1
|
Ustaoglu D, Öztürk RÇ, Ture M, Colussi S, Pastorino P, Vela AI, Kotzamanidis C, Volpatti D, Acutis PL, Altinok I. Multiplex PCR assay for the accurate and rapid detection and differentiation of Lactococcus garvieae and L. petauri. JOURNAL OF FISH DISEASES 2024; 47:e14004. [PMID: 39097825 DOI: 10.1111/jfd.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Lactococcosis is a common bacterial fish disease caused by Lactococcus garvieae, L. petauri and L. formosensis. Although there are different PCR-based techniques to identify the etiological agent, none of these can differentiate these two bacteria without sequencing PCR-amplified fragments. In the present study, we developed a multiplex PCR assay for simultaneous detection and differentiation of L. garvieae and L. petauri. The specificity of the primers was validated against the bacterial DNA of the targeted and non-targeted bacteria. The sizes of the PCR amplicons were obtained as 204 bp for the DUF1430 domain-containing protein gene of L. garvieae, 465 bp for the Lichenan permease IIC component gene of L. petauri, and 302 bp for the teichoic acid biosynthesis protein F gene of both L. garvieae and L. petauri. The PCR amplicons were clearly separated by agarose gel electrophoresis. The multiplex PCR assay did not produce any amplification products with the DNA of the non-targeted bacteria. The multiplex PCR detection limits for L. garvieae and L. petauri were 5 and 4 CFU in pure culture and 50 and 40 CFU/g in spiked tissue samples, respectively. It takes less than 2 h from plate-cultured bacteria and 3 h from tissue samples to get results. In conclusion, the developed multiplex PCR assay is a rapid, specific, accurate, and cost-effective method for the detection and differentiation of L. garvieae and L. petauri and is suitable to be used for routine laboratory diagnosis of L. garvieae and L. petauri.
Collapse
Affiliation(s)
- Dilek Ustaoglu
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
- Aquatic Animal Health and Molecular Genetic Lab, Karadeniz Technical University, Trabzon, Turkey
| | - Rafet Çağrı Öztürk
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
- Aquatic Animal Health and Molecular Genetic Lab, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Ture
- Department of Fish Health, Central Fisheries Research Institute, Trabzon, Turkey
| | - Silvia Colussi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Ana Isabel Vela
- VISAVET and Department of Animal Health, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Donatella Volpatti
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Ilhan Altinok
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
- Aquatic Animal Health and Molecular Genetic Lab, Karadeniz Technical University, Trabzon, Turkey
- Institute of Marine Sciences and Technology, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
2
|
Hassan MU, Chaudhuri RR, Williamson MP. DUF916 and DUF3324 in the WxL protein cluster bind to WxL and link bacterial and host surfaces. Protein Sci 2023; 32:e4806. [PMID: 37833244 PMCID: PMC10599100 DOI: 10.1002/pro.4806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Bacterial WxL proteins contain peptidoglycan-binding WxL domains, which have a dual Trp-x-Leu motif and are involved in virulence. It was recently shown that WxL proteins occur in gene clusters, containing typically a small WxL protein (which in the mature protein consists only of a WxL domain), a large WxL protein (which contains a C-terminal WxL domain with N-terminal host-binding domains), and a conserved protein annotated as a Domain of Unknown Function (DUF). Here we analyze this DUF and show that it contains two tandem domains-DUF916 and DUF3324-which both have an IgG-like fold and together form a single functional unit, connected to a C-terminal transmembrane helix. DUF3324 is a stable domain, while DUF916 is less stable and is likely to require a stabilizing interaction with WxL. The protein is suggested to have an important role to bind and stabilize WxL on the peptidoglycan surface, via the DUF916 domain, and to bind to host cells via the DUF3324 domain. AlphaFold2 predicts that a β-hairpin strand from DUF916 inserts into WxL adjacent to its N-terminus. We therefore propose to rename the DUF916-DUF3324 pair as WxL Interacting Protein (WxLIP), with DUF916, DUF3324 and the transmembrane helix forming the first, second and third domains of WxLIP, which we characterize as peptidoglycan binding domain (PGBD), host binding domain (HBD), and transmembrane helix (TMH) respectively.
