS), protein carbonyl, malondialdehyde (MDA), and phosphorylated tau (p-tau) and higher level of acetylcholinesterase (AChE) activity, mitochondrial integrity index, superoxide dismutase (SOD), and glutathione (GSH). Moreover, KV pretreatment at 100 mg/kg attenuated hippocampal CA1 neuronal loss and glial fibrillary acidic protein (GFAP) reactivity as a factor of astrogliosis. In summary, KV was able to attenuate cognitive fall subsequent to ICV OA which is partly mediated through its neuroprotective potential linked to mitigation of tau hyperphosphorylation, apoptosis, pyroptosis, neuroinflammation, and oxidative stress and also improvement of mitochondrial health.
Collapse
Affiliation(s)
- Morteza Nazari-Serenjeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Hatami-Morassa
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Tashakori-Miyanroudi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Ramazi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mahdi Mohamadi-Zarch
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Nourabadi
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Hussein J, El-Bana M, Abdel-Latif Y, El-Sayed S, Shaarawy S, Medhat D. Moringa oleifera leaves extract loaded gold nanoparticles offers a promising approach in protecting against experimental nephrotoxicity. Prostaglandins Other Lipid Mediat 2024; 170:106800. [PMID: 38029886 DOI: 10.1016/j.prostaglandins.2023.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Cisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded Au-NPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment' time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt.
| | - Mona El-Bana
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Samah El-Sayed
- Dairy Science Department, National Research Centre, Dokki 12622, Egypt
| | - Sahar Shaarawy
- Pre-Treatment and Finishing of Cellulosic Fabric Department, National Research Centre, Dokki 12622, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| |
Collapse
|
8
|
Su X, Lu G, Ye L, Shi R, Zhu M, Yu X, Li Z, Jia X, Feng L. Moringa oleifera Lam.: a comprehensive review on active components, health benefits and application. RSC Adv 2023; 13:24353-24384. [PMID: 37588981 PMCID: PMC10425832 DOI: 10.1039/d3ra03584k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Moringa oleifera Lam. is an edible therapeutic plant that is native to India and widely cultivated in tropical countries. In this paper, the current application of M. oleifera was discussed by summarizing its medicinal parts, active components and potential mechanism. The emerging products of various formats such as drug preparation and product application reported in the last years were also clarified. Based on literature reports, the unique components and biological activities of M. oleifera need to be further studied. In the future, a variety of new technologies should be applied to the development of M. oleifera products, to enrich the varieties of dosage forms, improve the bitter taste masking technology, and make it better for use in the fields of food and medicine.
Collapse
Affiliation(s)
- Xinyue Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Guanzheng Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Ruyu Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xinming Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 P. R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
9
|
El-Bana MA, Ashour MN, Rasheed WI, Diab YM, Medhat D. Bombax ceiba Linn. leaf extract rich in phenolic compounds to mitigate non-alcoholic fatty liver-related complications in experimental model. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:343-352. [PMID: 36935561 DOI: 10.1515/jcim-2021-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Obesity, diabetes mellitus, insulin resistance (IR), and hypertriglyceridemia are common features observed in non-alcoholic fatty liver diseases (NAFLD). There is a critical medical necessity to find novel therapeutics that can halt the development of NAFLD. METHODS Bombax ceiba Linn. leaf extract was prepared and its phytochemical profile was determined. Standard and high carbohydrate high-fat diets (HCHF) were prepared. Rats were fed HCHF for 18 weeks to induce a non-alcoholic fatty liver (NAFL) model. Forty male rats were divided into control, B. ceiba Linn. leaf extract, NAFL, prophylactic, and treated groups. Serum fasting blood sugar (FBS), insulin, insulin resistance (HOMA-IR), cholesterol, high-density lipoprotein (HDL), triglycerides (TG), low density lipoprotein (LDL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), intelectin-1 (ITLN1), p38 MAP kinase (MAPK), peroxisome proliferator-activated receptor alpha (PPAR-α), and interleukin-6 (IL-6) were evaluated. RESULTS Data obtained showed that HCHF-induced NAFL resulting in a significant increase in FBS, serum insulin, HOMA-IR, cholesterol, LDL, TG, ALT, AST, and IL-6 and a significant decrease in serum levels of HDL, ITLN1, p38 MAP kinase, and PPAR-α compared to the control group. The analysis of B. ceiba Linn. leaf extract showed high content of phenol compounds which may cause a significant decrease in the levels of FBS, insulin, HOMA-IR values, lipid profile, and levels of IL-6 while a significant increase in serum levels of LDL, ITLN1, p38 MAP kinase, and PPAR-α compared to the NAFL group. CONCLUSIONS B. ceiba Linn. Leaf extract is a highly protective and promising therapeutic agent against inflammation and oxidative stress in the NAFLD model induced by HCHF.
