1
|
Inoue H, Harada K, Narimatsu E, Uemura S, Aisaka W, Bunya N, Nomura K, Katayama Y. Pathophysiologic Mechanisms of Hypothermia-Induced Pancreatic Injury in a Rat Model of Body Surface Cooling. Pancreas 2021; 50:235-242. [PMID: 33565801 DOI: 10.1097/mpa.0000000000001738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The mechanisms underlying hypothermia-induced pancreatic injury are unclear. Thus, we investigated the pathophysiology of hypothermia-induced pancreatic injury. METHODS We created a normal circulatory model with body surface cooling in rats. We divided the rats into control (36°C-38°C), mild hypothermia (33°C-35°C), moderate hypothermia (30°C-32°C), and severe hypothermia (27°C-29°C) (n = 5 per group) groups. Then, we induced circulatory failure with a cooling model using high-dose inhalation anesthesia and divided the rats into control (36°C-38°C) and severe hypothermia (27°C-29°C) (n = 5 per group) groups. Serum samples were collected before the introduction of hypothermia. Serum and pancreatic tissue were collected after maintaining the target body temperature for 1 hour. RESULTS Hematoxylin and eosin staining of the pancreas revealed vacuoles and edema in the hypothermia group. Serum amylase (P = 0.056), lactic acid (P < 0.05), interleukin 1β (P < 0.05), interleukin 6 (P < 0.05), and tumor necrosis factor α (P = 0.13) levels were suppressed by hypothermia. The circulatory failure model exhibited pancreatic injury. CONCLUSIONS Hypothermia induced bilateral effects on the pancreas. Morphologically, hypothermia induced pancreatic injury based on characteristic pathology typified by vacuoles. Serologically, hypothermia induced protective effects on the pancreas by suppressing amylase and inflammatory cytokine levels.
Collapse
Affiliation(s)
| | | | | | | | - Wakiko Aisaka
- Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | |
Collapse
|
2
|
O’Brien WG, Ling HS, Zhao Z, Lee CC. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models. PLoS One 2017; 12:e0180948. [PMID: 28746349 PMCID: PMC5528878 DOI: 10.1371/journal.pone.0180948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3. Here we further investigate how these Ampd3-/-/Cd73-/- mice respond to the administered dose of AMP in comparison with the control models of single enzyme deficiency and wild type. We found that Ampd3-/-/Cd73-/- mice are more sensitive to AMP-induced hypometabolism than mice with a single enzyme deficiency, which are more sensitive than wild type. A dose-dependent rightward shift of erythrocyte p50 values in response to increasing amounts of extracellular AMP was observed. We provide further evidence for the direct uptake of AMP by erythrocytes that is insensitive to dipyridamole, a blocker for ENT1. The uptake of AMP by the erythrocytes remained linear at the highest concentration tested, 10mM. We also observed competitive inhibition of AMP uptake by ATP and ADP but not by the other nucleotides and metabolites tested. Importantly, our studies suggest that AMP uptake is associated with an erythrocyte ATP release that is partially sensitive to inhibition by TRO19622 and Ca++ ion. Taken together, our study suggests a novel mechanism by which erythrocytes recycle and maintain their adenine nucleotide pool through AMP uptake and ATP release.
