1
|
Li C, Du M, Han Y, Sun W, Chen Z, Liu Q, Zhu H, Zhao L, Li S, Wang J. Microalgae in health care and functional foods: β-glucan applications, innovations in drug delivery and synthetic biology. Front Pharmacol 2025; 16:1557298. [PMID: 40103595 PMCID: PMC11913682 DOI: 10.3389/fphar.2025.1557298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Microalgae are emerging as a key player in healthcare, functional foods, and sustainable biotech due to their capacity to produce bioactive compounds like β-glucans, omega-3 fatty acids, and antioxidants in an eco-friendly manner. This review comprehensively discusses the role of microalgae in healthcare and functional foods, focusing particularly on β-glucan therapeutics, drug delivery innovations, and synthetic biology applications. In healthcare, microalgae-derived compounds show immense promise for treating diseases, boosting immunity, and tackling oxidative stress. Euglena-derived paramylon, a type of β-glucan, has shown potential in various medical applications, including immunomodulation and anticancer therapy. Synthetic biology and bioprocess engineering are enhancing microalgae's therapeutic and nutritional value, with applications in drug delivery and personalized medicine. To maximize the potential of microalgae, further research and development are needed to address scalability, regulatory alignment, and consumer acceptance, with a focus on interdisciplinary collaboration and sustainable practices to align healthcare innovation with environmental conservation.
Collapse
Affiliation(s)
- Chao Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yujie Han
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wentao Sun
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Kaszecki E, Palberg D, Grant M, Griffin S, Dhanjal C, Capperauld M, Emery RJN, Saville BJ. Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance. Int Microbiol 2024; 27:1249-1268. [PMID: 38167969 PMCID: PMC11300505 DOI: 10.1007/s10123-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature. The photosynthetic protist Euglena mutabilis is often found in association with other microbes in acidic environments with high heavy metal (HM) concentrations. This may suggest that microbial interactions are essential for the protist's ability to tolerate these extreme environments. Our study assessed the Cd tolerance of a natural fungal-algal-bacterial (FAB) association whereby the algae is E. mutabilis. RESULTS This study provides the first assessment of antibiotic and antimycotic agents on an E. mutabilis culture. The results indicate that antibiotic and antimycotic applications significantly decreased the viability of E. mutabilis cells when they were also exposed to Cd. Similar antibiotic treatments of E. gracilis cultures had variable or non-significant impacts on Cd tolerance. E. gracilis also recovered better after pre-treatment with antibiotics and Cd than did E. mutabilis. The recoveries were assessed by heterotrophic growth without antibiotics or Cd. In contrast, both Euglena species displayed increased chlorophyll production upon Cd exposure. PacBio full-length amplicon sequencing and targeted Sanger sequencing identified the microbial species present in the E. mutabilis culture to be the fungus Talaromyces sp. and the bacterium Acidiphilium acidophilum. CONCLUSION This study uncovers a possible fungal, algal, and bacterial relationship, what we refer to as a FAB consortium. The members of this consortium interact to enhance the response to Cd exposure. This results in a E. mutabilis culture that has a higher tolerance to Cd than the axenic E. gracilis. The description of this interaction provides a basis for explore the benefits of natural interactions. This will provide knowledge and direction for use when creating or maintaining FAB interactions for biotechnological purposes, including bioremediation.
