1
|
Knutsen IS, Erkinharju T, Bøgwald J, Dalmo RA, Seternes T. Inflammatory responses in Atlantic lumpfish (Cyclopterus lumpus L.) after intraperitoneal injection of a vaccine against Aeromonas salmonicida and Vibrio salmonicida at different water temperatures. JOURNAL OF FISH DISEASES 2024; 47:e14001. [PMID: 39011626 DOI: 10.1111/jfd.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Studying inflammatory responses induced by vaccination can contribute to a more detailed understanding of underlying immune mechanisms in lumpfish (Cyclopterus lumpus). Tissue samples from lumpfish intraperitoneally immunized with a divalent oil-adjuvanted vaccine (Aeromonas salmonicida and Vibrio salmonicida) at water temperatures of 5, 10, and 15°C were collected at 630 day degrees and 18 weeks post injection. The relative amount of secretory and membrane-bound immunoglobulin M (IgM) gene transcripts in the head kidney was determined by qPCR. Vaccine-induced inflammatory lesions were assessed on histological sections of abdominal pancreatic/intestinal tissue from vaccinated fish in all three temperature groups. Inflammatory cells forming dense aggregations in lesions showed proliferative activity, many of which were identified as eosinophilic-granulocyte-like cells. IgM+ cells were scattered in inflammatory tissue dominated by connective tissue, showing no difference in numbers between lesions from fish vaccinated at 5, 10, and 15°C. Relative gene expression analysis of secretory and membrane-bound IgM revealed low overall expression in the head kidney of vaccinated fish at both 630 day-degrees and 18 weeks post injection. The results of this study indicate that the vaccine stimulated prolonged local inflammatory responses at the injection site, which were not influenced by temperature.
Collapse
Affiliation(s)
- Ingrid Svihus Knutsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Toni Erkinharju
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jarl Bøgwald
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Roy A Dalmo
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tore Seternes
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Emam M, Kumar S, Eslamloo K, Caballero-Solares A, Hall JR, Xue X, Paradis H, Gendron RL, Santander J, Rise ML. Transcriptomic response of lumpfish ( Cyclopterus lumpus) head kidney to viral mimic, with a focus on the interferon regulatory factor family. Front Immunol 2024; 15:1439465. [PMID: 39211041 PMCID: PMC11357929 DOI: 10.3389/fimmu.2024.1439465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
The economic importance of lumpfish (Cyclopterus lumpus) is increasing, but several aspects of its immune responses are not well understood. To discover genes and mechanisms involved in the lumpfish antiviral response, fish were intraperitoneally injected with either the viral mimic polyinosinic:polycytidylic acid [poly(I:C)] or phosphate-buffered saline (PBS; vehicle control), and head kidneys were sampled 24 hours post-injection (hpi) for transcriptomic analyses. RNA sequencing (RNA-Seq) (adjusted p-value <0.05) identified 4,499 upregulated and 3,952 downregulated transcripts in the poly(I:C)-injected fish compared to the PBS-injected fish. Eighteen genes identified as differentially expressed by RNA-Seq were included in a qPCR study that confirmed the upregulation of genes encoding proteins with antiviral immune response functions (e.g., rsad2) and the downregulation of genes (e.g., jarid2b) with potential cellular process functions. In addition, transcript expression levels of 12 members of the interferon regulatory factor (IRF) family [seven of which were identified as poly(I:C)-responsive in this RNA-Seq study] were analyzed using qPCR. Levels of irf1a, irf1b, irf2, irf3, irf4b, irf7, irf8, irf9, and irf10 were significantly higher and levels of irf4a and irf5 were significantly lower in the poly(I:C)-injected fish compared to the PBS-injected fish. This research and associated new genomic resources enhance our understanding of the genes and molecular mechanisms underlying the lumpfish response to viral mimic stimulation and help identify possible therapeutic targets and biomarkers for viral infections in this species.