Collapse
Affiliation(s)
- Mahreen U. Hassan
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Present address:
Department of MicrobiologyShaheed Benazir Bhutto Women UniversityPeshawarPakistan
| | | | | |
Collapse
|
3
|
Littman EM, Heckman TI, Yazdi Z, Veek T, Mukkatira K, Adkison M, Powell A, Camus A, Soto E. Temperature-associated virulence, species susceptibility and interspecies transmission of a Lactococcus petauri strain from rainbow trout. DISEASES OF AQUATIC ORGANISMS 2023; 155:147-158. [PMID: 37706645 DOI: 10.3354/dao03747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lactococcus petauri is an important emergent aquaculture pathogen in the USA. To better understand environmental conditions conducive to piscine lactococcosis and the susceptibility of fish species, laboratory-controlled challenges were used as models of infection. Rainbow trout Oncorhynchus mykiss maintained at 13 or 18°C were challenged by intracoelomic (ICe) injection with 101, 103 or 105 colony-forming units per fish (CFU fish-1) and monitored for 21 d. At 13°C, trout experienced mortalities of 7, 7 and 0%, and bacterial persistence of 0, 20 and 0% in survivors, respectively. When exposed to the same bacterial doses, trout maintained at 18°C experienced mortalities of 59, 84 and 91%, and bacterial persistence of 60, 66 and 0% in survivors, confirming a significant role of temperature in the pathogenesis of lactococcosis. Additionally, the susceptibility of rainbow trout, Chinook salmon Oncorhynchus tshawytscha, white sturgeon Acipenser transmontanus, Nile tilapia Oreochromis niloticus, and koi Cyprinus carpio to infection by L. petauri was compared using ICe challenges at 18°C. Trout and salmon experienced 96 and 56% cumulative mortality, respectively, and 17% of surviving salmon remained persistently infected. There were no mortalities in the other fish species, and no culturable bacteria recovered at the end of the challenge. However, when surviving fish were used in further cohabitation trials, naïve trout housed with previously exposed tilapia exhibited 6% mortality, demonstrating that non-salmonids can become sub-clinical carriers of this pathogen. The data obtained provide useful information regarding temperature-associated virulence, fish species susceptibility, and potential carrier transmission of L. petauri that can be used in the development of better management practices to protect against piscine lactococcosis.
Collapse
Affiliation(s)
- Eric Maxwell Littman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ballantyne R, Lee JW, Liu CH. First identification and histopathological analysis of Lactococcus garvieae infection in whiteleg shrimp, Penaeus vannamei cultured in low salinity water. JOURNAL OF FISH DISEASES 2023; 46:929-942. [PMID: 37309584 DOI: 10.1111/jfd.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
The isolation and characterization of bacterial species Lactococcus garvieae, previously unreported in whiteleg shrimp, Penaeus vannamei, has now been identified in the species. The pathogen was recovered from an affected shrimp farm in southern Taiwan. Bacterial characterization first identified the isolate as Gram-positive cocci, and biochemical profiles demonstrated that the causative agent of mortality was 97% L. garvieae. The bacterial cell DNA resulted in amplification of 1522 bp with 99.6% confirmation by PCR analysis. The phylogenetic tree revealed 100% evolutionary similarity among previously isolated strains. Experimental infection further confirmed higher susceptibility of whiteleg shrimp to L. garvieae in waters of lower salinity, particularly 5 ppt, than in higher salinity. Histopathological analysis showed severely damaged hepatopancreas with necrotized, elongated, collapsed tubules, dislodged membranes and granuloma formation in infected shrimp. Transmission electron microscopy observation indicated a hyaluronic acid capsular layer surrounding bacterial cell which is a virulence factor of L. garvieae and likely responsible for immunosuppression and higher mortality of shrimp cultured in lower salinity. Collectively, these findings report the first isolation of L. garvieae from whiteleg shrimp and shed new light on the disease that threatens the highly valuable species and accentuates the need for finding a solution.