Collapse
Affiliation(s)
- Mona A El-Bana
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Magdi N Ashour
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Wafaa I Rasheed
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Yasser M Diab
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
10
|
El-Bana MA, El-Daly SM, Omara EA, Morsy SM, El-Naggar ME, Medhat D. Preparation of pumpkin oil-based nanoemulsion as a potential estrogen replacement therapy to alleviate neural-immune interactions in an experimental postmenopausal model. Prostaglandins Other Lipid Mediat 2023; 166:106730. [PMID: 36931593 DOI: 10.1016/j.prostaglandins.2023.106730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
As estrogen production decreases during menopause; the brain's metabolism tends to stall and become less effective. Estrogen most likely protects against neurodegeneration. Consequently, a comprehensive study of the benefits of hormone replacement therapy as a neuroprotective effect is urgently required. This study was designed to fabricate pumpkin seed oil nanoparticles (PSO) in nanoemulsion form (PSO-NE) and investigate their potential role in attenuating the neural-immune interactions in an experimental postmenopausal model.Sixty female white albino rats were divided into six groups: control, sham, ovariectomized (OVX), and three OVX groups treated with 17β-estradiol, PSO, and PSO-NE respectively. Transmission Electron Microscopy (TEM), and particle size analyzer were performed for nanoemulsion evaluation. Serum levels of estrogen, brain amyloid precursor protein (APP), serum levels of nuclear factor kappa B (NF-κβ), interleukin 6 (IL-6), transthyretin (TTR), and synaptophysin (SYP) were evaluated. The expression of estrogen receptors (ER-α, β) in the brain tissue was estimated. The findings revealed that the approached PSO-NE system was able to reduce the interfacial tension, enhance the dispersion entropy, lower the system free energy to an extremely small value, and augment the interfacial area. PSO-NE, showed a significant increase in the levels of estrogen, brain APP, SYP, and TTR accompanied with a significant increased in the expression of brain ER-α, β compared to the OVX group. In conclusion, the phytoestrogen content of PSO exhibited a significant prophylactic effect on neuro-inflammatory interactions, ameliorating both estrogen levels and the inflammatory cascades.
Collapse
Affiliation(s)
- Mona A El-Bana
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Safaa M Morsy
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, Dokki, Giza, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
11
|
Abdel Shakour ZT, El-Akad RH, Elshamy AI, El Gendy AENG, Wessjohann LA, Farag MA. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem 2023; 399:133948. [DOI: 10.1016/j.foodchem.2022.133948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
12
|
Mundkar M, Bijalwan A, Soni D, Kumar P. Neuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review. J Food Biochem 2022; 46:e14451. [PMID: 36206551 DOI: 10.1111/jfbc.14451] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Moringa oleifera is a traditional Indian herb belonging to the Moringaceae family, it is commonly known as the horse-radish tree, drumstick, or sahajna. In developing countries, Moringa is used as feed for both humans and animals due to its well-known antioxidant, anti-inflammatory, and anti-apoptotic properties owing to its several phytoconstituents including β-carotene, quercetin, kaempferol, ascorbic acid, flavonoids, phenolic acid, rhamnose, glycosylates, glucomoringin, and isothiocyanates. These constituents help to maintain the brain antioxidant enzyme levels, mitochondrial functions, and neurogenesis, showing neuroprotective effects in several neurodegenerative disorders including Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, and Amyotrophic lateral sclerosis. This review discusses various phytoconstituent of moringa and their therapeutic potential in various neurological disorders. Additionally, we also concise the safety and toxicity profile, of different molecular pathways involved in the neuroprotective effect of M. oleifera including M. oleifera nanoparticles for better therapeutic value. PRACTICAL APPLICATIONS: Several clinical and preclinical studies on Moringa oleifera have been conducted, and the outcomes indicate moringa could be used in the treatment of brain disorders. As a result, we conclude that moringa and its nanoformulations could be employed to treat neurological problems. In the future, M. oleifera phytoconstituents could be evaluated against specific signaling pathways, which could aid researchers in discovering their mechanism of action. Furthermore, the use of moringa as a nutraceutical owing to its myriad pharmacological potential will go a long way in boosting the economy of countries that grow moringa on a large scale.