Collapse
Affiliation(s)
- Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
- Centre for Marine Applied Research, Dartmouth, NS, Canada
| | | | - Jennifer R. Hall
- Aquatic Research Cluster, Core Research Equipment and Instrument Training (CREAIT) Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Hélène Paradis
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Robert L. Gendron
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
3
|
Jenberie S, Nordli HR, Strandskog G, Greiner-Tollersrud L, Peñaranda MMD, Jørgensen JB, Jensen I. Virus-specific antibody secreting cells reside in the peritoneal cavity and systemic immune sites of Atlantic salmon (Salmo salar) challenged intraperitoneally with salmonid alphavirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105193. [PMID: 38729458 DOI: 10.1016/j.dci.2024.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The development and persistence of antibody secreting cells (ASC) after antigenic challenge remain inadequately understood in teleosts. In this study, intraperitoneal (ip) injection of Atlantic salmon (Salmo salar) with salmonid alphavirus (WtSAV3) increased the total ASC response, peaking 3-6 weeks post injection (wpi) locally in the peritoneal cavity (PerC) and in systemic lymphoid tissues, while at 13 wpi the response was only elevated in PerC. At the same time point a specific ASC response was induced by WtSAV3 in PerC and systemic tissues, with the highest frequency in PerC, suggesting a local role. Inactivated SAV (InSAV1) induced comparatively lower ASC responses in all sites, and specific serum antibodies were only induced by WtSAV3 and not by InSAV1. An InSAV1 boost did not increase these responses. Expression of immune marker genes implies a role for PerC adipose tissue in the PerC immune response. Overall, the study suggests the Atlantic salmon PerC as a secondary immune site and an ASC survival niche.
Collapse
Affiliation(s)
- Shiferaw Jenberie
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Henriette Rogstad Nordli
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Guro Strandskog
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ma Michelle D Peñaranda
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Chakraborty S, Gnanagobal H, Hossain A, Cao T, Vasquez I, Boyce D, Santander J. Inactivated Aeromonas salmonicida impairs adaptive immunity in lumpfish (Cyclopterus lumpus). JOURNAL OF FISH DISEASES 2024; 47:e13944. [PMID: 38523320 DOI: 10.1111/jfd.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Aeromonas salmonicida, a widely distributed aquatic pathogen causing furunculosis in fish, exhibits varied virulence, posing challenges in infectious disease and immunity studies, notably in vaccine efficacy assessment. Lumpfish (Cyclopterus lumpus) has become a valuable model for marine pathogenesis studies. This study evaluated several antigen preparations against A. salmonicida J223, a hypervirulent strain of teleost fish, including lumpfish. The potential immune protective effect of A. salmonicida bacterins in the presence and absence of the A-layer and extracellular products was tested in lumpfish. Also, we evaluated the impact of A. salmonicida outer membrane proteins (OMPs) and iron-regulated outer membrane proteins (IROMPs) on lumpfish immunity. The immunized lumpfish were intraperitoneally (i.p.) challenged with 104 A. salmonicida cells/dose at 8 weeks-post immunization (wpi). Immunized and non-immunized fish died within 2 weeks post-challenge. Our analyses showed that immunization with A. salmonicida J223 bacterins and antigen preparations did not increase IgM titres. In addition, adaptive immunity biomarker genes (e.g., igm, mhc-ii and cd4) were down-regulated. These findings suggest that A. salmonicida J223 antigen preparations hinder lumpfish immunity. Notably, many fish vaccines are bacterin-based, often lacking efficacy evaluation. This study offers crucial insights for finfish vaccine approval and regulations.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Danny Boyce
- Department of Ocean Sciences, Dr. Joe Brown Aquatic Research Building, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
5
|
Passantino L, Corriero A, Pousis C, Zupa R, Perillo A, Superio J, Kumari Swain J, Foss A, Galindo-Villegas J, Ventriglia G. Hepatic melanomacrophage centers in the arctic cultured fish Cyclopterus lumpus are not indicative of its health state. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2024; 581:740417. [PMID: 39175872 PMCID: PMC11338164 DOI: 10.1016/j.aquaculture.2023.740417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 08/24/2024]