Collapse
Affiliation(s)
- Emma Kaszecki
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Daniel Palberg
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Mikaella Grant
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Sarah Griffin
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Chetan Dhanjal
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - R J Neil Emery
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
3
|
de Souza Theodoro S, Gonçalves Tozato ME, Warde Luis L, Goloni C, Bassi Scarpim L, Bortolo M, Cavalieri Carciofi A. β-glucans from Euglena gracilis or Saccharomyces cerevisiae effects on immunity and inflammatory parameters in dogs. PLoS One 2024; 19:e0304833. [PMID: 38820480 PMCID: PMC11142716 DOI: 10.1371/journal.pone.0304833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Considering the differences in molecular structure and function, the effects of β-1,3-glucans from Euglena gracilis and β-1,3/1,6-glucans from Saccharomyces cerevisiae on immune and inflammatory activities in dogs were compared. Four diets were compared: control without β-glucans (CON), 0.15 mg/kg BW/day of β-1,3/1,6-glucans (Β-Y15), 0.15 mg/kg BW/day of β-1,3-glucans (Β-S15), and 0.30 mg/kg BW/day of β-1,3-glucans (Β-S30). Thirty-two healthy dogs (eight per diet) were organized in a block design. All animals were fed CON for a 42-day washout period and then sorted into one of four diets for 42 days. Blood and faeces were collected at the beginning and end of the food intake period and analysed for serum and faecal cytokines, ex vivo production of hydrogen peroxide (H2O2) and nitric oxide (NO), phagocytic activity of neutrophils and monocytes, C-reactive protein (CRP), ex vivo production of IgG, and faecal concentrations of IgA and calprotectin. Data were evaluated using analysis of covariance and compared using Tukey's test (P<0.05). Dogs fed Β-Y15 showed higher serum IL-2 than dogs fed Β-S30 (P<0.05). A higher phagocytic index of monocytes was observed in dogs fed the B-S15 diet than in those fed the other diets, and a higher neutrophil phagocytic index was observed for B-S15 and B-Y15 than in dogs fed the CON diet (P<0.05). Monocytes from dogs fed B-S15 and B-S30 produced more NO and less H2O2 than those from the CON and B-Y15 groups (P<0.05). Despite in the reference value, CRP levels were higher in dogs fed B-S15 and B-S30 diets (P<0.05). β-1,3/1,6-glucan showed cell-mediated activation of the immune system, with increased serum IL-2 and neutrophil phagocytic index, whereas β-1,3-glucan acted on the immune system by increasing the ex vivo production of NO by monocytes, neutrophil phagocytic index, and serum CRP. Calprotectin and CRP levels did not support inflammation or other health issues related to β-glucan intake. In conclusion, both β-glucan sources modulated some immune and inflammatory parameters in dogs, however, different pathways have been suggested for the recognition and action of these molecules, reinforcing the necessity for further mechanistic studies, especially for E. gracilis β-1,3-glucan.
Collapse
Affiliation(s)
- Stephanie de Souza Theodoro
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Maria Eduarda Gonçalves Tozato
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Letícia Warde Luis
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Camila Goloni
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lucas Bassi Scarpim
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marcelino Bortolo
- Kemin Nutrisurance Nutrição Animal LTDA, Brasil, Vargeão, Santa Catarina, Brazil
| | - Aulus Cavalieri Carciofi
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
4
|
Luo M, Feng G, Ke H. Role of Clostridium butyricum, Bacillus subtilis, and algae-sourced β-1,3 glucan on health in grass turtle. FISH & SHELLFISH IMMUNOLOGY 2022; 131:244-256. [PMID: 36182025 DOI: 10.1016/j.fsi.2022.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of two probiotics namely Clostridium butyricum and Bacillus subtilis, and one prebiotic known as algae-sourced β-1,3 glucan, on the overall performances of grass turtles (Chinemys reevesii) juveniles. Growth performance, immune responses, enzymatic antioxidant activities, intestinal histomorphology, and disease resistance against the challenge with Aeromonas veronii were assessed. Two hundred and sixteen (216) juvenile turtles with an average initial weight of 106.35 ± 0.03 g were divided into four groups, each containing three replicates with 18 turtles per each replicate, which were fed a basic diet (control group, GD) and a basal diet supplemented with C. butyricum 1.0 × 108 CFU per kg (GA group), or with B. subtilis 1.0 × 108 CFU per kg (GB group) and with algal-sourced β-1,3-glucan 50 mg per kg (GC group), respectively. After the turtles had been fed for 60 d, 90 d, and 120 d of the experimental period, the growth performance and survival rate (SR), intestinal