1
|
Clouthier S, Rosani U, Khan A, Ding Q, Emmenegger E, Wang Z, Nalpathamkalam T, Thiruvahindrapuram B. Genomic and Epidemiological Investigations Reveal Chromosomal Integration of the Acipenserid Herpesvirus 3 Genome in Lake Sturgeon Acipenser fulvescens. Viruses 2025; 17:534. [PMID: 40284977 PMCID: PMC12031113 DOI: 10.3390/v17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
DNA sequence from a new alloherpesvirus named acipenserid herpesvirus 3 (AciHV-3) was found in sturgeon species that are vulnerable to decline globally. A study was undertaken to develop a better understanding of the virus genome and to develop diagnostic tools to support an epidemiological investigation. A 184,426 bp genome was assembled from PacBio HiFi sequences generated with DNA from a Lake Sturgeon Acipenser fulvescens gonad cell line. The AciHV-3 genome was contiguous with host chromosomal DNA and was structured with telomere-like terminal direct repeat regions, five internal direct repeat regions and a U region that included intact open reading frames encoding alloherpesvirus core proteins. Diagnostic testing conducted with a newly developed and analytically validated qPCR assay established the ubiquitous presence and high titer of AciHV-3 DNA in somatic and germline tissues from wild Lake Sturgeon in the Hudson Bay drainage basin. Phylogenetic reconstructions confirm that the monophyletic AciHV-3 lineage shares a common ancestor with AciHV-1 and that AciHV-3 taxa cluster according to their sturgeon host. The same genotype of AciHV-3 is found in disjunctive Lake Sturgeon populations within and among drainage basins. The results support the hypotheses that AciHV-3 has established latency through germline chromosomal integration, is vertically transmitted via a Mendelian pattern of inheritance, is evolving in a manner consistent with a replication competent virus and has co-evolved with its host reaching genetic fixation in Lake Sturgeon populations in central Canada.
Collapse
Affiliation(s)
- Sharon Clouthier
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padua, Italy;
| | - Arfa Khan
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Qiuwen Ding
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Eveline Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA;
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| |
Collapse
|
2
|
Schwegler H, Bigarré L, Lipnik K, Dinhopl N, Holzer A, Lewisch E. First report of ictavirus acipenseridallo2 (AciHV-2) in Danube sturgeons Acipenser gueldenstaedtii in Austria. DISEASES OF AQUATIC ORGANISMS 2025; 161:47-53. [PMID: 39912416 DOI: 10.3354/dao03837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Newly stocked Danube sturgeons Acipenser gueldenstaedtii developed cutaneous lesions and nearly 100% mortality over the course of 2 mo after introduction into an Austrian fish farm. Necropsy revealed cutaneous plaques and hemorrhages, and histological findings in skin, gills, spleen and kidney tissues showed cell-nucleus alterations consistent with infection by a herpesvirus. The presence of a herpesvirus was demonstrated by the visualization of numerous typical viral particles in different tissues by electron microscopy. A newly developed conventional PCR protocol, targeting a fragment of the viral DNA polymerase gene, further confirmed the presence of a virus related to the species Ictavirus acipenseridallo2 (formerly Acipenserid herpesvirus-2; AciHV-2) in the diseased fish. Amplification products were sequenced and showed 100% identity to the Siberian sturgeon herpesvirus (SbSHV) strain. This is the first report of herpesvirus detection in sturgeon in Austria and of SbSHV, a strain of AciHV-2, in Danube sturgeons.