Abstract
The lumpfish, Cyclopterus lumpus, holds significant promise as a candidate for large-scale aquaculture production, particularly in its role as a cleaner fish used to manage sea lice infestations in Atlantic salmon Salmo salar farming. Melanomacrophage centers (MMCs) represent polymorphic structures present in the hemolymphopoietic organs of various vertebrates, serving as a widely applicable histological indicator of the fish immune and health status. This study aims to investigate the histochemical characteristics of MMCs within lumpfish livers and to compare MMC density between hatchery-produced (farmed) and wild individuals. Liver samples were collected from 34 lumpfish and subjected to a range of staining techniques, including haematoxylin-eosin, Azan-Mallory's trichrome, Masson-Fontana, Perls-Van Geison, Mallory's hemofuscin, immunohistochemical detection of cytochrome P450 monooxygenase 1 A (CYP1A), and the terminal deoxynucleotidyl transferase-mediated d'UTP nick-end labelling (TUNEL) method. Hepatocytes from hatchery-produced males exhibited notably high lipid content. Additionally, cells showing positive staining with Masson-Fontana, likely associated with the monocyte/macrophage lineage, were identified. Furthermore, small MMCs containing melanin, lipofuscin-ceroids, and ferric ions were detected. While the density of single monocytes/macrophages was markedly higher in hatchery-produced males, no significant discrepancies in MMCs density were observed between wild and hatchery-produced fish, or between males and females of the same origin. The study also revealed the presence of necrotic foci, characterized by hypertrophic hepatocytes positive for both TUNEL and CYP1A staining. These hypertrophic hepatocytes displayed large lipid droplets and pycnotic nuclei, with hatchery-produced males showing a higher numerical density of such foci. In contrast to findings in other fish species, the study found that MMCs did not appear to serve as reliable markers of health status in lumpfish. This conclusion was reached as MMCs density did not exhibit a correlation with necrotic foci or hepatocyte lipid content.
Collapse
Affiliation(s)
- L. Passantino
- DiMePRe-J, University of Bari Aldo Moro, Valenzano 70010, Italy
| | - A. Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano 70010, Italy
| | - C. Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano 70010, Italy
| | - R. Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano 70010, Italy
| | - A. Perillo
- DiMePRe-J, University of Bari Aldo Moro, Valenzano 70010, Italy
| | - J. Superio
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - A. Foss
- Akvaplan-niva, Fram Centre, 9296 Tromsø, Norway
| | - J. Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - G. Ventriglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano 70010, Italy
| |
Collapse
|
6
|
Li Q, Chi H, Shi X, Gan Q, Dalmo RA, Sun YY, Tang X, Xing J, Sheng X, Zhan W. Vaccine Adjuvants Induce Formation of Intraperitoneal Extracellular Traps in Flounder (Paralichthys olivaceus). Front Cell Infect Microbiol 2022; 12:875409. [PMID: 35433509 PMCID: PMC9005893 DOI: 10.3389/fcimb.2022.875409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 01/15/2023] Open
Abstract
Adjuvants are used to increase the strength, quality, and duration of the immune response of vaccines. Neutrophils are the first immune cells that arrive at the injection site and can release DNA fibers together with granular proteins, so-called neutrophil extracellular traps (NETs), to entrap microbes in a sticky matrix of extracellular chromatin and microbicidal agents. Similar extracellular structures were also released by macrophages, mast cells, and eosinophils and are now generalized as “ETs.” Here we demonstrated that Alum adjuvant stimulation led to peritoneal cells swarming and ET release in vitro. Moreover, compared to antigen stimulation alone, ET release was significantly increased after stimulation with antigen-mixed adjuvants and in a time- and dose-dependent manner. In vivo, we were able to monitor and quantify the continuous changes of the ET release in the same fish by using the small animal in vivo imaging instrument at different times during the early stages after intraperitoneal immunization. The results showed that the fluorescence signal of ETs in the peritoneum increased from 0 to 12 h after injection and then gradually decreased. The fluorescence signals came from extracellular DNA fibers, which are sensitive to DNase I and confirmed by microscopy of peritoneal fluid ex vivo. In summary, this study introduced a new method for detecting ETs in the peritoneum of fish in vivo and indicated that ET formation is involved in the immune response at the early stage after intraperitoneal immunization to vaccines.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Heng Chi,
