1
|
Liang L, Mi Y, Zhou S, Yang A, Wei C, Dai E. Advances in the study of key cells and signaling pathways in renal fibrosis and the interventional role of Chinese medicines. Front Pharmacol 2024; 15:1403227. [PMID: 39687302 PMCID: PMC11647084 DOI: 10.3389/fphar.2024.1403227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024] Open
Abstract
Renal fibrosis (RF) is a pathological process characterized by the excessive accumulation of extracellular matrix (ECM), which triggers a repair cascade in response to stimuli and pathogenic factors, leading to the activation of molecular signaling pathways involved in fibrosis. This article discusses the key cells, molecules, and signaling pathways implicated in the pathogenesis of RF, with a particular focus on tubular epithelial cells (TECs), cellular senescence, ferroptosis, autophagy, epithelial-mesenchymal transition (EMT), and transforming growth factor-β(TGF-β)/Smad signaling. These factors drive the core and regulatory pathways that significantly influence RF. A comprehensive understanding of their roles is essential. Through a literature review, we explore recent advancements in traditional Chinese medicine (TCM) aimed at reducing RF and inhibiting chronic kidney disease (CKD). We summarize, analyze, and elaborate on the important role of Chinese herbs in RF, aiming to provide new directions for their application in prevention and treatment, as well as scientific guidance for clinical practices.
Collapse
Affiliation(s)
- Lijuan Liang
- Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine and Translation, Ministry of Education, Lanzhou, China
| | - Youjun Mi
- Institute of pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shihan Zhou
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Aojian Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Chaoyu Wei
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Enlai Dai
- Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
2
|
Lee YG, Lee HM, Hwang JT, Choi HK. Licochalcone D from Glycyrrhiza uralensis Improves High-Glucose-Induced Insulin Resistance in Hepatocytes. Int J Mol Sci 2024; 25:10066. [PMID: 39337550 PMCID: PMC11432222 DOI: 10.3390/ijms251810066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the therapeutic potential of licochalcone D (LicoD), which is derived from Glycyrrhiza uralensis, for improving glucose metabolism in AML12 hepatocytes with high-glucose-induced insulin resistance (IR). Ultra-high-performance liquid chromatography-mass spectrometry revealed that the LicoD content of G. uralensis was 8.61 µg/100 mg in the ethanol extract (GUE) and 0.85 µg/100 mg in the hot water extract. GUE and LicoD enhanced glucose consumption and uptake, as well as Glut2 mRNA expression, in high-glucose-induced IR AML12 cells. These effects were associated with the activation of the insulin receptor substrate/phosphatidylinositol-3 kinase signaling pathway, increased protein kinase B α phosphorylation, and suppression of gluconeogenesis-related genes, such as Pepck and G6pase. Furthermore, GUE and LicoD promoted glycogen synthesis by downregulating glycogen phosphorylase. Furthermore, LicoD and GUE mitigated the downregulated expression of mitochondrial oxidative phosphorylation proteins in IR hepatocytes by activating the PPARα/PGC1α pathway and increasing the mitochondrial DNA content. These findings demonstrate the potential of LicoD and GUE as therapeutic options for alleviating IR-induced metabolic disorders by improving glucose metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (Y.G.L.); (J.-T.H.)
| | - Hee Min Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea;
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (Y.G.L.); (J.-T.H.)
| | - Hyo-Kyoung Choi
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (Y.G.L.); (J.-T.H.)
| |
Collapse
|
3
|
Wang H, Li Y, Wu N, Lv C, Wang Y. P4HB regulates the TGFβ/SMAD3 signaling pathway through PRMT1 to participate in high glucose-induced epithelial-mesenchymal transition and fibrosis of renal tubular epithelial cells. BMC Nephrol 2024; 25:297. [PMID: 39251943 PMCID: PMC11385120 DOI: 10.1186/s12882-024-03733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS HG induced an increase in the expression of P4HB and TGFβ, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. CONCLUSION P4HB regulated the TGFβ/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of nephrology, China-Japan Friendship Hospital, chaoyang District, 100029, Beijing, China
| | - Yang Li
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Na Wu
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Chunmei Lv
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Yishu Wang
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China.
