1
|
Zhou L, Yin M, Guo F, Yu Z, Weng G, Long H. Low ACADM expression predicts poor prognosis and suppressive tumor microenvironment in clear cell renal cell carcinoma. Sci Rep 2024; 14:9533. [PMID: 38664460 PMCID: PMC11045743 DOI: 10.1038/s41598-024-59746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents a highly frequent renal cancer subtype. However, medium-chain acyl-CoA dehydrogenase (ACADM) encodes an important enzyme responsible for fatty acid β-oxidation (FAO) and its association with prognosis and immunity in cancers has rarely been reported. Therefore, the present work focused on exploring ACADM's expression and role among ccRCC cases. We used multiple public databases and showed the hypo levels of ACADM protein and mRNA within ccRCC. Additionally, we found that ACADM down-regulation showed a remarkable relation to the advanced stage, high histological grade, as well as dismal prognostic outcome. As suggested by Kaplan-Meier curve analysis, cases showing low ACADM levels displayed shorter overall survival (OS) as well as disease-free survival (DFS). Moreover, according to univariate/multivariate Cox regression, ACADM-mRNA independently predicted the prognosis of ccRCC. In addition, this work conducted immunohistochemistry for validating ACADM protein expression and its prognostic role in ccRCC samples. KEGG and GO analyses revealed significantly enriched genes related to ACADM expression during fatty acid metabolism. The low-ACADM group with more regulatory T-cell infiltration showed higher expression of immune negative regulation genes and higher TIDE scores, which might contribute to poor response to immunotherapies. In conclusion, our results confirmed that downregulated ACADM predicted a poor prognosis for ccRCC and a poor response to immunotherapy. Our results provide important data for developing immunotherapy for ccRCC.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Departments of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Min Yin
- Department of Urology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Departments of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Fei Guo
- Ningbo Institute for Medicine and Biomedical Engineering Combined Innovation, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zefeng Yu
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Guobin Weng
- Department of Urology, Ningbo Yinzhou No.2 Hospital, Ningbo, China.
| | - Huimin Long
- Department of Urology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.
- Departments of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Liu M, Fang X, Wang H, Ji R, Guo Q, Chen Z, Ren Q, Wang Y, Zhou Y. Characterization of lipid droplet metabolism patterns identified prognosis and tumor microenvironment infiltration in gastric cancer. Front Oncol 2023; 12:1038932. [PMID: 36713557 PMCID: PMC9875057 DOI: 10.3389/fonc.2022.1038932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gastric cancer is one of the common malignant tumors of the digestive system worldwide, posing a serious threat to human health. A growing number of studies have demonstrated the important role that lipid droplets play in promoting cancer progression. However, few studies have systematically evaluated the role of lipid droplet metabolism-related genes (LDMRGs) in patients with gastric cancer. Methods We identified two distinct molecular subtypes in the TCGA-STAD cohort based on LDMRGs expression. We then constructed risk prediction scoring models in the TCGA-STAD cohort by lasso regression analysis and validated the model with the GSE15459 and GSE66229 cohorts. Moreover, we constructed a nomogram prediction model by cox regression analysis and evaluated the predictive efficacy of the model by various methods in STAD. Finally, we identified the key gene in LDMRGs, ABCA1, and performed a systematic multi-omics analysis in gastric cancer. Results Two molecular subtypes were identified based on LDMRGs expression with different survival prognosis and immune infiltration levels. lasso regression models were effective in predicting overall survival (OS) of gastric cancer patients at 1, 3 and 5 years and were validated in the GEO database with consistent results. The nomogram prediction model incorporated additional clinical factors and prognostic molecules to improve the prognostic predictive value of the current TNM staging system. ABCA1 was identified as a key gene in LDMRGs and multi-omics analysis showed a strong correlation between ABCA1 and the prognosis and immune status of patients with gastric cancer. Conclusion This study reveals the characteristics and possible underlying mechanisms of LDMRGs in gastric cancer, contributing to the identification of new prognostic biomarkers and providing a basis for future research.
Collapse
Affiliation(s)
- Mengxiao Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xidong Fang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haoying Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xinan, China
| | - Rui Ji
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ren
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Fang H, Li H, Zhang H, Wang S, Xu S, Chang L, Yang Y, Cui R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front Pharmacol 2022; 13:1019312. [PMID: 36313354 PMCID: PMC9614034 DOI: 10.3389/fphar.2022.1019312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.