Collapse
Affiliation(s)
- Hella Schwegler
- Clinical Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Laurent Bigarré
- Laboratoire de Ploufragan-Plouzané-Niort, ANSES, 29280 Plouzané, France
| | - Karoline Lipnik
- Clinical Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Nora Dinhopl
- Institute of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Astrid Holzer
- Clinical Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Eva Lewisch
- Clinical Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
3
|
Clouthier S, Tomczyk M, Schroeder T, Klassen C, Dufresne A, Emmenegger E, Nalpathamkalam T, Wang Z, Thiruvahindrapuram B. A New Sturgeon Herpesvirus from Juvenile Lake Sturgeon Acipenser fulvescens Displaying Epithelial Skin Lesions. Pathogens 2023; 12:1115. [PMID: 37764923 PMCID: PMC10537993 DOI: 10.3390/pathogens12091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Herpesvirus infections of sturgeon pose a potential threat to sturgeon culture efforts worldwide. A new epitheliotropic herpesvirus named Acipenser herpesvirus 3 (AciHV-3) was detected in hatchery-reared Lake Sturgeon Acipenser fulvescens displaying skin lesions in central Canada. The growths were discovered in the fall, reached average prevalence levels of 0.2-40% and eventually regressed. No unusual mortality was observed. The cellular changes within the lesions included epithelial hyperplasia and were reminiscent of other herpesvirus infections. The virus was not evident in lesions examined by electron microscopy. Skin tissue homogenates from symptomatic sturgeon produced atypical cytopathic effects on a primary Lake Sturgeon cell line, and next-generation sequence analysis of the DNA samples revealed the presence of an alloherpesvirus. A new genotyping PCR assay targeting the major capsid protein sequence detected AciHV-3 in symptomatic Lake Sturgeon as well as other apparently healthy sturgeon species. Bayesian inference of phylogeny reconstructed with a concatenation of five alloherpesvirus core proteins revealed a new Alloherpesviridae lineage isomorphic with a new genus. The presence of AciHV-3 homologs in cell lines and sturgeon sequence datasets, low sequence divergence among these homologs and branching patterns within the genotyping phylogeny provide preliminary evidence of an endogenous virus lifestyle established in an ancestral sturgeon.
Collapse
Affiliation(s)
- Sharon Clouthier
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Marek Tomczyk
- Manitoba Agriculture & Resource Development Veterinary Diagnostic Services, 545 University Crescent, Winnipeg, MB R3T 5S6, Canada;
| | - Tamara Schroeder
- Freshwater Institute, Department of Fisheries and Oceans, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada;
| | - Cheryl Klassen
- Manitoba Hydro, 360 Portage Ave, Winnipeg, MB R3C 0G8, Canada;
| | - André Dufresne
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, MB R3E 3M4, Canada;
| | - Eveline Emmenegger
- Western Fisheries Research Center, U.S. Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; (T.N.); (Z.W.); (B.T.)
| |
Collapse
|
4
|
Volpe E, Errani F, Mandrioli L, Ciulli S. Advances in Viral Aquatic Animal Disease Knowledge: The Molecular Methods' Contribution. BIOLOGY 2023; 12:biology12030466. [PMID: 36979158 PMCID: PMC10045235 DOI: 10.3390/biology12030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aquaculture is the fastest-growing food-producing sector, with a global production of 122.6 million tonnes in 2020. Nonetheless, aquatic animal production can be hampered by the occurrence of viral diseases. Furthermore, intensive farming conditions and an increasing number of reared fish species have boosted the number of aquatic animals' pathogens that researchers have to deal with, requiring the quick development of new detection and study methods for novel unknown pathogens. In this respect, the molecular tools have significantly contributed to investigating thoroughly the structural constituents of fish viruses and providing efficient detection methods. For instance, next-generation sequencing has been crucial in reassignment to the correct taxonomic family, the sturgeon nucleo-cytoplasmic large DNA viruses, a group of viruses historically known, but mistakenly considered as iridoviruses. Further methods such as in situ hybridisation allowed objectifying the role played by the pathogen in the determinism of disease, as the cyprinid herpesvirus 2, ostreid herpesvirus 1 and betanodaviruses. Often, a combination of molecular techniques is crucial to understanding the viral role, especially when the virus is detected in a new aquatic animal species. With this paper, the authors would critically revise the scientific literature, dealing with the molecular techniques employed hitherto to study the most relevant finfish and shellfish viral pathogens.