| | - Xueyan Shi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Yuan-yuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Kverme KO, Kallekleiv M, Larsen K, Rønneseth A, Wergeland HI, Samuelsen OB, Haugland GT. Antibacterial treatment of lumpfish (Cyclopterus lumpus) experimentally challenged with Vibrio anguillarum, atypical Aeromonas salmonicida and Pasteurella atlantica. JOURNAL OF FISH DISEASES 2022; 45:153-163. [PMID: 34719037 DOI: 10.1111/jfd.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Lumpfish is a novel farmed species used as cleaner fish for the removal of lice from farmed salmon. As often with new, farmed species, there are challenges with bacterial infections. The frequency of prescription of antibiotic agents to lumpfish is increasing, despite the lack of knowledge about appropriate doses, duration of treatment and application protocols for the various antibacterial agents. In the current study, we have tested the effect of medicated feed with florfenicol (FFC), oxolinic acid (OA) and flumequine (FLU) on lumpfish experimentally challenged with Vibrio anguillarum, atypical Aeromonas salmonicida and Pasteurella atlantica. We found that all three antibacterial agents efficiently treated lumpfish with vibriosis using 10 and 20 mg kg-1 day-1 of FFC, 25 mg kg-1 day-1 of OA and 25 mg kg-1 day-1 FLU, whereas only FFC (20 mg kg-1 day-1 ) had good effect on lumpfish with pasteurellosis. None of the antibacterial agents were efficient to treat lumpfish with atypical furunculosis. FFC 20 mg kg-1 day-1 showed promising results in the beginning of the experiment, but the mortality increased rapidly 14 days post-medication. Efficient treatment is important for the welfare of lumpfish and for reducing the risk of development of antibiotic-resistant bacteria. To our knowledge, this is the first study to establish protocols for antibacterial treatment of lumpfish.
Collapse
Affiliation(s)
- Karen O Kverme
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Kristina Larsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Anita Rønneseth
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | | | - Gyri T Haugland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Dar SA, Kole S, Shin SM, Jeong HJ, Jung SJ. Comparative study on antigen persistence and immunoprotective efficacy of intramuscular and intraperitoneal injections of squalene - aluminium hydroxide (Sq + Al) adjuvanted viral hemorrhagic septicaemia virus vaccine in olive flounder (Paralichthys olivaceus). Vaccine 2021; 39:6866-6875. [PMID: 34696933 DOI: 10.1016/j.vaccine.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/23/2023]
Abstract
The profitability of the olive flounder (Paralichthys olivaceus) aquaculture industry in Korea depends on high production and maintenance of flesh quality, as consumers prefer to eat raw flounders from aquaria and relish the raw muscles as 'sashimi'. For sustaining high production, easy-to-deliver and efficient vaccination strategies against serious pathogens, such as viral hemorrhagic septicemia virus (VHSV), is very important as it cause considerable losses to the industry. Whereas, a safe and non-invasive vaccine formulation that is free from unacceptable side-effects and does not devalue the fish is needed to maintain flesh quality. We previously developed a squalene-aluminium hydroxide (Sq + Al) adjuvanted VHSV vaccine that conferred moderate to high protection in flounder, without causing any side effects when administered through the intraperitoneal (IP) injection route. However, farmers often demand intramuscular (IM) injection vaccines as they are relatively easy to administer in small fishes. Therefore, we administered the developed vaccine via IP and IM routes and investigated the safety and persistency of the vaccine at the injection site. In addition, we conducted a comparative analysis of vaccine efficacy and serum antibody response. The clinical and histological observation of the IM and IP groups showed that our vaccine remained persistence at the injection sites for 10-17 weeks post vaccination (wpv), without causing any adverse effects to the fish. The relative percentage of survival were 100% and 71.4% for the IP group and 88.9% and 92.3% for the IM group at 3 and 17 wpv, respectively. Thus, considering the persistency period (24 wpv) and both short and long-term efficacy of our vaccine, the present study offers an option to flounder farmers in selecting either IM or IP delivery strategy according to their cultured fish size and harvesting schedule - IM vaccination for small-sized fish and IP vaccination for table-sized fish.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Sajal Kole
