1
|
Zhu S, Zhu H, Xu S, Lv S, Liu S, Ding Y, Zhou X. Gel-type emulsified muscle products: Mechanisms, affecting factors, and applications. Compr Rev Food Sci Food Saf 2022; 21:5225-5242. [PMID: 36301621 DOI: 10.1111/1541-4337.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
The gel-type emulsified muscle products improve fatty acid composition, maintain the oxidative stability, and achieve a better sensory acceptability. This review emphasizes the stabilization mechanisms of these emulsified muscle products. In particular, factors associated with the stability of the emulsified muscle systems are outlined, including the processing conditions (pH and heating), lipids, and emulsifiers. Besides, some novel systems are further introduced, including the Pickering emulsions and organogels, due to their great potential in stabilizing emulsified gels. Moreover, the promising prospects of emulsion muscle products such as improved gel properties, oxidative stability, freeze-thaw stability, fat replacement, and nutraceutical encapsulation were elaborated. This review comprehensively illustrates the considerations on developing gel-type emulsified products and provides inspiration for the rational design of emulsified muscle formulations with both oxidatively stable and organoleptically acceptable performance.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Siyao Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shuangbao Lv
- Zhejiang NF Refrigerated Food Co. Ltd, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
2
|
Borhanpour F, Sekhavatizadeh SS, Hosseinzadeh S, Hasanzadeh M, Golmakani MT, Moharreri M. Effect of microencapsulated chavil (Ferulago angulata) extract on physicochemical, microbiological, textural and sensorial properties of UF-feta-type cheese during storage time. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Chavil (Ferulago angulata) extract (CE) and microencapsulated chavil extract (MCE) were added to UF- Feta-type Cheese. The aim of this study was to comprising CE and MCE on physicochemical and microbiological properties in cheese. The scanning electron microscope images demonstrate the MCE had elliptical shape. The average size diameter curve of the MCE revealed bimodal distribution with two peaks (1541 and 2222 nm) separately. The hardness value of MCE cheese (212.83 ± 17.63 g) was lower than that of CE (343.67 ± 25.53 g) because of canola oil used in the microencapsulation process. The MCE-cheese showed lower values of acidity (1.67%) in comparison with CE-cheese (1.87%). The viable numbers of Streptococcus thermophilus and Lactococcus lactis were equal among the samples (4.6–4.9 log10 CFU/g respectively). The acid degree value of MCE (2.07 ± 0.21%) and CE (1.83 ± 0.25%) cheese were nearly equal at the end of storage time.
Collapse
Affiliation(s)
| | | | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health , Professor of Food Hygiene, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | | | - Mohammad-Taghi Golmakani
- Food Science and Technology Department , School of Agriculture, Shiraz University , Shiraz , Iran
| | - Morteza Moharreri
- Food Science and Technology Department , School of Agriculture, Shiraz University , Shiraz , Iran
| |
Collapse
|
3
|
Coating of Tomatoes (Solanum lycopersicum L.) Employing Nanoemulsions Containing the Bioactive Compounds of Cactus Acid Fruits: Quality and Shelf Life. Processes (Basel) 2021. [DOI: 10.3390/pr9122173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study was aimed at evaluating the effect of a nanoemulsion containing the bioactive compounds of orange essential oil and xoconostle (Opuntia oligacantha C.F. Först) on maintaining and improving the quality of the shelf life of tomato fruits. The nanoemulsion was applied as a coating on the whole fruits during physiological maturity; the treatments were thus: Control 1 without coating (C1); Control 2 with food-grade mineral oil coating (C2); and nanoemulsions that were diluted with mineral oil at 2.5% (DN2.5), 5% (DN5), 10% (DN10), and 20% (DN20). Further, the following parameters were determined for 21 days: the percentage weight loss, firmness, colour, pH, titratable acidity, total soluble solids, ascorbic acid content, total phenols, flavonoids, tannins, antioxidant activities DPPH and ABTS, and the histological evaluation of the pericarp of the fruits. Significant differences (p < 0.05) were observed during the treatments; DN10 and DN20 obtained the best weight loss results (3.27 ± 0.31% and 3.71 ± 0.30%, respectively) compared with C1 and C2. The DN5 and DN20 textures exhibited the highest firmness (11.56 ± 0.33 and 11.89 ± 1.04 N, respectively). The antioxidant activity (DPPH on Day 21) was higher in the DN20 treatment (48.19 ± 0.95%) compared with in C1 (39.52 ± 0.30%) and C2 (38.14 ± 0.76%). Histological evaluation revealed that the nanoemulsion coating allowed a slower maturation of the cells in the pericarp of the fruits. The nanoemulsion, as a coat, improved the quality and valuable life of the tomato regarding its physicochemical and antioxidant properties, thus availing an effective alternative for conserving this fruit.
Collapse
|
4
|
Fernández-Luqueño F, Medina-Pérez G, Pérez-Soto E, Espino-Manzano S, Peralta-Adauto L, Pérez-Ríos S, Campos-Montiel R. Bioactive Compounds of Opuntia spp. Acid Fruits: Micro and Nano-Emulsified Extracts and Applications in Nutraceutical Foods. Molecules 2021; 26:molecules26216429. [PMID: 34770840 PMCID: PMC8587638 DOI: 10.3390/molecules26216429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
The acid fruit of the "xoconostle" cactus belongs to the genus Opuntia family of cacti. It is used as a functional food for its bioactive compounds. Several studies reported that xoconostle fruits have a high amount of ascorbic acid, betalains, phenols, tannins, and flavonoids. These compounds confer antioxidant, antibacterial, anti-inflammatory, and hepatoprotective gastroprotective activity. Xoconostle fruit extracts were tested by in vitro assays where the digestion conditions were simulated to measure their stability. At the same time, the extracts were protected by encapsulation (microencapsulation, multiple emulsions, and nanoemulsions). Applications of encapsulated extracts were probed in various food matrices (edible films, meat products, dairy, and fruit coatings). The xoconostle is a natural source of nutraceutical compounds, and the use of this fruit in the new food could help improve consumers' health.
Collapse
Affiliation(s)
- Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Cinvestav-Saltillo, Coahuila C.P. 25900, Mexico;
| | - Gabriela Medina-Pérez
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo C.P. 43600, Mexico; (G.M.-P.); (E.P.-S.); (L.P.-A.); (S.P.-R.)
| | - Elizabeth Pérez-Soto
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo C.P. 43600, Mexico; (G.M.-P.); (E.P.-S.); (L.P.-A.); (S.P.-R.)
| | - Salvador Espino-Manzano
- Food Agroindustrial Area, Xicotepec University of Juarez Technology University, Avenida Universidad Tecnológica #1000, Tierra Negra, Xicotepec de Juárez, Puebla C.P. 73080, Mexico;
| | - Laura Peralta-Adauto
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo C.P. 43600, Mexico; (G.M.-P.); (E.P.-S.); (L.P.-A.); (S.P.-R.)
| | - Sergio Pérez-Ríos
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo C.P. 43600, Mexico; (G.M.-P.); (E.P.-S.); (L.P.-A.); (S.P.-R.)
| | - Rafael Campos-Montiel
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Hidalgo C.P. 43600, Mexico; (G.M.-P.); (E.P.-S.); (L.P.-A.); (S.P.-R.)
- Correspondence: ; Tel.: +52-(77)-1717-2000
| |
Collapse
|