Collapse
Affiliation(s)
- Enrico Volpe
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Francesca Errani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 47042 Cesenatico, FC, Italy
| |
Collapse
|
5
|
First Isolation of a Herpesvirus (Family Alloherpesviridae) from Great Lakes Lake Sturgeon ( Acipenser fulvescens). Animals (Basel) 2022; 12:ani12233230. [PMID: 36496751 PMCID: PMC9740441 DOI: 10.3390/ani12233230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST in hatchery and wild settings. Therefore, a two-year disease surveillance study was undertaken, resulting in the detection and first in vitro isolation of a herpesvirus from grossly apparent cutaneous lesions in wild adult LST inhabiting two GL watersheds (Erie and Huron). Histological and ultrastructural examination of lesions revealed proliferative epidermitis associated with herpesvirus-like virions. A virus with identical ultrastructural characteristics was recovered from cells inoculated with lesion tissues. Partial DNA polymerase gene sequencing placed the virus within the Family Alloherpesviridae, with high similarity to a lake sturgeon herpesvirus (LSHV) from Wisconsin, USA. Genomic comparisons revealed ~84% Average Nucleotide Identity between the two isolates, leading to the proposed classification of LSHV-1 (Wisconsin) and LSHV-2 (Michigan) for the two viruses. When naïve juvenile LST were immersion-exposed to LSHV-2, severe disease and ~33% mortality occurred, with virus re-isolated from representative skin lesions, fulfilling Rivers’ postulates. Results collectively show LSHV-2 is associated with epithelial changes in wild adult LST, disease and mortality in juvenile LST, and is a potential threat to GL-LST conservation.
Collapse
|
6
|
Brocca G, Zamparo S, Pretto T, Calore A, Marsella A, Xiccato RL, Cornaggia M, Cortinovis L, Bano L, Toffan A, Quaglio F, Verin R. Severe gastroenteropathy associated with Clostridium perfringens isolation in starving juvenile sturgeons. JOURNAL OF FISH DISEASES 2022; 45:471-477. [PMID: 35007367 DOI: 10.1111/jfd.13579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In November 2020 a mortality episode (30%) in juvenile Siberian and Russian sturgeons (Acipenser baerii, Brandt, and A. gueldenstaedtii, Brandt & Ratzeburg) and GUBA hybrid sturgeons (A. gueldenstaedtii × A. baerii) occurred in a hatchery in Northern Italy, associated with severe coelomic distension and abnormal reverse surface swimming. The fish were reared in concrete tanks supplied by well water, fed at 0.4% of body weight (b.w.) per day. Thirty sturgeon specimens were collected for necropsy, histological, bacteriological and virological examination. Macroscopic findings included diffuse and severe bloating of gastrointestinal tracts due to foamy contents with thinning and stretching of the gastrointestinal walls. Histological analysis revealed variable degrees of sloughing and necrosis of the intestinal epithelium, and the presence of bacterial aggregates. Anaerobic Gram-positive bacteria were investigated, and Clostridium perfringens was isolated from the gut. Specific PCRs identified the toxinotype A and the β2 toxin gene. The daily feed administration was increased to 1.5% b.w. and after 5 days, the mortality ceased. A new animal cohort from the same groups was examined after 12 weeks, showing neither gut alterations nor isolation of C. perfringens. The imbalance of intestinal microbiota, presumably caused by underfeeding, favoured C. perfringens overgrowth and severe gas formation. The diet increase possibly restored the normal microbiota.