Collapse
Affiliation(s)
- William G. O’Brien
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Han Shawn Ling
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
3
|
Interferon-γ Aggravated L-Arginine-Induced Acute Pancreatitis in Sprague-Dawley Rats and Its Possible Mechanism: Trypsinogen Activation and Autophagy Up-regulation. Pancreas 2017; 46:619-625. [PMID: 28375949 DOI: 10.1097/mpa.0000000000000826] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES It has been confirmed that the initiation of acute pancreatitis (AP) involves intracellular trypsinogen activation and local cytokines release during its early stage. The former is related to autophagic disorder, and the latter is resulting from nuclear factor-κB activation. Although great efforts have been exerted, there is still nonspecific treatment currently. Recent data showed that immunomodulatory therapy is always promising. However, the effects of interferon-γ (IFN-γ) on AP are controversial. This study is designed to elucidate the effects of IFN-γ on AP severity and explore its impacts on the major mechanisms of AP. METHODS Sprague-Dawley rats were used to establish AP model by intraperitoneal injection of 20% L-arginine (4 g/kg) twice with an interval of 1 hour. The effects of IFN-γ on the severity of AP, trypsinogen activation peptide, and tumor necrosis factor α, Interleukin-1, Interleukin-6 levels, and autophagy activity were detected. RESULTS Compared with AP rats without IFN-γ administration, AP rats with IFN-γ administration had more severe pathological changes in pancreata, greater levels of trypsinogen activation concomitant with autophagy up-regulation, and higher levels of cytokine release. CONCLUSIONS Interferon-γ aggravated L-arginine-induced AP in Sprague-Dawley rats and led to intracellular trypsinogen activation and inflammatory response. The former may be related to autophagy up-regulation.
Collapse
|
4
|
Carlin JL, Jain S, Gizewski E, Wan TC, Tosh DK, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Hypothermia in mouse is caused by adenosine A 1 and A 3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology 2017; 114:101-113. [PMID: 27914963 PMCID: PMC5183552 DOI: 10.1016/j.neuropharm.2016.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/02/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1-/-, Adora3-/-) mice. Confirming prior data, stimulation of the A3 adenosine receptor (AR) induced hypothermia via peripheral mast cell degranulation, histamine release, and activation of central histamine H1 receptors. In contrast, A1AR agonists and AMP both acted centrally to cause hypothermia. Commonly used, selective A1AR agonists, including N6-cyclopentyladenosine (CPA), N6-cyclohexyladenosine (CHA), and MRS5474, caused hypothermia via both A1AR and A3AR when given intraperitoneally. Intracerebroventricular dosing, low peripheral doses of Cl-ENBA [(±)-5'-chloro-5'-deoxy-N6-endo-norbornyladenosine], or using Adora3-/- mice allowed selective stimulation of A1AR. AMP-stimulated hypothermia can occur independently of A1AR, A3AR, and mast cells. A1AR and A3AR agonists and AMP cause regulated hypothermia that was characterized by a drop in total energy expenditure, physical inactivity, and preference for cooler environmental temperatures, indicating a reduced body temperature set point. Neither A1AR nor A3AR was required for fasting-induced torpor. A1AR and A3AR agonists and AMP trigger regulated hypothermia via three distinct mechanisms.
Collapse
Affiliation(s)
- Jesse Lea Carlin
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Elizabeth Gizewski
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Tina C Wan
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 2015; 37:99-107. [PMID: 26719855 PMCID: PMC4687439 DOI: 10.3892/ijmm.2015.2410] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
Severe acute pancreatitis (SAP) is an extremely dangerous acute abdominal disorder which causes multiple complications and has a high mortality rate. Previous research has suggested that high-mobility group box 1 (HMGB1) plays an important role in the pathogenesis of SAP; however, the mechanisms underlying this strong correlation remain unclear. In this study, to further investigate whether HMGB1 acts as a stimulating factor, and whether Toll-like receptor 4 (TLR4) acts as its major mediator in the development of pancreatic injury during SAP, recombinant human HMGB1 (rhHMGB1) and TLR4-deficient mice were used. We found that HMGB1 and TLR4 were highly expressed, and nuclear factor-κB (NF-κB) was activated in our mouse model of SAP. We noted that the rhHMGB1 pancreas-targeted injection activated the TLR4-mediated NF-κB signaling pathway and induced pancreatic injury in wild-type mice. In TLR4-deficient mice, the rhHMGB1-induced activation of NF-κB and pathological changes in the pancreas were less evident than in wild-type mice. Therefore, this study provides evidence that HMGB1 promotes the pathogenesis of pancreatitis, and its downstream TLR4-mediated NF-κB signaling pathway is a potential important mediator in the development of this form of pancreatic injury.