digestive enzyme, hepatic and intestinal antioxidant capacity, serum biochemical indexes, and immune performance were measured. The results showed that the weight gain rate and SR were significantly enhanced (P < 0.05) after fed probiotics and algae-sourced β-1,3-glucan in all test times;The pepsin, amylase, acid phosphatase, total antioxidant capacity, triglyceride, alkaline phosphatase, urea nitrogen, cholesterol, total protein, IgA, IgG, IgM at 120 d were significantly enhanced (P<0.05) after fed C. butyricum. The intestinal villi heights, widths, and the thickness of the muscle layer were significantly higher in groups GA, GB, and GC than those reared within the GD control group (P < 0.05). After injecting the challenge by A. veronii the survival rate of grass turtles in the GA group (75%) was significantly higher than the other three groups (P<0.05), while there was no significant difference between the GB and GC groups compared with the control GD group, respectively (P>0.05). Overall, these results indicated that dietary supplementation with probiotics or algae-sourced β-1,3 glucan, exhibited positive effects on C. reevesii. In particular, C. butyricum, showed the greatest improvements relating to growth, immune response, antioxidant activity, intestinal health, and disease resistance.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Ebenezer TE, Low RS, O'Neill EC, Huang I, DeSimone A, Farrow SC, Field RA, Ginger ML, Guerrero SA, Hammond M, Hampl V, Horst G, Ishikawa T, Karnkowska A, Linton EW, Myler P, Nakazawa M, Cardol P, Sánchez-Thomas R, Saville BJ, Shah MR, Simpson AGB, Sur A, Suzuki K, Tyler KM, Zimba PV, Hall N, Field MC. Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world. Biol Open 2022; 11:bio059561. [PMID: 36412269 PMCID: PMC9836076 DOI: 10.1242/bio.059561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
Collapse
Affiliation(s)
- ThankGod Echezona Ebenezer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ross S. Low
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Ishuo Huang
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | - Antonio DeSimone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Scott C. Farrow
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sergio Adrián Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral. CCT CONICET Santa Fe, Santa Fe 3000, Argentina
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec 25250, Czech Republic
| | - Geoff Horst
- Kemin Industries, Research and Development, Plymouth, MI 48170, USA
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue 690-8504, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw 02-089, Poland
| | - Eric W. Linton
- Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Peter Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Masami Nakazawa
- Department of Applied Biochemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Pierre Cardol
- Department of Life Sciences, Institut de Botanique, Université de Liège, Liège 4000, Belgium
| | | | - Barry J. Saville
- Forensic Science, Environmental and Life Sciences Graduate Program, Trent University, Peterborough K9L 0G2, Canada
| | - Mahfuzur R. Shah
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aakash Sur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Kengo Suzuki
- R&D Company, Euglena Co., Ltd., 2F Yokohama Bio Industry Center (YBIC), 1-6 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kevin M. Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Paul V. Zimba
- PVZimba, LLC, 12241 Percival St, Chester, VA 23831, USA
- Rice Rivers Center, VA Commonwealth University, Richmond, VA 23284, USA
| | - Neil Hall
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
The roles of polysaccharides in tilapia farming: A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
The Characterization and Functional Properties of Euglena gracilis Paramylon Treated with Different Methods. Int J Anal Chem 2022; 2022:7811014. [PMID: 35966503 PMCID: PMC9371794 DOI: 10.1155/2022/7811014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Euglena gracilis paramylon (EGP) is a polymeric polysaccharide composed of linear β-1,3 glucan. The water insolubility of EGP severely limits its application. This work aimed to improve the functional characteristics of EGP by hydrogen peroxide (H2O2) degradation and carboxymethylated modification. The results showed that the crystallinity of EGP degraded by H2O2 and carboxymethylated modification decreased by 14% and 46%, and the thermal degradation temperature was significantly descending in a crystallinity-dependent manner. In addition, the results showed that H2O2 degradation and carboxymethylation significantly improved the adsorption capacity of EGP for oil, dyes, and metal ions, and their water solubility increased by 9% and 85%. This result will provide a valuable theoretical basis for the development and utilization of EGP.