Collapse
Affiliation(s)
- Ginevra Brocca
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro (PD), Italy
| | - Samuele Zamparo
- Azienda Agricola Troticoltura Erede Rossi Silvio, Sefro (MC), Italy
| | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Alessandro Calore
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro (PD), Italy
| | - Andrea Marsella
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Romy Lucon Xiccato
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Matteo Cornaggia
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Luana Cortinovis
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Francesco Quaglio
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro (PD), Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro (PD), Italy
| |
Collapse
|
7
|
Stachnik M, Matras M, Borzym E, Maj-Paluch J, Reichert M. Emerging Viral Pathogens in Sturgeon Aquaculture in Poland: Focus on Herpesviruses and Mimivirus Detection. Viruses 2021; 13:v13081496. [PMID: 34452361 PMCID: PMC8402841 DOI: 10.3390/v13081496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Recently, Poland has become a leading producer of sturgeon meat and caviar in Europe and is one of the largest in the world. The growing importance of this branch of aquaculture means that diseases of these fish, especially viral ones, are becoming the object of interest for ichthyopathologists. In recent years, there have been increasing reports of health problems in the dynamically developing sturgeon farming. The greatest risk appears to be emerging infectious diseases that are caused by viruses and that can become a serious threat to the development of the aquaculture industry and the success of sturgeon restitution programs undertaken in many European countries, including Poland. In this paper, an attempt was made to determine the spread of the two most important groups of viruses in Polish sturgeon farming: These include the herpesviruses and sturgeon nucleocytoplasmic large DNA viruses (sNCLDV), in particular, mimiviruses. In the years 2016–2020, 136 samples from nine farms were collected and tested by using the WSSK-1 cell line, PCR and Real Time PCR methods. All results were negative for herpesviruses. Out of the samples, 26% of the samples have been tested positive for mimiviruses. Sanger sequencing of mimiviruses demonstrated their affiliation with AciV-E. The sequence characterization confirmed the presence of both V1 and V2 lineages in Polish fish facilities, but variant V2 seems to be more widespread, as is observed in other European countries.
Collapse
|
8
|
Multifactorial Causes of Chronic Mortality in Juvenile Sturgeon ( Huso huso). Animals (Basel) 2020; 10:ani10101866. [PMID: 33066257 PMCID: PMC7602020 DOI: 10.3390/ani10101866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023] Open
Abstract
This investigation focused on an episode of chronic mortality observed in juvenile Huso huso sturgeons. The examined subjects underwent pathological, microbiological, molecular, and chemical investigations. Grossly severe body shape deformities, epaxial muscle softening, and multifocal ulcerative dermatitis were the main observed findings. The more constant histopathologic findings were moderate to severe rarefaction and disorganization of the lymphohematopoietic lymphoid tissues, myofiber degeneration, atrophy and interstitial edema of skeletal epaxial muscles, and degeneration and atrophy of the gangliar neurons close to the myofibers. Chemical investigations showed a lower selenium concentration in affected animals, suggesting nutritional myopathy. Other manifestations were nephrocalcinosis and splenic vessel wall hyalinosis. Septicemia due to bacteria such as Aeromonas veronii, Shewanella putrefaciens, Citrobacter freundii, Chryseobacterium sp., and pigmented hyphae were found. No major sturgeon viral pathogens were detected by classical methods. Next-generation sequencing (NGS) analysis confirmed the absence of viral pathogens, with the exception of herpesvirus, at the order level; also, the presence of Aeromonas veronii and Shewanella putrefaciens was confirmed at the family level by the metagenomic classification of NGS data. In the absence of a primary yet undetected biological cause, it is supposed that environmental stressors, including nutritional imbalances, may have led to immune system impairment, facilitating the entry of opportunistic bacteria and mycotic hyphae.