Collapse
Affiliation(s)
- Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
5
|
Stoppani N, Colussi S, Pastorino P, Prearo M, Sciuto S, Altinok I, Öztürk RÇ, Ture M, Vela AI, Blanco MDM, Kotzamanidis C, Bitchava K, Malousi A, Fariano L, Volpatti D, Acutis PL, Fernández-Garayzábal JF. 16S-23S rRNA Internal Transcribed Spacer Region ( ITS) Sequencing: A Potential Molecular Diagnostic Tool for Differentiating Lactococcus garvieae and Lactococcus petauri. Microorganisms 2023; 11:1320. [PMID: 37317294 DOI: 10.3390/microorganisms11051320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Lactococcus garvieae is the etiological agent of lactococcosis, a clinically and economically significant infectious disease affecting farmed rainbow trout. L. garvieae had been considered the only cause of lactococcosis for a long time; however, L. petauri, another species of the genus Lactococcus, has lately been linked to the same disease. The genomes and biochemical profiles of L. petauri and L. garvieae have a high degree of similarity. Traditional diagnostic tests currently available cannot distinguish between these two species. The aim of this study was to use the transcribed spacer (ITS) region between 16S rRNA and 23S rRNA as a potential useful molecular target to differentiate L. garvieae from L. petauri, saving time and money compared to genomics methods currently used as diagnostic tools for accurate discrimination between these two species. The ITS region of 82 strains was amplified and sequenced. The amplified fragments varied in size from 500 to 550 bp. Based on the sequence, seven SNPs were identified that separate L. garvieae from L. petauri. The 16S-23S rRNA ITS region has enough resolution to distinguish between closely related L. garvieae and L. petauri and it can be used as a diagnostic marker to quickly identify the pathogens in a lactococcosis outbreak.
Collapse
Affiliation(s)
- Nadia Stoppani
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Silvia Colussi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Simona Sciuto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | - Ilhan Altinok
- Faculty of Marine Sciences, Karadeniz Technical University, Sürmene, 61530 Trabzon, Turkey
| | - Rafet Çağrı Öztürk
- Faculty of Marine Sciences, Karadeniz Technical University, Sürmene, 61530 Trabzon, Turkey
| | - Mustafa Ture
- Central Fisheries Research Institute (SUMAE), 61250 Trabzon, Turkey
| | - Ana Isabel Vela
- VISAVET and Department of Animal Health, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria Del Mar Blanco
- VISAVET and Department of Animal Health, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Konstantina Bitchava
- School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Lucio Fariano
- Azienda Agricola Canali Cavour, 12044 Centallo, Italy
| | - Donatella Volpatti
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Turin, Italy
| | | |
Collapse
|
6
|
Hassan MU, Williamson MP. Bioinformatic analysis of WxL domain proteins. Saudi J Biol Sci 2023; 30:103526. [PMID: 36568411 PMCID: PMC9772566 DOI: 10.1016/j.sjbs.2022.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The WxL domain is found on the cell surface of many bacteria, most of which are commensal gut bacteria. Its functions are generally identified as being related to virulence and/or peptidoglycan attachment, but there is so far no clear function or structure for this domain. Here, a range of bioinformatics tools were used to clarify the structure and function. These indicate that WxL domains occur in cell surface-associated gene clusters that always contain a small WxL, large WxL and DUF916 domain; and that the small and large WxL proteins have distinct structure despite sharing two conserved WxL motifs. The two WxL motifs form a hydrophobic surface buried inside the protein. The likely function of the WxL domain is to attach to bacterial peptidoglycan, forming a platform to allow associated domains in the cluster to interact with host proteins.
Collapse
Affiliation(s)
- Mahreen U. Hassan
- School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK,Dept of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar 2500, Pakistan1
| | - Mike P. Williamson
- School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK,Corresponding author.
| |
Collapse
|