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Su-Mi Shin
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Hyeon-Jong Jeong
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
9
|
Establishment and Characterization of a Novel Gill Cell Line, LG-1, from Atlantic Lumpfish ( Cyclopterus lumpus L.). Cells 2021; 10:cells10092442. [PMID: 34572091 PMCID: PMC8467979 DOI: 10.3390/cells10092442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
The use of lumpfish (Cyclopterus lumpus) as a cleaner fish to fight sea lice infestation in farmed Atlantic salmon has become increasingly common. Still, tools to increase our knowledge about lumpfish biology are lacking. Here, we successfully established and characterized the first Lumpfish Gill cell line (LG-1). LG-1 are adherent, homogenous and have a flat, stretched-out and almost transparent appearance. Transmission electron microscopy revealed cellular protrusions and desmosome-like structures that, together with their ability to generate a transcellular epithelial/endothelial resistance, suggest an epithelial or endothelial cell type. Furthermore, the cells exert Cytochrome P450 1A activity. LG-1 supported the propagation of several viruses that may lead to severe infectious diseases with high mortalities in fish farming, including viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Altogether, our data indicate that the LG-1 cell line originates from an epithelial or endothelial cell type and will be a valuable in vitro research tool to study gill cell function as well as host-pathogen interactions in lumpfish.
Collapse
|
10
|
Xing J, Jiang X, Xu H, Sheng X, Tang X, Chi H, Zhan W. Local immune responses to VAA DNA vaccine against Listonella anguillarum in flounder (Paralichthys olivaceus). Mol Immunol 2021; 134:141-149. [PMID: 33773157 DOI: 10.1016/j.molimm.2021.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023]
Abstract
The efficacy of DNA vaccine is associated closely with the expression of the antigen and the intensity of local immune responses. In our previous study, a recombinant DNA plasmid expressing the VAA protein (pVAA) of Listonella anguillarum has been proved to have a good protection against the infection of L. anguillarum. In the present study, the local immune responses eliciting by immunizing flounder with intramuscular (I.M.) injection of pVAA was investigated at the cellular and genetic level, the muscle at the injection site at 7th post vaccination day was sampled and analyzed by hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), flow cytometry (FCM), RNA sequencing (RNA-Seq)-based transcriptomics and RT-qPCR. Then variations on the specific antibodies in serum at 1st-6th post vaccination week and the relative percent survival rate (RPS) at following 14 days after challenge were measured. The H&E results showed that inflammatory cells and immune cells significantly increased at the injection site. The IHC using monoclonal antibody against T cell markers revealed that both CD4-1+ and CD4-2+ T lymphocytes were recruited to the injection site and FCM results showed that the proportion of CD4-1+ cells in pVAA immunized group was 28.6 %, in the control group was 8.7 %, and that of CD4-2+ cells in two groups was 21.2 % and 8.5 %, respectively. These results indicating that the proportion of CD4+ cells in the immune group was significantly increased compared with the control group. Moreover, there were 2551 genes differently expressed in pVAA immunized group, KEGG analysis showed the genes involved in the signal transduction and immune system, and surface markers for B-cells genes, T-cells and antigen presenting cells (APCs) genes were highly upregulated, suggesting the activation of the systemic immune responses. Antibody specific anti-L. anguillarum or anti-rVAA antibodies were significantly induced at 2nd post-immunization week, that reached a peak at 4-5th week. RPS in pVAA group was 53.85±3.64 %. In conclusion, pVAA induced effective local immune responses and then the systematic response. This probably is the main contribution of pVAA to effective protection against L. anguillarum.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Xiaoyu Jiang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao 266071, China.