Collapse
|
9
|
Clouthier S, Caskenette A, Van Walleghem E, Schroeder T, Macdonald D, Anderson ED. Molecular phylogeny of sturgeon mimiviruses and Bayesian hierarchical modeling of their effect on wild Lake Sturgeon (Acipenser fulvescens) in Central Canada. INFECTION GENETICS AND EVOLUTION 2020; 84:104491. [PMID: 32763443 DOI: 10.1016/j.meegid.2020.104491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Sturgeon mimiviruses can cause a lethal disease of the integumentary systems of sturgeon (Acipenseridae). Here we provide phylogeographic evidence that sturgeon mimivirus is endemic in endangered populations of wild Lake Sturgeon within Canada's Hudson Bay drainage basin. Namao virus (NV) variants were diagnosed in 24% of Lake Sturgeon samples (n = 1329) collected between 2010-2015. Lake Sturgeon populations with the highest virus prevalence were from the Nelson River (58%) in 2015, Saskatchewan River (41%) in 2010 and South Saskatchewan River (36%) in 2011. Bayesian phylogenetic reconstructions suggested that four NV variants, designated HBDB I-IV, co-circulate temporally and spatially within and between the genetically and biogeographically distinct Lake Sturgeon populations. Evidence from recapture studies suggested that Lake Sturgeon across the basin are persistently infected with NV at prevalence and titer (103.6 equivalent plasmid copies per μg DNA) levels consistent with the hypothesis that wild Lake Sturgeon populations serve as a maintenance population and reservoir for sturgeon mimiviruses. Bayesian hierarchical modeling of NV in the Landing River population of Lake Sturgeon suggested that host weight and age were the best predictors of sturgeon mimivirus presence and titer, respectively, whereas water flow rate, level and temperature, and number of previous captures did not significantly improve model fit. A negative relationship was estimated between sturgeon mimivirus presence and Lake Sturgeon weight and between virus titer and Lake Sturgeon age.
Collapse
Affiliation(s)
- Sharon Clouthier
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Amanda Caskenette
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Elissa Van Walleghem
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Tamara Schroeder
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada.
| | - Don Macdonald
- Department of Sustainable Development, Province of Manitoba, Box 28, 59 Elizabeth Drive, Thompson, Manitoba R8N 1X4, Canada.
| | | |
Collapse
|
10
|
Mugetti D, Pastorino P, Menconi V, Pedron C, Prearo M. The Old and the New on Viral Diseases in Sturgeon. Pathogens 2020; 9:pathogens9020146. [PMID: 32098100 PMCID: PMC7168591 DOI: 10.3390/pathogens9020146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
Although sturgeon production by aquaculture has increased worldwide, a major factor limiting its expansion are infectious diseases, although few data about viral diseases are available however. This review provides a rapid overview of viral agents detected and described to date. Following a general introduction on viral diseases are four sections arranged by virus classification: sturgeon nucleocytoplasmic large DNA viruses, herpesviruses, white sturgeon adenovirus 1, and other viruses. Molecular diagnosis is currently the best tool to detect viral diseases, since cell culture isolation is not yet applicable for the detection of most sturgeon viruses.
Collapse
Affiliation(s)
- Davide Mugetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.P.); (V.M.); (M.P.)
- Correspondence: ; Tel.: +39-0112686251
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.P.); (V.M.); (M.P.)
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Vasco Menconi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.P.); (V.M.); (M.P.)
| | | | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Torino, Italy; (P.P.); (V.M.); (M.P.)
