1
|
Morales Fénero C, Sacksteder RE, Diamos AG, Kimmey JM. Heat-inactivated Streptococcus pneumoniae augments circadian clock gene expression in zebrafish cells. Sci Rep 2024; 14:27805. [PMID: 39537820 PMCID: PMC11561096 DOI: 10.1038/s41598-024-78888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
The circadian clock is a cell-autonomous process that regulates daily internal rhythms by interacting with environmental signals. Reports across species show that infection can alter the expression of circadian genes; however, in teleosts, these effects are influenced by light exposure. Currently, no reports analyze the direct effects of bacterial exposure on the zebrafish clock. Using zebrafish Z3 cells, we demonstrate that exposure to heat-killed Streptococcus pneumoniae (HK-Spn) augments the expression of core repressive factors in a light- and time-dependent manner. In constant darkness, HK-Spn highly upregulated cry1a, per3, and per1b expression. In the presence of light, HK-Spn exposure rapidly and strongly upregulated per2 and cry1a, and this was proportionally increased with light intensity. The combinatorial effect of light and HK-Spn on per2 and cry1a was not duplicated with H2O2, a known byproduct of light exposure. However, the ROS inhibitor N-acetyl cysteine was sufficient to block HK-Spn augmentation of per2, cry1a, and per3. These findings demonstrate that exposure to an inactive bacteria influences the expression of zebrafish clock genes under different light conditions.
Collapse
Affiliation(s)
- Camila Morales Fénero
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Raina E Sacksteder
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Andrew G Diamos
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA
| | - Jacqueline M Kimmey
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, USA.
| |
Collapse
|
2
|
Cambray-Young J. Infectious diseases of zebrafish. Zebrafish 2024:124-158. [DOI: 10.1079/9781800629431.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Schuster CJ, Murray KN, Sanders JL, Couch CE, Kent ML. Review of Pseudoloma neurophilia (Microsporidia): A common neural parasite of laboratory zebrafish (Danio rerio). J Eukaryot Microbiol 2024; 71:e13040. [PMID: 38961716 PMCID: PMC11846143 DOI: 10.1111/jeu.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Zebrafish (Danio rerio) is now the second most used animal model in biomedical research. As with other vertebrate models, underlying diseases and infections often impact research. Beyond mortality and morbidity, these conditions can compromise research end points by producing nonprotocol induced variation within experiments. Pseudoloma neurophilia, a microsporidium that targets the central nervous system, is the most frequently diagnosed pathogen in zebrafish facilities. The parasite undergoes direct, horizontal transmission within populations, and is also maternally transmitted with spores in ovarian fluid and occasionally within eggs. This transmission explains the wide distribution among research laboratories as new lines are generally introduced as embryos. The infection is chronic, and fish apparently never recover following the initial infection. However, most fish do not exhibit outward clinical signs. Histologically, the parasite occurs as aggregates of spores throughout the midbrain and spinal cord and extends to nerve roots. It often elicits meninxitis, myositis, and myodegeneration when it infects the muscle. There are currently no described therapies for the parasite, thus the infection is best avoided by screening with PCR-based tests and removal of infected fish from a facility. Examples of research impacts include reduced fecundity, behavioral changes, transcriptome alterations, and autofluorescent lesions.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Natural Science, Heritage University, Toppenish, Washington, USA
| | - Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Claire E Couch
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Schuster CJ, Marancik DP, Couch CE, Leong C, Edwards JJ, Kaplan RM, Kent ML. A novel neurotropic microsporidium from the swamp guppy Micropoecilia picta from Grenada, West Indies. DISEASES OF AQUATIC ORGANISMS 2024; 158:133-141. [PMID: 38813854 DOI: 10.3354/dao03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.