Collapse
Affiliation(s)
- He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hanyang Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
5
|
Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules 2022; 12:biom12050706. [PMID: 35625633 PMCID: PMC9138239 DOI: 10.3390/biom12050706] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
Fatty acid metabolism is closely linked to the progression of gastric cancer (GC), a very aggressive and life-threatening tumor. This study examines linked molecules, such as Sterol Regulatory Element-Binding Protein 1 (SREBP1), ATP Citrate Lyase (ACLY), Acetyl-CoA Synthases (ACSs), Acetyl-CoA Carboxylase (ACC), Fatty Acid Synthase (FASN), Stearoyl-CoA Desaturase 1 (SCD1), CD36, Fatty Acid Binding Proteins (FABPs), and Carnitine palmitoyltransferase 1 (CPT1), as well as their latest studies and findings in gastric cancer to unveil its core mechanism. The major enzymes of fatty acid de novo synthesis are ACLY, ACSs, ACC, FASN, and SCD1, while SREBP1 is the upstream molecule of fatty acid anabolism. Fatty acid absorption is mediated by CD36 and FABPs, and fatty acid catabolism is mediated by CPT1. If at all possible, we will discover novel links between fatty acid metabolism and a prospective gastric cancer target.
Collapse
|
6
|
Jiang H, Chen H, Wan P, Chen N. Decreased expression of HADH is related to poor prognosis and immune infiltration in kidney renal clear cell carcinoma. Genomics 2021; 113:3556-3564. [PMID: 34391866 DOI: 10.1016/j.ygeno.2021.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
Kidney renal clear cell carcinoma (KIRC) is the subtype pf kidney cancer having the highest mortality as well as the highest potential of invasion and metastasis. The expression of HADH, encoding a key enzyme in fatty acid β-oxidation, has rarely been reported to correlate with prognosis and immune infiltration in cancers. This study aimed to explore the prognostic value of HADH in patients with KIRC. Gene expression profiles and clinical data of KIRC patients were acquired from The Cancer Genome Atlas. We compared the expression of HADH between KIRC tissues and normal tissues. Then, the relationship between HADH expression and the clinicopathological characteristics (survival, age, gender, stage, and grade) of KIRC was explored. Data from several online databases and paraffin-embedded specimens from two cohorts were used for external validation (10 cases from Meizhou People's Hospital and another 75 cases from a tissue chip, with both cohorts including KIRC samples and paired normal tissues). We also predicted the fractions of tumor-infiltrating immune cells (TIICs) in various tissues using CIBERSORT. Next, we estimated the prognostic value of differences in TIIC proportions between the high and low HADH expression groups. Finally, gene set enrichment analysis (GSEA) was performed to explore the potential mechanisms by which HADH expression influences patient survival. The expression of HADH was significantly lower in KIRC tissue than in normal tissue. Decreased expression of HADH was significantly correlated with high histologic grade, advanced stage, and poor prognosis. The differential expression of HADH was validated at the protein level by immunohistochemistry. Multivariate Cox regression analysis indicated that HADH was an independent prognostic factor for KIRC. In addition, HADH expression was significantly associated with the accumulation of several TIICs, especially regulatory T cells. Finally, GSEA revealed that the transcriptome of the low HADH expression group was significantly enriched in genes involved in not only epithelial-mesenchymal transition and inflammatory response but also TNF-α, IL-6-JAK-STAT3, and interferon-γ signaling. In conclusion, our study demonstrated that decreased expression of HADH is related to poor prognosis and immune infiltration in KIRC; this finding may provide crucial information for the development of immunotherapies.
Collapse
Affiliation(s)
- Huiming Jiang
- Department of Urology, Meizhou People's Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, No. 63, Huang Tang Road, Meizhou, Guangdong Province 514031, PR China.