| |
Collapse
|
4
|
Zhuang L, Jin G, Wang Q, Ge X, Pei X. Long Non-coding RNA ZFAS1 Regulates Fibrosis and Scortosis in the Cell Model of Diabetic Nephropathy Through miR-525-5p/SGK1 Axis. Appl Biochem Biotechnol 2024; 196:3731-3746. [PMID: 37768477 DOI: 10.1007/s12010-023-04721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Diabetic nephropathy (DN) is a common clinical syndrome in diabetic patients. Functional characterization of non-coding (ncRNAs) involved in the progression of DN can provide insights into the diagnosis and therapeutic management of DN. Human kidney proximal tubular epithelial cells (HK-2) were challenged by high glucose (HG, 50 mM) as a cell model of DN. The expression level of long non-coding RNA (lncRNA) ZFAS1 was quantified by qRT-PCR. The proteins and cytokines related to fibrosis and scortosis in DN (NLRP3, GSDMD-N, IL-1β and Caspase 1, fibronectin, collagen I, collagen III, IL-1β, and IL-18) were examined by western blot or ELISA. RNA precipitation and luciferase reporter activity experiments were conducted to assess the molecular associations. ZFAS1 and SGK1 were highly induced in HK-2 cells challenged with HG, while miR-525-5p downregulated upon HG treatment. ZFAS1 knockdown attenuated HG-induced fibrosis and scortosis in HK-2 cells by reducing the levels of NLRP3, GSDMD-N, Caspase 1, fibronectin, collagen I/III, IL-1β, and IL-18. Mechanically, ZFAS1 knockdown protected HK-2 cells from HG-induced injury by upregulating miR-525-5p and repressing SGK1 expression. Overall, our results suggest that knocking down ZFAS1 may be formulated as a protective strategy in ameliorating DN progression through regulating miR-525-5p/SGK1 pathway. Targeting ZFAS1 could be further explored as a potential approach for the management of DN.
Collapse
Affiliation(s)
- Langen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China.
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Qiong Wang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Xiaoxu Ge
- Department of Endocrinology Tongren Hospital Affiliated to Jiaotong University, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| |
Collapse
|
5
|
Pan J, Li Y, Wu X, Pan X, Liu C, Zhang H, Wang L, Jiang X, Wang J, Zang N, Pang L, Lv X. The mechanism of Shenlong Jianji treatment of idiopathic pulmonary fibrosis inhibits fibroblast-to-myofibroblast transformation via the TGF-β1/smads signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117507. [PMID: 38122910 DOI: 10.1016/j.jep.2023.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlong Jianji (SLJJ) is a Chinese herbal compound composed of traditional medicines for supplementing Qi, nourishing Yin, promoting blood circulation, and removing obstruction in channels. It is widely used to treat idiopathic pulmonary fibrosis (IPF) in China. However, the underlying mechanism of SLJJ remains unclear. AIM OF THIS STUDY To elucidate the efficacy and mechanisms of SLJJ in the treatment of IPF through in vivo and in vitro experiments. MATERIAL AND METHODS 84 Wistar rats were randomly and equally divided into 7 groups: the control group (CTRL), the sham operation group (SHAM), the model group (IPF), the low dose of SLJJ group (L-SLJJ), the middle dose of SLJJ group (M-SLJJ), the high dose of SLJJ group (H-SLJJ), and the pirfenidone group (PFD). The rats in the CTRL, SHAM, and IPF groups were given normal saline each time for 28 days; the SLJJ groups were given Shenlong Jianji (9 g kg-1·d-1, 18 g kg-1·d-1, 36 g kg-1·d-1), and pirfenidone was administered as a sequential dose. After 28 days, the general condition of the rats was evaluated, and samples were collected. The lung coefficient was measured. The pathological changes of lung in each group were observed by H&E staining and Masson staining. α-SMA, collagen 1, and E-cadherin proteins were detected by immunohistochemistry. α-SMA, collagen 1, vimentin, E-cadherin, N-cadherin, TGF-β1, smad2, and smad3 proteins were detected by WB in vivo.In vitro, A scratch test was used to assess the ratio of cell migration. α-SMA, vimentin, E-cadherin, and N-cadherin protein levels were evaluated by a cellular immunofluorescence assay. TGF-β1/smads signaling pathway was detected by WB. HPLC-Q-TOF/MS analysis was used to identify the active compounds in the SLJJ. Molecular docking determined the free binding energy of the compound with the TGF-β1 protein. RESULTS SLJJ significantly improved the respiratory symptoms, heart rate, mental state, and food intake of IPF group rats and decreased the lung coefficient. In the IPF group, inflammatory cells were infiltrated, and the thickened alveoli wall and alveoli collapse were shown, while significantly alleviating pathological changes in the SLJJ and PFD groups. Masson staining showed that SLJJ and PFD decreased the collagen expression. Immunohistochemical results showed that the expressions of α-SMA, collagen 1, and N-cadherin decreased in the SLJJ and PFD groups, while E-cadherin increased significantly compared with the IPF group. SLJJ regulates TGF-β1/smads signaling pathway proteins in vivo. SLJJ decreased the ratio of migration in HFL-1 cells; SLJJ reduced the fluorescence intensity of α-SMA, vimentin, and N-cadherin and increased the fluorescence intensity of E-cadherin in primary rat lung (PRL) fibroblast cells and HFL-1 cells. WB results showed that SLJJ significantly down-regulated α-SMA, Vimentin, N-cadherin, TGF-β1, smad2, and p-smad2/3 proteins expression and up-regulated E-cadherin protein expression in vitro, whereas SRI-011381 (a TGF-β1 agonist) antagonized the effects of SLJJ. CONCLUSION SLJJ inhibits idiopathic pulmonary fibrosis. The TGF- β1/Smads signaling pathway can be the target of SLJJ, which inhibits fibroblast-to-myofibroblast transformation and is expected to be a new drug for the treatment of IPF.