Collapse
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
6
|
Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 2015; 38:1313. [PMID: 27573568 PMCID: PMC5029970 DOI: 10.3892/ijmm.2016.2707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
7
|
Zhang Y, O'Brien WG, Zhao Z, Lee CC. 5'-adenosine monophosphate mediated cooling treatment enhances ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) stability in vivo. J Biomed Sci 2015; 22:72. [PMID: 26335336 PMCID: PMC4559075 DOI: 10.1186/s12929-015-0178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022] Open
Abstract
Background Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport. Results Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice. Conclusions Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.
Collapse
Affiliation(s)
- Yueqiang Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - William G O'Brien
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Induction of a Torpor-Like State by 5'-AMP Does Not Depend on H2S Production. PLoS One 2015; 10:e0136113. [PMID: 26295351 PMCID: PMC4546583 DOI: 10.1371/journal.pone.0136113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
Background Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called ‘torpor’ without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5’-Adenosine monophosphate (5’-AMP). The mechanism by which 5’-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. Methods To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5’-AMP, additional animals were injected with AOAA during torpor. Key Results During the torpor-like state induced by 5’-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. Conclusions Induction of a torpor-like state by 5’-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5’-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery.
Collapse
|
9
|
Wang Y, Zhang A, Lu S, Pan X, Jia D, Yu W, Jiang Y, Li X, Wang X, Zhang J, Hou L, Sun Y. Adenosine 5'-monophosphate-induced hypothermia inhibits the activation of ERK1/2, JNK, p38 and NF-κB in endotoxemic rats. Int Immunopharmacol 2014; 23:205-10. [PMID: 25218163 DOI: 10.1016/j.intimp.2014.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
Many studies have shown that LPS mainly activates four signal transduction pathways to induce inflammation, namely the p38, ERK1/2, JNK and IKK/NF-κB pathways. Studies have demonstrated that 5'-AMP-induced hypothermia (AIH) exhibits high anti-inflammatory capabilities. In this study, we explore that how AIH inhibits the inflammatory response. Wistar rats were divided into five groups: a control group, an LPS group, a 5'-AMP pre-treatment group, a 5'-AMP post-treatment group and a 5'-AMP group. For each group, plasma and lung were collected from the rats at 6h and 12h after LPS injection. ELISA assays were used to detect plasma levels of CD14, CRP and MCP-1. Inflammatory pathway activation and TLR4 expression were assayed separately by Western blot analysis and immunohistochemistry. Our results showed that rats treated with AIH either before or after an LPS-challenge had a significant decrease in plasma levels of CD14, CRP and TLR4 compared with rats that received LPS only. Western blot analysis showed that AIH inhibited the activation of extracellular signal-regulated kinases (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) and NF-κB in inflammatory rats. Our study concluded that AIH attenuated LPS-induced inflammation mainly by inhibiting activation on the ERK1/2, p38, JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yunlong Wang
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Aihua Zhang
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shulai Lu
- Stomatological Department, Qingdao Municipal Hospital, Qingdao, China
| | - Xinting Pan
- ICU, The Affiliated Hospital of Medical College, 16 Jiangsu Road, Qingdao, China
| | - Dongmei Jia
- Pathology Department, Qingdao Municipal Hospital, Qingdao, China
| | - Wenjuan Yu
- Pathology Department, The Affiliated Hospital of Medical College Qingdao University, China
| | - Yanxia Jiang
- Pathology Department, The Affiliated Hospital of Medical College Qingdao University, China
| | - Xinde Li
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Xuefeng Wang
- Gout Laboratory, The Affiliated Hospital of Medical College Qingdao University, Shandong Provincial Key Laboratory of Metabolic Diseases, 16 Jiangsu Road, Qingdao, China
| | - Jidong Zhang
- Department of Cardiology, The Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao, China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China.
| | - Yunbo Sun
- ICU, The Affiliated Hospital of Medical College, 16 Jiangsu Road, Qingdao, China.
| |
Collapse
|