Collapse
Affiliation(s)
- C J Schuster
- Department of Natural Science, Heritage University, Toppenish, Washington 98948, USA
| | - D P Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - C E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon 97333, USA
| | - C Leong
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97333, USA
| | - J J Edwards
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - R M Kaplan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - M L Kent
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97333, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97333, USA
| |
Collapse
|
5
|
Arapi EA, Reynolds M, Ellison AR, Cable J. Restless nights when sick: ectoparasite infections alter rest-activity cycles of diurnal fish hosts. Parasitology 2024; 151:251-259. [PMID: 38372138 PMCID: PMC11007282 DOI: 10.1017/s0031182023001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Circadian rhythms are timekeeping mechanisms responsible for an array of biological processes. Disruption of such cycles can detrimentally affect animal health. Circadian rhythms are critical in the co-evolution of host–parasite systems, as synchronization of parasite rhythms to the host can influence infection dynamics and transmission potential. This study examines the circadian rhythms in behaviour and activity of a model fish species (Poecilia reticulata) in isolation and in shoals, both when uninfected and infected with an ectoparasite (Gyrodactylus turnbulli). Additionally, the rhythmical variance of parasite activity under different light conditions as well as rhythmical variance in parasite transmissibility was explored. Overall, infection alters the circadian rhythm of fish, causing nocturnal restlessness. Increased activity of gyrodactylids on the host's skin at night could potentially contribute to this elevated host activity. Whilst migration of gyrodactylids across the host's skin may have caused irritation to the host resulting in nocturnal restlessness, the disruption in guppy activity rhythm caused by the expression of host innate immunity cannot be excluded. We discuss the wider repercussions such behavioural responses to infection have for host health, the implications for animal behaviour studies of diurnal species as well as the application of chronotherapeutic approaches to aquaculture.
Collapse
Affiliation(s)
| | | | - Amy R. Ellison
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
6
|
Xin ZZ, Zhang XT, Zhou M, Chen JY, Zhu ZQ, Zhang JY. Differential molecular responses of hemolymph and hepatopancreas of swimming crab, Portunus trituberculatus, infected with Ameson portunus (Microsporidia). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109324. [PMID: 38134977 DOI: 10.1016/j.fsi.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Ameson portunus (Microsporidia) has caused serious economic losses to the aquaculture industry of swimming crab, Portunus trituberculatus. The hemolymph and hepatopancreas are the main immune organs of P. trituberculatus, and the main sites of A. portunus infection. Elucidating the response characteristics of hemolymph and hepatopancreas to microsporidian infection facilitates the development of microsporidiosis prevention and control strategy. This study performed comparative transcriptomic analysis of hemolymph (PTX/PTXA) and hepatopancreas (PTG/PTGA) of P. trituberculatus uninfected and infected with A. portunus. The results showed that there were 223 and 1309 differentially expressed genes (DEGs) in PTX/PTXA and PTG/PTGA, respectively. The lysosome pathway was significantly enriched after the invasion of the hemolymph by A. portunus. Also, immune-related genes were all significantly up-regulated in the hemolymph and hepatopancreas, suggesting that the invasion by A. portunus may activate host immune responses. Unlike hemolymph, antioxidant and detoxification-related genes were also significantly up-regulated in the hepatopancreas. Moreover, metabolism-related genes were significantly down-regulated in the hepatopancreas, suggesting that energy synthesis, resistance to pathogens, and regulation of oxidative stress were suppressed in the hepatopancreas. Hemolymph and hepatopancreas have similarity and tissue specificity to microsporidian infection. The differential genes and pathways identified in this study can provide references for the prevention and control of microsporidiosis.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xin-Tong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Min Zhou
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jiu-Yang Chen
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhi-Qiang Zhu
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jin-Yong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China.
| |
Collapse
|
7
|
Mazur M, Rakus K, Adamek M, Surachetpong W, Chadzinska M, Pijanowski L. Effects of light and circadian clock on the antiviral immune response in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108979. [PMID: 37532067 DOI: 10.1016/j.fsi.2023.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The circadian clock mechanism, which is evolutionarily conserved across various organisms, plays a crucial role in synchronizing physiological responses to external conditions, primarily in response to light availability. By maintaining homeostasis of biological processes and behavior, the circadian clock serves as a key regulator. This biological mechanism also coordinates diurnal oscillations of the immune response during infections. However there is limited information available regarding the influence of circadian oscillation on immune regulation, especially in lower vertebrates like teleost fish. Therefore, the present study aimed to investigate the effects of light and the timing of infection induction on the antiviral immune response in zebrafish. To explore the relationship between the timing of infection and the response activated by viral pathogens, we used a zebrafish model infected with tilapia lake virus (TiLV). Our findings demonstrated that light availability significantly affects the antiviral immune response and the functioning of the molecular clock mechanism during TiLV infection. This is evident through alterations in the expression of major core clock genes and the regulation of TiLV replication and type I IFN pathway genes in the kidney of fish maintained under LD (light-dark) conditions compared to constant darkness (DD) conditions. Moreover, infection induced during the light phase of the LD cycle, in contrast to nocturnal infection, also exhibited similar effects on the expression of genes associated with the antiviral response. This study indicates a more effective mechanism of the zebrafish antiviral response during light exposure, which inherently involves modification of the expression of key components of the molecular circadian clock. It suggests that the zebrafish antiviral response to infection is regulated by both light and the circadian clock.