Collapse
Affiliation(s)
- Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xize Wu
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China; Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China; Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China.
| | - Chuang Liu
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Haoyang Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Linlin Wang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xin Jiang
- The Fourth Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, No. 9, Xuesong Road, Jiefang Street, Sujiatun District, Shenyang, 110101, Liaoning, China.
| | - Jiaran Wang
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China.
| | - Ningzi Zang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Lijian Pang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, 33 Beiling Street, Shenyang, 110032, Liaoning, China.
| | - Xiaodong Lv
- Liaoning University of Traditional Chinese Medicine, 79 East of Chongshan Road, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
6
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
7
|
Qiu Z, Zhong Z, Zhang Y, Tan H, Deng B, Meng G. Human umbilical cord mesenchymal stem cell-derived exosomal miR-335-5p attenuates the inflammation and tubular epithelial-myofibroblast transdifferentiation of renal tubular epithelial cells by reducing ADAM19 protein levels. Stem Cell Res Ther 2022; 13:373. [PMID: 35902972 PMCID: PMC9330665 DOI: 10.1186/s13287-022-03071-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Renal tubular epithelial-myofibroblast transdifferentiation (EMT) plays a key role in the regulation of renal fibrosis. Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) play a crucial role in alleviating renal fibrosis and injury. Additionally, hucMSC-derived exosomes contain numerous microRNAs (miRNAs). However, it is unclear whether mesenchymal stem cells can regulate the transforming growth factor (TGF)-β1-induced EMT of human renal tubular epithelial cells (RTECs) through exosomal miRNAs. METHOD HK-2, a human RTEC line, was co-treated with TGF-β1 and hucMSC-derived exosomes. Additionally, TGF-β1-treated HK-2 cells were transfected with a miR-335-5p mimic and disintegrin and metalloproteinase domain-containing protein 19 (ADAM19)-overexpression plasmid. miR-335-5p expression and ADAM19 protein and inflammation levels were measured via quantitative reverse transcription polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assays, respectively. RESULTS TGF-β1 treatment changed the shape of HK-2 cells from a cobblestone morphology to a long spindle shape, accompanied by an increase in interleukin (IL)-6, tumor necrosis factor-α, IL-1β, collagen I, collagen III, α-smooth muscle actin, vimentin, and N-cadherin protein levels, whereas E-cadherin protein levels were reduced in these HK-2 cells, suggesting that TGF-β1 treatment induced the inflammation and EMT of HK-2 cells. HucMSC-exosomes improved the inflammation and EMT phenotype of TGF-β1-induced HK-2 cells by transferring miR-335-5p. miR-335-5p was found to bind the ADAM19 3'-untranslated region to reduce ADAM19 protein levels. Additionally, miR-335-5p improved the inflammation and EMT phenotype of HK-2 cells by reducing ADAM19 protein levels with TGF-β1 induction. CONCLUSIONS HucMSC-derived exosomal miR-335-5p attenuates the inflammation and EMT of HK-2 cells by reducing ADAM19 protein levels upon TGF-β1 induction. This study provides a potential therapeutic strategy and identifies targets for clinically treating renal fibrosis.
Collapse
Affiliation(s)
- Zhenhua Qiu
- Department of Laboratory Medicine, The People's Hospital of Gaozhou, Maoming, 525200, China.
| | - Zhihui Zhong
- Department of Laboratory Medicine, The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Yuehan Zhang
- Department of Laboratory Medicine, The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Haoling Tan
- Department of Laboratory Medicine, The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Bo Deng
- Department of Laboratory Medicine, The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Guohuang Meng
- Department of Laboratory Medicine, The People's Hospital of Gaozhou, Maoming, 525200, China
| |
Collapse
|
8
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|