Collapse
|
8
|
Gao L, Zhao X, Liu M, Zhao X. Characterization and Antibacterial Activities of Carboxymethylated Paramylon from Euglena gracilis. Polymers (Basel) 2022; 14:polym14153022. [PMID: 35893986 PMCID: PMC9332863 DOI: 10.3390/polym14153022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Paramylon from Euglena gracilis (EGP) is a polymeric polysaccharide composed of linear β-1,3 glucan. EGP has been proved to have antibacterial activity, but its effect is weak due to its water insolubility and high crystallinity. In order to change this deficiency, this experiment carried out carboxymethylated modification of EGP. Three carboxymethylated derivatives, C-EGP1, C-EGP2, and C-EGP3, with a degree of substitution (DS) of 0.14, 0.55, and 0.78, respectively, were synthesized by varying reaction conditions, such as the mass of chloroacetic acid and temperature. Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) analysis confirmed the success of the carboxymethylated modification. The Congo red (CR) experiment, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetry (TG) were used to study the conformation, surface morphology, crystalline nature, and thermostability of the carboxymethylated EGP. The results showed that carboxymethylation did not change the triple helix structure of the EGP, but that the fundamental particles’ surface morphology was destroyed, and the crystallization area and thermal stability decreased obviously. In addition, the water solubility test and antibacterial experiment showed that the water solubility and antibacterial activity of the EGP after carboxymethylation were obviously improved, and that the water solubility of C-EGP1, C-EGP2, and C-EGP3 increased by 53.31%, 75.52%, and 80.96% respectively. The antibacterial test indicated that C-EGP3 had the best effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with minimum inhibitory concentration (MIC) values of 12.50 mg/mL and 6.25 mg/mL. The diameters of the inhibition zone of C-EGP3 on E. coli and S. aureus were 11.24 ± 0.15 mm and 12.05 ± 0.09 mm, and the antibacterial rate increased by 41.33% and 43.67%.
Collapse
|
9
|
He J, Wang Z, Zhao Y, Yang J, Zhang Y, Liu Q, Yang D. Feeding with poly(I:C) induced long-term immune responses against bacterial infection in turbot (Scophthalmus maximus). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100037. [PMID: 36420496 PMCID: PMC9680065 DOI: 10.1016/j.fsirep.2021.100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Poly(I:C) is a kind of chemosynthetic double-stranded RNA (dsRNA) analogue which could act as TLR3 agonist and induce IFN production. It is widely applied in anti-virus treatment and immunoregulation, as well as vaccine adjuvant in farmed animals. However, whether poly(I:C) could activate innate immune response to defense against bacterial infection remains unclear. In this study, we established a feeding trial model with different dose of poly(I:C) in turbot larvae, then challenged with Edwardsiella piscicida after 3–7 weeks resting period. The results show that feeding turbot with poly(I:C) exhibited a stronger inflammatory response and antioxidant stress ability, and significantly elevated the survival rate within the decreased bacterial loads. Importantly, the bacterial infection-induced white feces in hindgut of turbot were significantly alleviated after poly(I:C) feeding, and this administration induced protection could last for about 7 weeks. Taken together, these findings indicate that feeding turbot with poly(I:C) could enhance a long-term intestinal mucosal immunity in response to bacterial infection, suggesting that poly(I:C) might be a promising immunostimulant in aquaculture.
Collapse
|
10
|
Immune Status and Hepatic Antioxidant Capacity of Gilthead Seabream Sparus aurata Juveniles Fed Yeast and Microalga Derived β-glucans. Mar Drugs 2021; 19:md19120653. [PMID: 34940652 PMCID: PMC8704051 DOI: 10.3390/md19120653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
This work aimed to evaluate the effects of dietary supplementation with β-glucans extracted from yeast (Saccharomyces cerevisiae) and microalga (Phaeodactylum tricornutum) on gene expression, oxidative stress biomarkers and plasma immune parameters in gilthead seabream (Sparus aurata) juveniles. A practical commercial diet was used as the control (CTRL), and three others based on CTRL were further supplemented with different β-glucan extracts. One was derived from S. cerevisiae (diet MG) and two different extracts of 21% and 37% P. tricornutum-derived β-glucans (defined as Phaeo21 and Phaeo37), to give a final 0.06% β-glucan dietary concentration. Quadruplicate groups of 95 gilthead seabream (initial body weight: 4.1 ± 0.1 g) were fed to satiation three times a day for 8 weeks in a pulse-feeding regimen, with experimental diets intercalated with the CTRL dietary treatment every 2 weeks. After 8 weeks of feeding, all groups showed equal growth performance and no changes were found in plasma innate immune status. Nonetheless, fish groups fed β-glucans supplemented diets showed an improved anti-oxidant status compared to those fed CTRL at both sampling points (i.e., 2 and 8 weeks). The intestinal gene expression analysis highlighted the immunomodulatory role of Phaeo37 diet after 8 weeks, inducing an immune tolerance effect in gilthead seabream intestine, and a general down-regulation of immune-related gene expression. In conclusion, the results suggest that the dietary pulse administration of a P. tricornutum 37% enriched-β-glucans extract might be used as a counter-measure in a context of gut inflammation, due to its immune-tolerant and anti-oxidative effects.