Collapse
Affiliation(s)
- Maroti Mundkar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Anjali Bijalwan
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
13
|
Mahaman YAR, Feng J, Huang F, Salissou MTM, Wang J, Liu R, Zhang B, Li H, Zhu F, Wang X. Moringa Oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022; 14:nu14204284. [PMID: 36296969 PMCID: PMC9609596 DOI: 10.3390/nu14204284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is a global public health problem and the most common form of dementia. Due to the failure of many single therapies targeting the two hallmarks, Aβ and Tau, and the multifactorial etiology of AD, there is now more and more interest in nutraceutical agents with multiple effects such as Moringa oleifera (MO) that have strong anti-oxidative, anti-inflammatory, anticholinesterase, and neuroprotective virtues. In this study, we treated APP/PS1 mice with a methanolic extract of MO for four months and evaluated its effect on AD-related pathology in these mice using a multitude of behavioral, biochemical, and histochemical tests. Our data revealed that MO improved behavioral deficits such as anxiety-like behavior and hyperactivity and cognitive, learning, and memory impairments. MO treatment abrogated the Aβ burden to wild-type control mice levels via decreasing BACE1 and AEP and upregulating IDE, NEP, and LRP1 protein levels. Moreover, MO improved synaptic plasticity by improving the decreased GluN2B phosphorylation, the synapse-related proteins PSD95 and synapsin1 levels, the quantity and quality of dendritic spines, and neurodegeneration in the treated mice. MO is a nutraceutical agent with promising therapeutic potential that can be used in the management of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Feng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- College of Health, Natural and Agriculture Sciences Africa University, Mutare P.O. Box 1320, Zimbabwe
| | - Jianzhi Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Correspondence: (F.Z.); (X.W.)
| | - Xiaochuan Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518000, China
- Correspondence: (F.Z.); (X.W.)
| |
Collapse
|
14
|
Hussein J, El-Bana MA, El-kHayat Z, El-Naggar ME, Farrag AR, Medhat D. Eicosapentaenoic acid loaded silica nanoemulsion attenuates hepatic inflammation through the enhancement of cell membrane components. Biol Proced Online 2022; 24:11. [PMID: 36071378 PMCID: PMC9454130 DOI: 10.1186/s12575-022-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Liver inflammation is a multistep process that is linked with cell membrane fatty acids composition. The effectiveness of eicosapentaenoic acid (EPA) undergoes an irreversible change during processing due to their unsaturated nature; so the formation of nanocarrier for EPA is crucial for improving EPA’s bioavailability and pharmacological properties. Objective In this study we aimed to evaluate the efficiency of EPA alone or loaded silica nanoemulsion on the management of hepatic inflammation induced by diethyl nitrosamine (DEN) through the enhancement of the cell membrane structure and functions. Methods The new formula of EPA was prepared to modify the properties of EPA. Forty-eight male Wistar albino rats were classified into: control, EPA, EPA loaded silica nanoemulsion (EPA–NE), DEN induced hepatic inflammation; DEN induced hepatic inflammation treated with EPA or EPA –NE groups. Plasma tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), liver hydroxyproline (Hyp) content, and liver oxidant and anti-oxidants were estimated. Urinary 8- hydroxyguanozine (8- OHdG) and erythrocyte membrane fatty acids fractions were estimated by High-performance liquid chromatography (HPLC). Also, histopathology studies were done to verify our hypothesis. Results It was appeared that administration of EPA, in particular EPA loaded silica nanoemulsion, ameliorated the inflammatory response, increased the activity of the anti-oxidants, reduced levels of oxidants, and improved cell membrane structure compared to hepatic inflammation induced by DEN group. Histopathological examination confirmed these results. Conclusion EPA and notably EPA loaded silica nanoemulsion strongly recommended as a promising supplement in the management of hepatic inflammation.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt.