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong Province 515041, PR China
| | - Pei Wan
- Department of Urology, Meizhou People's Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, No. 63, Huang Tang Road, Meizhou, Guangdong Province 514031, PR China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, No. 63, Huang Tang Road, Meizhou, Guangdong Province 514031, PR China.
| |
Collapse
|
7
|
Yang F, Yan Z, Nie W, Liu Z, Cheng X, Wang W, Shao C, Fu G, Yu Y. LACTB and LC3 could serve as potential biomarkers of gastric cancer to neoadjuvant chemotherapy with oxaliplatin plus S-1. Oncol Lett 2021; 21:470. [PMID: 33907580 PMCID: PMC8063359 DOI: 10.3892/ol.2021.12731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
The present study investigated and evaluated the correlation between the expression of LACTB and LC3 and the clinical outcomes of patients with advanced gastric cancer treated with oxaliplatin plus S-1 neoadjuvant chemotherapy (NACT). A total of 51 patients with advanced gastric cancer underwent NACT treatment between June 2015 and June 2017. Pathomorphological changes in gastric cancer were analyzed by H&E staining. The expression level and subcellular localization of LACTB and LC3 in paraffin-embedded biopsies were detected by immunohistochemistry and immunofluorescence. The mRNA and protein expression of LACTB were investigated by reverse transcription quantitative polymerase chain reaction and Western blotting, respectively. Statistical analysis was performed to determine the association between the expression of LACTB and LC3 and clinical chemotherapy efficacy of NACT for gastric cancer. Among the 51 patients, 3 (5.88%), 27 (52.94%), 13 (25.49%) and 8 (15.69%) displayed complete remission, partial remission, stable disease and progressive disease, respectively. The rate of decreased LACTB expression was 68.6%, while the rate of increased LC3 expression was 60.8%. Furthermore, there was a significant negative correlation between the expression of LACTB and that of LC3 following NACT (P<0.001). High expression of LC3 (P<0.01) and low expression of LACTB (P<0.01) were associated with a poor response of patients with advanced gastric cancer to NACT. In conclusion, the expression of LACTB and LC3 may serve as a promising novel biomarker for determining the prognosis of patients with advanced gastric cancer receiving NACT, while its potential clinical significance requires further elucidation.
Collapse
Affiliation(s)
- Fang Yang
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Zhiqiang Yan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Nie
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zeying Liu
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Xingzhen Cheng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Wang
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Chunyan Shao
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Gui Fu
- Laboratory Department of Guizhou Cancer Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Yanni Yu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
8
|
Saito R, Yoshimura K, Shoda K, Furuya S, Akaike H, Kawaguchi Y, Murata T, Ogata K, Iwano T, Takeda S, Ichikawa D. Diagnostic significance of plasma lipid markers and machine learning-based algorithm for gastric cancer. Oncol Lett 2021; 21:405. [PMID: 33841566 PMCID: PMC8020384 DOI: 10.3892/ol.2021.12666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
Biomarkers may be of value for the early detection of gastric cancer (GC) and the preoperative identification of tumor characteristics to guide treatment strategies. The present study analyzed the expression levels of phospholipids in plasma from patients with GC using liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) to detect reliable biomarkers for GC. Furthermore, combining the results with a machine learning strategy, the present study attempted to establish a diagnostic system for GC. A total of 20 plasma samples from preoperative patients with GC and 16 plasma samples from tumor-free patients (controls) were selected from our biobank named ‘SHINGEN (Yamanashi Biobank of Gastroenterological Cancers)’, which includes a total of 1,592 plasma samples, and were analyzed by LC/ESI-MS. The obtained data were discriminated using a machine learning-based diagnostic algorithm, whose discriminant ability was confirmed through leave-one-out cross-validation. Using LC/ESI-MS, the levels of 236 lipid molecules were determined. Biomarker analysis revealed that a few lipids that were downregulated in the GC group could discriminate between the GC and control groups. Whole lipid composition analysis using partial least squares regression revealed good discrimination ability between the GC and control groups. Integrative analysis of all molecules using the aforementioned machine learning method exhibited a diagnostic accuracy of 94.4% (specificity, 93.8%; sensitivity, 95.0%). In conclusion, the outcomes of the present study suggested the potential future application of the aforementioned system in clinical settings. By accumulating more reliable data, the present system will be able to detect early-stage cancer and will be capable of predicting the efficacy of each therapeutic strategy.
Collapse
Affiliation(s)
- Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Hidenori Akaike
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Tasuku Murata
- MS Business Unit, Life Science Business Department, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto 6048511, Japan
| | - Koretsugu Ogata
- MS Business Unit, Life Science Business Department, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto 6048511, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 4093898, Japan
| |
Collapse
|
9
|
Mayengbam SS, Singh A, Pillai AD, Bhat MK. Influence of cholesterol on cancer progression and therapy. Transl Oncol 2021; 14:101043. [PMID: 33751965 PMCID: PMC8010885 DOI: 10.1016/j.tranon.2021.101043] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Abnormality in blood cholesterol level is significantly correlated with risk of different cancers. Majority of tumor tissue from cancer patient exhibits overexpression of LDLR and ACAT for supporting rapid cancer cell proliferation. Alteration of the cholesterol metabolism in cancer cells hampers therapeutic response. Targeting cholesterol metabolism for treatment of cancer with other conventional chemotherapeutic drugs appears to be beneficial.