Collapse
|
11
|
de Cruz CR, Yamamoto FY, Ju M, Chen K, Velasquez A, Gatlin DM. Efficacy of purified nucleotide supplements on the growth performance and immunity of hybrid striped bass Morone chrysops x Morone saxatilis. FISH & SHELLFISH IMMUNOLOGY 2020; 98:868-874. [PMID: 31751660 DOI: 10.1016/j.fsi.2019.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Fishmeal is being increasingly replaced in aquatic animal diets with alternative plant protein feedstuffs such as soybean meal which have lower concentrations of nucleotides; therefore, supplemental sources of exogenous nucleotides in diets could become increasingly important. A 9-week feeding trial was conducted with triplicate groups of juvenile hybrid striped bass (average initial body weight ± standard deviation, 5.6 ± 0.1 g) to determine the effects of supplementing single purified nucleotides on the growth performance and immune parameters. The basal diet, which utilized menhaden fishmeal (25%) and soybean meal (75%) as protein sources, contained 44% protein, 10% lipid and an estimated digestible energy level of 3.5 kcal g-1. Single additions of 5'- adenosine monophosphate (AMP), 5'- uridine monophosphate (UMP), 5'- cytidine monophosphate (CMP), 5'- guanosine monophosphate (GMP), and 5'- inosine monophosphate (IMP) disodium salts (Chem-Impex International, Wood Dale, Illinois, USA) were evaluated with each nucleotide added to the basal diet at 0.5% of dry weight at the expense of cellulose. A positive control diet in this trial was a diet containing 5'- AMP from Sigma-Aldrich also supplemented at 0.5% by weight. Results showed significantly (P < 0.05) improved weight gain between fish fed AMP-supplemented diets and the basal diet. No statistical significance (P > 0.05) was detected in whole-body proximate composition and protein retention of fish fed any of the dietary treatments. The respiratory burst of whole blood phagocytes also was significantly (P < 0.05) higher in fish fed the AMP Sigma diet compared to the other dietary treatments. Dietary IMP and AMP both significantly (P < 0.05) enhanced the capacity of isolated phagocytes to generate extracellular superoxide anion compared to all other dietary treatments. No significant differences were seen in other innate immune parameters such as plasma lysozyme, total plasma protein, and total immunoglobulin. The ability of isolated B lymphocytes to proliferate prompted by the presence of lipopolysaccharides was significantly (P < 0.05) different among dietary treatments with the highest simulation index observed in fish fed the diets containing AMP Sigma and UMP; however, it was not significantly different from that of fish fed the basal diet. Based on all the measured responses, it is concluded that AMP at 0.5% of diet had the most positive influence on growth performance and innate immunostimulation of hybrid striped bass.
Collapse
Affiliation(s)
- Clement R de Cruz
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, United States; Current address: Department of Aquaculture, Faculty of Agriculture, Universiti Putra, Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fernando Y Yamamoto
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, United States
| | - Min Ju
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, United States
| | - Kequan Chen
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, United States
| | - Alejandro Velasquez
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, United States
| | - Delbert M Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University System, College Station, TX, 77843-2258, United States.