| |
Collapse
|
11
|
Gendron RL, Paradis H, Ahmad R, Kao K, Boyce D, Good WV, Kumar S, Vasquez I, Cao T, Hossain A, Chakraborty S, Valderrama K, Santander J. CD10 + Cells and IgM in Pathogen Response in Lumpfish ( Cyclopterus lumpus) Eye Tissues. Front Immunol 2020; 11:576897. [PMID: 33329544 PMCID: PMC7714965 DOI: 10.3389/fimmu.2020.576897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Lumpfish (Cyclopterus lumpus), a North Atlantic "cleaner" fish, is utilized to biocontrol salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar) farms. Lumpfish require excellent vision to scan for and eat louse on salmon skin. The lumpfish eye immune response to infectious diseases has not been explored. We examined the ocular response to a natural parasite infection in wild lumpfish and to an experimental bacterial infection in cultured lumpfish. Cysts associated with natural myxozoan infection in the ocular scleral cartilage of wild adult lumpfish harbored cells expressing cluster of differentiation 10 (CD10) and immunoglobulin M (IgM). Experimental Vibrio anguillarum infection, which led to exophthalmos and disorganization of the retinal tissues was associated with disruption of normal CD10 expression, CD10+ cellular infiltration and IgM expression. We further describe the lumpfish CD10 orthologue and characterize the lumpfish scleral skeleton in the context of myxozoan scleral cysts. We propose that lumpfish develop an intraocular response to pathogens, exemplified herein by myxozoan and V. anguillarum infection involving novel CD10+ cells and IgM+ cells to contain and mitigate damage to eye structures. This work is the first demonstration of CD10 and IgM expressing cells in a novel ocular immune system component in response to disease in a teleost.
Collapse
Affiliation(s)
- Robert L. Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Raahyma Ahmad
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Kenneth Kao
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Danny Boyce
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - William V. Good
- Smith Kettlewell Eye Research Institute, San Francisco, CA, United States
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
12
|
Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019; 7:microorganisms7120627. [PMID: 31795391 PMCID: PMC6955699 DOI: 10.3390/microorganisms7120627] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
Immersion vaccines are used for a variety of aquacultured fish to protect against infectious diseases caused by bacteria and viruses. During immersion vaccination the antigens are taken up by the skin, gills or gut and processed by the immune system, where the resulting response may lead to protection. The lack of classical secondary responses following repeated immersion vaccination may partly be explained by the limited uptake of antigens by immersion compared to injection. Administration of vaccines depends on the size of the fish. In most cases, immersion vaccination is inferior to injection vaccination with regard to achieved protection. However, injection is problematic in small fish, and fry as small as 0.5 gram may be immersion vaccinated when they are considered adaptively immunocompetent. Inactivated vaccines are, in many cases, weakly immunogenic, resulting in low protection after immersion vaccination. Therefore, during recent years, several studies have focused on different ways to augment the efficacy of these vaccines. Examples are booster vaccination, administration of immunostimulants/adjuvants, pretreatment with low frequency ultrasound, use of live attenuated and DNA vaccines, preincubation in hyperosmotic solutions, percutaneous application of a multiple puncture instrument and application of more suitable inactivation chemicals. Electrostatic coating with positively charged chitosan to obtain mucoadhesive vaccines and a more efficient delivery of inactivated vaccines has also been successful.
Collapse
|