Cholesterol is a fundamental molecule necessary for the maintenance of cell structure and is vital to various normal biological functions. It is a key factor in lifestyle-related diseases including obesity, diabetes, cardiovascular disease, and cancer. Owing to its altered serum chemistry status under pathological states, it is now being investigated to unravel the mechanism by which it triggers various health complications. Numerous clinical studies in cancer patients indicate an alteration in blood cholesterol level (either decreased or increased) in comparison to normal healthy individuals. This article elaborates on our understanding as to how cholesterol is being hijacked in the malignancy for the development, survival, stemness, progression, and metastasis of cancerous cells. Also, it provides a glimpse of how cholesterol derived entities, alters the signaling pathway towards their advantage. Moreover, deregulation of the cholesterol metabolism pathway has been often reported to hamper various treatment strategies in different cancer. In this context, attempts have been made to bring forth its relevance in being targeted, in pre-clinical and clinical studies for various treatment modalities. Thus, understanding the role of cholesterol and deciphering associated molecular mechanisms in cancer progression and therapy are of relevance towards improvement in the management of various cancers.
Collapse
Affiliation(s)
| | - Abhijeet Singh
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Ajay D Pillai
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
10
|
Ezzeddini R, Taghikhani M, Salek Farrokhi A, Somi MH, Samadi N, Esfahani A, Rasaee MJ. Downregulation of fatty acid oxidation by involvement of HIF-1α and PPARγ in human gastric adenocarcinoma and related clinical significance. J Physiol Biochem 2021; 77:249-260. [PMID: 33730333 DOI: 10.1007/s13105-021-00791-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Lipid metabolism rewiring in gastric adenocarcinoma (GA) pathogenesis is still not clearly elucidated. This study aimed to describe the role of lipid catabolism in GA patient outcomes and possible therapeutic targets by analyzing the effect of hypoxia-inducible factor-1α (HIF-1α) on fatty acid oxidation (FAO). AGS cell line was cultured in normoxic and hypoxic conditions, and FAO-related genes were analyzed by real-time-PCR and Western-blot. The study group comprised 108 newly diagnosed GA patients and 152 control cases. Serum concentrations of medium and long-chain acyl-CoA dehydrogenases (MCAD and LCAD) proteins were measured using ELISA, and local expression of HIF-1α, carnitine palmitoyl transferase 1 (CPT1A) and peroxisome proliferator-activated receptor γ (PPARγ) was evaluated by immunohistochemistry. In addition, gene expression of PPARγ, CPT1A, LCAD, and MCAD was assessed by real-time-PCR. In vitro findings indicate HIF-1α upregulation and FAO-related genes and proteins reduction in the hypoxic culture of AGS cells. GA patients had significantly lower circulating levels of LCAD compared to controls. Higher protein expression of HIF-1α and downregulated CPT1A and PPARγ were observed in GA tissues versus controls. Gene expression of CPT1A, PPARγ, LCAD, and MCAD were repressed in GA tissues compared to controls. Moreover, reduced expression of CPT1A, PPARγ, and MCAD were correlated with HIF-1α upregulation in GA. Poor patient outcome was associated with lower PPARγ and LCAD expression in GA. HIF-1α upregulation in human GA patients and AGS cells was paralleled by downregulation of lipid catabolism genes potentially via reduced PPARγ-mediated FAO. This metabolic adaptation to hypoxic condition may play a role in GA pathogenesis and might have clinical and therapeutic value in GA patients.