Collapse
Affiliation(s)
- Mikolaj Mazur
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, PL30-348, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngam Wong Wan Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
8
|
Wan YC, Troemel ER, Reinke AW. Conservation of Nematocida microsporidia gene expression and host response in Caenorhabditis nematodes. PLoS One 2022; 17:e0279103. [PMID: 36534656 PMCID: PMC9762603 DOI: 10.1371/journal.pone.0279103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Microsporidia are obligate intracellular parasites that are known to infect most types of animals. Many species of microsporidia can infect multiple related hosts, but it is not known if microsporidia express different genes depending upon which host species is infected or if the host response to infection is specific to each microsporidia species. To address these questions, we took advantage of two species of Nematocida microsporidia, N. parisii and N. ausubeli, that infect two species of Caenorhabditis nematodes, C. elegans and C. briggsae. We performed RNA-seq at several time points for each host infected with either microsporidia species. We observed that Nematocida transcription was largely independent of its host. We also observed that the host transcriptional response was similar when infected with either microsporidia species. Finally, we analyzed if the host response to microsporidia infection was conserved across host species. We observed that although many of the genes upregulated in response to infection are not direct orthologs, the same expanded gene families are upregulated in both Caenorhabditis hosts. Together our results describe the transcriptional interactions of Nematocida infection in Caenorhabditis hosts and demonstrate that these responses are evolutionarily conserved.
Collapse
Affiliation(s)
- Yin Chen Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Mani A, Salinas I. The knowns and many unknowns of CNS immunity in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2022; 131:431-440. [PMID: 36241002 DOI: 10.1016/j.fsi.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Many disease agents infect the central nervous system (CNS) of teleost fish causing severe losses for the fish farming sector. Yet, neurotropic fish pathogens remain poorly documented and immune responses in the teleost CNS essentially unknown. Previously thought to be devoid of an immune system, the mammalian CNS is now recognized to be protected from infection by diverse immune cells that mostly reside in the meningeal lymphatic system. Here we review the current body of work pertaining immune responses in the teleost CNS to infection. We identify important knowledge gaps with regards to CNS immunity in fish and make recommendations for rigorous experimentation and reporting in manuscripts so that fish immunologists can advance this burgeoning field.
Collapse
Affiliation(s)
- Amir Mani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
10
|
Schuster CJ, Kent ML, Peterson JT, Sanders JL. MULTI-STATE OCCUPANCY MODEL ESTIMATES PROBABILITY OF DETECTION OF AN AQUATIC PARASITE USING ENVIRONMENTAL DNA: PSEUDOLOMA NEUROPHILIA IN ZEBRAFISH AQUARIA. J Parasitol 2022; 108:527-538. [PMID: 36326809 PMCID: PMC9811945 DOI: 10.1645/22-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detecting the presence of important parasites within a host and its environment is critical to understanding the dynamics that influence a pathogen's ability to persist, while accurate detection is also essential for the implementation of effective control strategies. Pseudoloma neurophilia is the most common pathogen reported in zebrafish (Danio rerio) research facilities. The only assays currently available for P. neurophilia are through lethal sampling, often requiring euthanasia of the entire population for accurate estimates of prevalence in small populations. We present a non-lethal screening method to detect P. neurophilia in tank water based on the detection of environmental DNA (eDNA) from this microsporidium, using a previously developed qPCR assay that was adapted to the digital PCR (dPCR) platform to complement current surveillance protocols. Using the generated dPCR data, a multi-state occupancy model was also implemented to predict the probability of detecting the microsporidium in tank water under different flow regimes and pathogen prevalence. The occupancy model revealed that samples collected in static conditions were more informative than samples collected from flow-through conditions, with a probability of detection at 80% and 47%, respectively. There was also a positive correlation between the frequency of detection in water and prevalence in fish based on qPCR.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Microbiology, Oregon State University, 2820 SW Campus Way, Corvallis, Oregon 97331
- Zebrafish International Resource Center, University of Oregon, 1100 Johnson Lane, Eugene, Oregon 97403
| | - Michael L Kent
- Department of Microbiology, Oregon State University, 2820 SW Campus Way, Corvallis, Oregon 97331
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, 700 SW 30th St., Corvallis, Oregon 97331
| | - James T Peterson
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Unit, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, 2820 SW Campus Way, Corvallis, Oregon 97331
| | - Justin L Sanders
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, 700 SW 30th St., Corvallis, Oregon 97331
| |
Collapse
|
11
|