| |
Collapse
|
12
|
Kim JY, Oh JJ, Kim DH, Park J, Kim HS, Choi YE. Rapid and Accurate Quantification of Paramylon Produced from Euglena gracilis Using an ssDNA Aptamer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:402-408. [PMID: 31809034 DOI: 10.1021/acs.jafc.9b04588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The functional ingredients of microalgal biomass are receiving substantial recognition as the global demands for health supplements produced from natural sources are on the rise. Paramylon, a conglomerate of β-1,3-glucans, is one of the major valuable sources derived from Euglena gracilis having multiple applications, thus necessitating the development of an efficient quantification method. Here, we employed a DNA aptamer to quantify the amount of paramylon produced by E. gracilis. Paramylon-specific aptamers were isolated by the systematic evolution of ligands by exponential enrichment (SELEX) process. To evaluate the potential aptamers, the binding affinity between aptamer candidates and paramylon granules was confirmed by a confocal laser scanning microscope and the dissociation constants of the selected aptamers were determined by nonlinear regression analysis. The selected DNA aptamer was successfully used for the quantification of paramylon, and the results were compared to those obtained by the standard methods. The new approach was also used for quantification of paramylon from E. gracilis cells cultured to different cell stages and physiologies. It can be concluded that the aptamer-based protocol for the measurement of paramylon proposed in this study is highly accurate and comparatively less time-consuming.
Collapse
Affiliation(s)
- Jee Young Kim
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Da Hee Kim
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Jaewon Park
- Department of Electrical and Electronic Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Hyun Soo Kim
- Korea Institute of Machinery and Materials , Daegu Research Center for Medical Devices and Rehabilitation , Daegu 42994 , Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| |
Collapse
|
13
|
Dual RNA-Seq Unveils the Role of the Pseudomonas plecoglossicida fliA Gene in Pathogen-Host Interaction with Larimichthys crocea. Microorganisms 2019; 7:microorganisms7100443. [PMID: 31614635 PMCID: PMC6843279 DOI: 10.3390/microorganisms7100443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022] Open
Abstract
In the present study, Larimichthys crocea and Pseudomonas plecoglossicida were selected as a host-pathogen interaction model for teleosts and prokaryotic pathogens. Five shRNAs were designed and synthesized to silence the fliA gene, all of which resulted in pronounced reductions in fliA mRNA; the mutant strain with the best silencing efficiency of 92.16% was chosen for subsequent analysis. A significant decrease in motility, intracellular survival and escape was observed for the fliA-RNAi strain of P. plecoglossicida, whereby silencing of the fliA gene led to a 30% decrease in mortality and a four-day delay in the onset of infection in L. crocea. Moreover, silencing of P. plecoglossicida fliA resulted in a significant change in both the pathogen and host transcriptome in the spleens of infected L. crocea. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of pathogen transcriptome data showed that silencing fliA resulted in downregulation of 18 flagellum-related genes; KEGG analysis of host transcriptome data revealed that infection with the fliA-RNAi strain caused upregulation of 47 and downregulation of 106 immune-related genes. These pathogen-host interactions might facilitate clearance of P. plecoglossicida by L. crocea, with a significant decrease in fliA-RNAi P. plecoglossicida strain virulence in L. crocea.
Collapse
|
14
|
Gissibl A, Sun A, Care A, Nevalainen H, Sunna A. Bioproducts From Euglena gracilis: Synthesis and Applications. Front Bioeng Biotechnol 2019; 7:108. [PMID: 31157220 PMCID: PMC6530250 DOI: 10.3389/fbioe.2019.00108] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
In recent years, the versatile phototrophic protist Euglena gracilis has emerged as an interesting candidate for application-driven research and commercialisation, as it is an excellent source of dietary protein, pro(vitamins), lipids, and the β-1,3-glucan paramylon only found in euglenoids. From these, paramylon is already marketed as an immunostimulatory agent in nutraceuticals. Bioproducts from E. gracilis can be produced under various cultivation conditions discussed in this review, and their yields are relatively high when compared with those achieved in microalgal systems. Future challenges include achieving the economy of large-scale cultivation. Recent insights into the complex metabolism of E. gracilis have highlighted unique metabolic pathways, which could provide new leads for product enhancement by genetic modification of the organism. Also, development of molecular tools for strain improvement are emerging rapidly, making E. gracilis a noteworthy challenger for microalgae such as Chlorella spp. and their products currently on the market.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
15
|
Kottuparambil S, Thankamony RL, Agusti S. Euglena as a potential natural source of value-added metabolites. A review. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|