Collapse
Affiliation(s)
- Rana Ezzeddini
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Nasr, P.O.Box: 14115-331, Tehran, Iran
| | - Mohammad Taghikhani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Nasr, P.O.Box: 14115-331, Tehran, Iran.
| | - Amir Salek Farrokhi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Esfahani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad Highway, Nasr, P.O.Box: 14115-331, Tehran, Iran.
| |
Collapse
|
11
|
Pan G, Ma Y, Suo J, Li W, Zhang Y, Qin S, Jiao Y, Zhang S, Li S, Kong Y, Du Y, Gao S, Wang D. Discovering Biomarkers in Peritoneal Metastasis of Gastric Cancer by Metabolomics. Onco Targets Ther 2020; 13:7199-7211. [PMID: 32801750 PMCID: PMC7394602 DOI: 10.2147/ott.s245663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Metabolomics has recently been applied in the field of oncology. In this study, we aimed to use metabolomics to explore biomarkers in peritoneal metastasis of gastric cancer. METHODS Peritoneal lavage fluid (PLF) of 65 gastric cancer patients and related clinical data were collected from the First Hospital of Jilin University. The metabolic components were identified by liquid chromatography-mass spectrometry (LC-MS). Total ion current (TIC) spectra, principal component analysis (PCA), and the Student's t-test were used to identify differential metabolites in PLF. A support vector machine (SVM) was used to screen the differential metabolites in PLF with a weight of 100%. Cluster analysis was used to evaluate the similarity between samples. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic ability of the metabolites. Univariate and multivariate logistic regression analyses were used to identify potential risk factors for peritoneal metastasis of gastric cancer. RESULTS We found the differential levels of PLF metabolites by LC-MS, TIC spectra, PCA and the t-test. Cluster analysis showed the co-occurrence of metabolites in the peritoneal metastasis group (p<0.05). ROC analysis showed the diagnostic ability of metabolites (p<0.05). Univariate and multivariate logistic regression analyses showed the potential independent risk factors for peritoneal metastasis in gastric cancer patients (p<0.05). CONCLUSION Through the statistical analysis of metabolomics, we found that TG (54:2), G3P, α-aminobutyric acid, α-CEHC, dodecanol, glutamyl alanine, 3-methylalanine, sulfite, CL (63:4), PE-NMe (40:5), TG (53:4), retinol, 3-hydroxysterol, tetradecanoic acid, MG (21:0/0:0/0:0), tridecanoic acid, myristate glycine and octacosanoic acid may be biomarkers for peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Guoqiang Pan
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Yuehan Ma
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Jian Suo
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Wei Li
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Shanshan Qin
- Department of Radiology, Affiliated Hospital of Qingdao, Qingdao266000, People’s Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Shaopeng Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Shuang Li
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Yuan Kong
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Yu Du
- Department of First Operation Room, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Shengnan Gao
- Department of First Operation Room, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province130000, People’s Republic of China
| |
Collapse
|
12
|
Zhong Z, Ye Z, He G, Zhang W, Wang J, Huang S. Low expression of A-kinase anchor protein 5 predicts poor prognosis in non-mucin producing stomach adenocarcinoma based on TCGA data. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:115. [PMID: 32175408 PMCID: PMC7049022 DOI: 10.21037/atm.2019.12.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND In the past, there were not a lot of studies on how A-kinase anchor protein 5 (AKAP5) involving in the pathogenesis and prognosis of non-mucin producing stomach adenocarcinoma (NMSA). Therefore, we studied the relationship between AKAP5 and the prognosis of NMSA and its possible mechanisms using publicly available data from The Cancer Genome Atlas (TCGA). METHODS RNA high-throughput sequencing and clinicopathologic data of NMSA were downloaded from the TCGA. Clinical pathologic features associated with AKAP5 expression were analyzed using the chi-square and Fisher exact tests. The relationship between the overall survival (OS) and AKAP5 expression was analyzed by the Kaplan-Meier method and the Cox regression analysis. GSEA analysis was performed using the TCGA dataset. RESULTS Our results indicated that the AKAP5 expression was increased in NMSA (all tumor vs. adjacent mucosa). Also, histologic grade, clinical stage, N classification, and survival status were significantly correlated with AKAP5 expression. Kaplan-Meier curves showed that low AKAP5 expression was associated with a poor OS among the NMSA patients (P=5.003e-05), and in the clinical stage III and IV (P=4.646e-05), TNM stage T3 (P=0.016), T4 (P=0.001), N2 (P=0.012), N3 (P=0.003), M0 (P=3.911e-05), and histological grade G3 (P=1.658e-04) subgroups. Cox regression analysis showed that reduced AKAP5 expression in NMSA is associated with age (HR =1.03, P=0.007), stage (HR =1.84 for stage I, II vs. stage III, IV, P=0.002) and M classification (HR =1.8 for M0 vs. M1, P=0.010). Gene sets related to cholesterol homeostasis, glycolysis, estrogen response late, adipogenesis, estrogen response early, notch signaling, and peroxisome were differentially enriched with the low AKAP5 expression phenotype. CONCLUSIONS Low expression of AKAP5 may be a potential molecular marker for predicting poor prognosis of NMSA. Besides, cholesterol homeostasis, glycolysis, estrogen response, adipogenesis, notch signaling, and peroxisome may be the key pathways regulated by AKAP5 in NMSA. It also suggested that AKAP5 might potentially have biological functions in the development of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Zishao Zhong