Immunity, Infection, and the Zebrafish Clock. Infect Immun 2022; 90:e0058821. [PMID: 35972269 PMCID: PMC9476956 DOI: 10.1128/iai.00588-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks are universally used to coordinate biological processes with the Earth's 24-h solar day and are critical for the health and environmental success of an organism. Circadian rhythms in eukaryotes are driven by a cell-intrinsic transcription-translation feedback loop that controls daily oscillations in gene expression which regulate diverse physiological functions. Substantial evidence now exists demonstrating that immune activation and inflammatory responses during infection are under circadian control, however, the cellular mechanisms responsible for this are not well understood. The zebrafish (Danio rerio) is a powerful model organism to study vertebrate circadian biology and immune function. Zebrafish contain homologs of mammalian circadian clock genes which, to our current knowledge, function similarly to impart timekeeping ability. Consistent with studies in mammalian models, several studies in fish have now demonstrated a bidirectional relationship between the circadian clock and inflammation: the circadian clock regulates immune activity, and inflammation can alter circadian rhythms. This review summarizes our current understanding of the molecular mechanisms of the zebrafish clock and the bi-directional relationship between the circadian clock and inflammation in fish.
Collapse
|
12
|
Mocho JP, von Krogh K. A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania. BIOLOGY 2022; 11:biology11091259. [PMID: 36138738 PMCID: PMC9495953 DOI: 10.3390/biology11091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary An international survey was conducted regarding species used for research, methods of euthanasia, health monitoring, and biosecurity in fish laboratories. A total of 145 facilities from 23 countries contributed. Over 80 different species were reported to be used for research, of which zebrafish (Danio rerio) was the most common by far. Anesthetic overdose was the preferred method for euthanasia for adults, fry, and larvae not capable of independent feeding. For all developmental stages, the most popular anesthetic compound was tricaine. Around half of the respondents did not perform a completion method to ensure death. One-quarter of the responding facilities did not have a health monitoring system in place. Only a small fraction reported quarantine routines to ensure reliable biological barriers. There was little consensus amongst facilities in how to perform biosecurity measures. Abstract An international survey was conducted regarding species used for research, methods of euthanasia, health monitoring, and biosecurity in fish laboratories. A total of 145 facilities from 23 countries contributed. Collectively, over 80 different species (or groups of species) were reported to be used for research, of which zebrafish (Danio rerio) was the most common by far. About half of the participating laboratories used multiple species. Anesthetic overdose was the preferred method for euthanasia for adult, fry (capable of independent feeding), and larval (not capable of independent feeding) fish. For all developmental stages, the most popular anesthetic compound was tricaine (MS-222), a substance associated with distress and aversion in several species. Moreover, around half of the respondents did not perform a completion method to ensure death. One-quarter of the responding facilities did not have a health monitoring system in place. While most respondents had some form of quarantine process for imported fish, only a small fraction reported quarantine routines that ensure reliable biological barriers. Furthermore, less than one in five screened fish for pathogens while in quarantine. In sum, there was little consensus amongst facilities in how to perform biosecurity measures. Regarding euthanasia, health monitoring, and biosecurity processes, there is a need for updated and universal guidelines and for many laboratories to adjust their practices.
Collapse
|
13
|
Mocho JP, Collymore C, Farmer SC, Leguay E, Murray KN, Pereira N. FELASA-AALAS Recommendations for Biosecurity in an Aquatic Facility, Including Prevention of Zoonosis, Introduction of New Fish Colonies, and Quarantine. Comp Med 2022; 72:149-168. [PMID: 35688609 PMCID: PMC9334003 DOI: 10.30802/aalas-cm-22-000042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
FELASA and AALAS established a joint working group to advise on good practices for the exchange of fish for research. In a first manuscript, the working group made recommendations for health monitoring and reporting of monitoring results. The focus of this second related manuscript is biosecurity in fish facilities. First, we define the risk of contamination of personnel by zoonotic pathogens from fish or from system water, including human mycobacteriosis. Preventive measures are recommended, such as wearing task-specific personal protective equipment. Then we discuss biosecurity, highlighting the establishment of biosecurity barriers to preserve the health status of a facility. A functional biosecurity program relies on integration of the entire animal facility organization, including the flow of staff and animals, water treatments, and equipment sanitation. Finally, we propose 4 steps for introducing new fish colonies: consideration of international trade and national restrictions; assessing risk according to fish source and developmental stage; establishing quarantine barriers; and the triage, screening, and treatment of newly imported fish. We then provide 3 realistic sample scenarios to illustrate practical biosecurity risk assessments and mitigation measures based on considerations of health status and quarantine conditions.