| |
Collapse
|
11
|
Pallandre L, Lesne M, de Boisséson C, Charrier A, Daniel P, Tragnan A, Debeuf B, Chesneau V, Bigarré L. Genetic identification of two Acipenser iridovirus-European variants using high-resolution melting analysis. J Virol Methods 2018; 265:105-112. [PMID: 30586558 DOI: 10.1016/j.jviromet.2018.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/23/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022]
Abstract
Acipenser iridovirus-European (AcIV-E) is an important pathogen of sturgeons. Two variants differing by single-nucleotide polymorphisms (SNP) in the Major Capsid Protein gene have been described, but without any indication as to their prevalence in farms. To facilitate epidemiological studies, we developed a high-resolution melting (HRM) assay to distinguish between two alleles (var1 and var2) differing by five point substitutions. The HRM assay detected as little as 100 copies of plasmids harboring cloned sequences of var1 and var2, which have melting temperatures (Tm) differing by only 1 °C. The assay was specific of AcIV-E as demonstrated by the absence of signal when testing a related, yet distinct, virus as well as DNA from an AcIV-E-negative sturgeon sample. Experiments with mixtures of two distinct plasmids revealed abnormal melting curve patterns, which showed dips just before the main melting peaks. These dips in the curves were interpreted as the dissociation of heteroduplexes fortuitously created during the PCR step. Screening AciV-E-positive field samples of Russian sturgeons from three farms revealed the presence of var2, based on the Tm. However, for a few samples, the melting curves showed patterns typical of var2 as the dominant viral genome, mixed with another minor variant which proved to be var1. In conclusion, HRM is a simple method to screen for AcIV-E var1 and var2 and can be used on a large scale in Europe to trace these two variants which likely represent two genetic lineages.
Collapse
Affiliation(s)
- Laurane Pallandre
- Laboratoire de Ploufragan-Plouzané, ANSES, Technopole Brest Iroise, 29280 Plouzané, France
| | - Mélanie Lesne
- Laboratoires des Pyrénées et des Landes, 40004, Mont-de-Marsan, France
| | - Claire de Boisséson
- Laboratoire de Ploufragan-Plouzané, ANSES, rue des fusillés, 22440, Ploufragan, France
| | - Amélie Charrier
- Laboratoires des Pyrénées et des Landes, 40004, Mont-de-Marsan, France
| | - Patrick Daniel
- Laboratoires des Pyrénées et des Landes, 40004, Mont-de-Marsan, France
| | - Arthur Tragnan
- Groupement de Défense Sanitaire Aquacole Aquitain, 40004, Mont-de-Marsan, France
| | | | | | - Laurent Bigarré
- Laboratoire de Ploufragan-Plouzané, ANSES, Technopole Brest Iroise, 29280 Plouzané, France.
| |
Collapse
|
12
|
Garver KA, Leskisenoja K, Macrae R, Hawley LM, Subramaniam K, Waltzek TB, Richard J, Josefsson C, Valtonen ET. An alloherpesvirus infection of European perch Perca fluviatilis in Finland. DISEASES OF AQUATIC ORGANISMS 2018; 128:175-185. [PMID: 29862976 DOI: 10.3354/dao03228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The order Herpesvirales includes viruses that infect aquatic and terrestrial vertebrates and several aquatic invertebrates (i.e. mollusks), and share the commonality of possessing a double-stranded DNA core surrounded by an icosahedral capsid. Herpesviruses of the family Alloherpesviridae that infect fish and amphibians, including channel catfish virus and koi herpesvirus, negatively impact aquaculture. Here, we describe a novel herpesvirus infection of wild European perch from lakes in Finland. Infected fish exhibited white nodules on the skin and fins, typically in the spring when prevalence reached nearly 40% in one of the sampled lakes. Transmission electron microscopic examination of affected tissues revealed abundant nuclear and cytoplasmic virus particles displaying herpesvirus morphology. Degenerate PCR targeting a conserved region of the DNA polymerase gene of large DNA viruses amplified a 520 bp product in 5 of 5 affected perch skin samples tested. Phylogenetic analysis of concatenated partial DNA polymerase and terminase (exon 2) gene sequences produced a well-supported tree grouping the European perch herpesvirus with alloherpesviruses infecting acipenserid, esocid, ictalurid, and salmonid fishes. The phenetic analysis of the European perch herpesvirus partial DNA polymerase and terminase nucleotide gene sequences ranged from 34.6 to 63.9% and 39.6 to 59.6% to other alloherpesviruses, respectively. These data support the European perch herpesvirus as a new alloherpesvirus, and we propose the formal species designation of Percid herpesvirus 2 (PeHV2) to be considered for approval by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Kyle A Garver
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia V9T 6N7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|