| | - Mona A El-Bana
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt
| | - Zakaria El-kHayat
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt
| | - Mehrez E El-Naggar
- Pre-Treatment and Finishing of Cellulosic Fabric Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Dalia Medhat
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt
| |
Collapse
|
15
|
Gao Q, Wei Z, Liu Y, Wang F, Zhang S, Serrano C, Li L, Sun B. Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030678. [PMID: 35163945 PMCID: PMC8840448 DOI: 10.3390/molecules27030678] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Moringa oleifera leaves have been widely used for the treatment of inflammation, diabetes, high blood pressure, and other diseases, due to being rich in polyphenols. The main objective of this work was to largely separate the main polyphenols from Moringa oleifera leaves using the technique of high-speed counter-current chromatography (HSCCC). The phenolic composition in Moringa oleifera leaves was first analyzed qualitatively and quantitatively by UPLC-Q-Exactive Orbitrap/MS and UPLC-QqQ/MS, respectively, indicating that quercetin and kaempferol derivatives, phenolic acid and apigenin are the main polyphenols in Moringa oleifera leaves, with quercetin and kaempferol derivatives predominating. Furthermore, the conditions of HSCCC for large-scale separation of polyphenols from Moringa oleifera leaves were optimized, which included the selection of the solvent system, flow rate and the sample load. Only by one-step HSCCC separation (within 120 min) under the optimized conditions, six quercetin and kaempferol derivatives, a phenolic acid and an apigenin could be individually isolated at a large scale (yield from 10% to 98%), each of which possessed high purity. Finally, the isolated polyphenols and phenolic extract from Moringa oleifera leaves (MLPE) were verified to have strong neuroprotective activities against H2O2-induced oxidative stress in PC-12 cells, suggesting that these compounds would contribute to the main beneficial effects of Moringa oleifera leaves.
Collapse
Affiliation(s)
- Qian Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Zongmin Wei
- School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang 110016, China;
- Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222069, China
| | - Yun Liu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
| | - Carmo Serrano
- Unidade de Tecnologia e Inovação, Instituto National de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal;
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Q.G.); (Y.L.); (F.W.); (S.Z.)
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, 2565-191 Dois Portos, Portugal
- Correspondence: (L.L.); (B.S.); Tel.: +351-261-712-106 (B.S.)
| |
Collapse
|
16
|
Wu YY, Xu YM, Lau ATY. Anti-Cancer and Medicinal Potentials of Moringa Isothiocyanate. Molecules 2021; 26:molecules26247512. [PMID: 34946594 PMCID: PMC8708952 DOI: 10.3390/molecules26247512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Moringa oleifera (M. oleifera), which belongs to the Moringaceae family, is a common herb, rich in plant compounds. It has a variety of bioactive compounds that can act as antioxidants, antibiotics, anti-inflammatory and anti-cancer agents, etc., which can be obtained in different body parts of M. oleifera. Isothiocyanates (ITCs) from M. oleifera are one class of these active substances that can inhibit cancer proliferation and promote cancer cell apoptosis through multiple signaling pathways, thus curbing cancer migration and metastasis, at the same time they have little adverse effect on normal cells. There are multiple variants of ITCs in M. oleifera, but the predominant phytochemical is 4-(α-L-rhamnosyloxy)benzyl isothiocyanate, also known as moringa isothiocyanate (MIC-1). Studies have shown that MIC-1 has the possibility to be used clinically for the treatment of diabetes, neurologic diseases, obesity, ulcerative colitis, and several cancer types. In this review, we focus on the molecular mechanisms underlying the anti-cancer and anti-chronic disease effects of MIC-1, current trends, and future direction of MIC-1 based treatment strategies. This review combines the relevant literature of the past 10 years, in order to provide more comprehensive information of MIC-1 and to fully exploit its potentiality in the clinical settings.
Collapse
|