Collapse
Affiliation(s)
| | - Chereen Collymore
- Veterinary Care and Services, Charles River Laboratories, Senneville, Quebec, Canada
| | - Susan C Farmer
- Zebrafish Research Facility, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Nuno Pereira
- Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon; Faculty of Veterinary Medicine, Lusophone University of Humanities and Technologies, Lisbon, Portugal; Gulbenkian Institute of Science, Oeiras, Portugal; ISPA - University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal; Lisbon Oceanarium, Lisbon, Portugal
| |
Collapse
|
14
|
Mocho JP, Collymore C, Farmer SC, Leguay E, Murray KN, Pereira N. FELASA-AALAS Recommendations for Monitoring and Reporting of Laboratory Fish Diseases and Health Status, with an Emphasis on Zebrafish ( Danio Rerio). Comp Med 2022; 72:127-148. [PMID: 35513000 PMCID: PMC9334007 DOI: 10.30802/aalas-cm-22-000034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 11/05/2022]
Abstract
The exchange of fish for research may expose an aquatic laboratory to pathogen contamination as incoming fish can introduce bacteria, fungi, parasites, and viruses capable of affecting both experimental results and fish and personnel health and welfare. To develop risk mitigation strategies, FELASA and AALAS established a joint working group to recommend good practices for health monitoring of laboratory fish. The recommendations address all fish species used for research, with a particular focus on zebrafish (Danio rerio). First, the background of the working group and key definitions are provided. Next, fish diseases of high impact are described. Third, recommendations are made for health monitoring of laboratory fishes. The recommendations emphasize the importance of daily observation of the fish and strategies to determine fish colony health status. Finally, report templates are proposed for historical screening data and aquatic facility description to facilitate biohazard risk assessment when exchanging fish.
Collapse
Affiliation(s)
| | - Chereen Collymore
- Veterinary Care and Services, Charles River Laboratories, Senneville, Quebec, Canada
| | - Susan C Farmer
- Zebrafish Research Facility, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Nuno Pereira
- Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon; Faculty of Veterinary Medicine, Lusophone University of Humanities and Technologies, Lisbon, Portugal; Gulbenkian Institute of Science, Oeiras. Portugal; ISPA - University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal; Lisbon Oceanarium, Lisbon, Portugal
| |
Collapse
|
15
|
Ventura Fernandes BH, Caetano da Silva C, Bissegato D, Kent ML, Carvalho LR. Rederivation of a mutant line (prop 1) of zebrafish Danio rerio infected with Pseudoloma neurophilia using in vitro fertilization with eggs from pathogen-free wild-type (AB) females and sperm from prop 1 males. JOURNAL OF FISH DISEASES 2022; 45:35-39. [PMID: 34525219 DOI: 10.1111/jfd.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Along with the growing number of laboratories that work with zebrafish (Danio rerio), it is necessary to have animals with good sanitary quality. Specific pathogens can interfere with the experimental results and in the life quality of the animals. Pseudoloma neurophilia is a parasite with high potential for interference in behavioural, morphology, toxicological and genetic research, and is very common in zebrafish facilities. With that, we implemented a protocol for the pathogen elimination in a genetically modified lineage (prop 1) using eggs from specific pathogen-free (SPF) wild-type fish (AB line) for in vitro fertilization, along with water recirculation equipment disinfection, appropriate PCR screening and back crossing protocols. This resulted in SPF prop 1 heterozygotes, which allowed us to move forward with subsequent crossings to develop homozygote prop 1 mutants for our research. Hence, this demonstrates a useful strategy for an individual research laboratory to rederive a specific mutant free line that is not available from other SPF laboratories.
Collapse
Affiliation(s)
- Bianca H Ventura Fernandes
- Centro de Bioterismo da Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Endocrinology discipline, internal medicine department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Caetano da Silva
- Endocrinology discipline, internal medicine department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Inserm U1132 and Université de Paris, Paris, France
| | - Debora Bissegato
- Centro de Bioterismo da Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Michael L Kent
- Departments of Microbiology and Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Luciani R Carvalho
- Centro de Bioterismo da Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Endocrinology discipline, internal medicine department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Schuster CJ, Sanders JL, Couch C, Kent ML. Recent Advances with Fish Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:285-317. [PMID: 35544007 DOI: 10.1007/978-3-030-93306-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There have been several significant new findings regarding Microsporidia of fishes over the last decade. Here we provide an update on new taxa, new hosts and new diseases in captive and wild fishes since 2013. The importance of microsporidiosis continues to increase with the rapid growth of finfish aquaculture and the dramatic increase in the use of zebrafish as a model in biomedical research. In addition to reviewing new taxa and microsporidian diseases, we include discussions on advances with diagnostic methods, impacts of microsporidia on fish beyond morbidity and mortality, novel findings with transmission and invertebrate hosts, and a summary of the phylogenetics of fish microsporidia.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claire Couch
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
17
|
Murray KN, Clark TS, Kebus MJ, Kent ML. Specific Pathogen Free - A review of strategies in agriculture, aquaculture, and laboratory mammals and how they inform new recommendations for laboratory zebrafish. Res Vet Sci 2021; 142:78-93. [PMID: 34864461 PMCID: PMC9120263 DOI: 10.1016/j.rvsc.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Specific pathogen-free (SPF) animals are bred and managed to exclude pathogens associated with significant morbidity or mortality that may secondarily pose a risk to public health, food safety and food security, and research replicability. Generating and maintaining SPF animals requires detailed biosecurity planning for control of housing, environmental, and husbandry factors and a history of regimented pathogen testing. Successful programs involve comprehensive risk analysis and exclusion protocols that are rooted in a thorough understanding of pathogen lifecycle and modes of transmission. In this manuscript we review the current state of SPF in domestic agriculture (pigs and poultry), aquaculture (salmonids and shrimp), and small laboratory mammals. As the use of laboratory fish, especially zebrafish (Danio rerio), as models of human disease is expanding exponentially, it is prudent to define standards for SPF in this field. We use the guiding principles from other SPF industries and evaluate zebrafish pathogens against criteria to be on an SPF list, to propose recommendations for establishing and maintaining SPF laboratory zebrafish.
Collapse
Affiliation(s)
- Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA.
| | - Tannia S Clark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron J Kebus
- Wisconsin Department of Agriculture, Trade and Consumer Protection, Madison, WI 53708, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA; Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Estes JM, Altemara ML, Crim MJ, Fletcher CA, Whitaker JW. Behavioral and Reproductive Effects of Environmental Enrichment and Pseudoloma neurophilia infection on Adult Zebrafish ( Danio rerio). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:249-258. [PMID: 33952385 DOI: 10.30802/aalas-jaalas-20-000113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent studies have shown beneficial effects of environmental enrichment (EE) for zebrafish, while infection of zebrafish with the common pathogen Pseudoloma neurophilia has negative effects. This study investigates the effects of P. neurophilia infection and EE in housing and breeding tanks on measures of behavior, growth, and reproduction. Zebrafish were socially housed and were either infected, P. neurophilia-infected (PNI) (n = 12 tanks), or SPF for P. neurophilia (SPF) (n = 24 tanks). Fish were housed with or without EE, which consisted of placing plastic plants in the tanks; sprigs from plants were placed in half of the breeding tanks for half of breedings, alternating breeding tanks without EE weekly. Behavioral testing included the Novel Tank Diving Test (NTT) and Light/Dark Preference Test (LDT) conducted prior to breeding. At the end of the study, biometric data were collected. Histopathology and molecular analysis for common diseases in fish confirmed that SPF fish remained SPF and that fish from all PNI tanks were infected. PNI fish produced significantly fewer eggs and had lower body weights and lengths than did SPF fish. Fish with EE had longer body lengths, than did fish without EE, and male fish had longer body lengths than female fish. The biometric results and reproductive measures show that SPF fish exhibited better growth and suggest that EE in housing tanks could improve fish growth. The behavioral test results were inconclusive regard- ing whether infection status or EE altered anxiety-like behavior. Our results support other recent studies showing negative effects of P. neurophilia infection on zebrafish.
Collapse
Affiliation(s)
- Jenny M Estes
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina;,
| | - Michelle L Altemara
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina
| | | | - Craig A Fletcher
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Julia W Whitaker
- Division of Comparative Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|