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Zhenhao Ye
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Guihua He
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wang Zhang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Jing Wang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Suiping Huang
- Gastroenterology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Gastroenterology Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
13
|
Liu Y, Zhang Z, Wang J, Chen C, Tang X, Zhu J, Liu J. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review. Onco Targets Ther 2019; 12:1195-1204. [PMID: 30863087 PMCID: PMC6389007 DOI: 10.2147/ott.s189687] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Warburg effect in tumor cells involves the uptake of high levels of glucose, enhanced glycolysis, and the metabolism of pyruvate to lactic acid rather than oxidative phos-phorylation to generate energy under aerobic conditions. This effect is closely related to the occurrence, invasion, metastasis, drug resistance, and poor prognosis of gastric cancer (GC). Current research has further demonstrated that the Warburg effect in GC cells is not only mediated by the glycolysis pathway, but also includes roles for mitochondria, noncoding RNAs, and other proteins that do not directly regulate metabolism. As a result, changes in the glycolysis pathway not only lead to abnormal glucose metabolism, but they also affect mitochondrial functions, cellular processes such as apoptosis and cell cycle regulation, and the metabolism of lipids and amino acids. In this review, we discuss metabolic reprogramming in GC based on glycolysis, a possible link between glucose metabolism, lipid metabolism, and amino acid metabolism, and we clarify the role of mitochondria. We also examine recent studies of metabolic inhibitors in GC.
Collapse
Affiliation(s)
- Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Junyang Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Chao Chen
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Xiaohuan Tang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jiaming Zhu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| | - Jingjing Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun 130041, China, ;
| |
Collapse
|
14
|
Uchima H, Yao K. Endoscopic microanatomy of the normal gastrointestinal mucosa with narrow band technology and magnification. GASTROENTEROLOGIA Y HEPATOLOGIA 2018; 42:117-126. [PMID: 30471720 DOI: 10.1016/j.gastrohep.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/16/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023]
Abstract
The development of high-definition endoscopes with optical zoom, along with the use of the digital chromoendoscopy and staining, has given endoscopists the possibility to study the microanatomy of the gastrointestinal mucosa in vivo. The recognition of the changes in the microstructure of the surface and microvascular architecture such as those that occur in neoplastic lesions allow us to characterize these lesions in order to decide on the best course of clinical action. The current greater availability of endoscopes with optical zoom in western countries has allowed the use of this technology in routine clinical practice to spread. In this article we review the basic concepts of magnifying endoscopy and the normal endoscopic microanatomy of the oesophageal, gastric, duodenal, ileal and colonic mucosa.
Collapse
Affiliation(s)
- Hugo Uchima
- Department of Endoscopy, Hospital Universitari Doctor Josep Trueta, Girona, Spain; Department of Endoscopy, Teknon Medical Center, Barcelona, Spain.
| | - Kenshi Yao
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| |
Collapse
|
15
|
Aiderus A, Black MA, Dunbier AK. Fatty acid oxidation is associated with proliferation and prognosis in breast and other cancers. BMC Cancer 2018; 18:805. [PMID: 30092766 PMCID: PMC6085695 DOI: 10.1186/s12885-018-4626-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Background Altered cellular metabolism is a hallmark of cancer but the association between utilisation of particular metabolic pathways in tumours and patient outcome is poorly understood. We sought to investigate the association between fatty acid metabolism and outcome in breast and other cancers. Methods Cox regression analysis and Gene Set Enrichment Analysis (GSEA) of a gene expression dataset from primary breast tumours with well annotated clinical and survival information was used to identify genesets associated with outcome. A geneset representing fatty acid oxidation (FAO) was then examined in other datasets. A doxycycline-inducible breast cancer cell line model overexpressing the rate-limiting enzyme in FAO, carnitine palmitoyl transferase 1A (CPT1A) was generated and analysed to confirm the association between FAO and cancer-associated characteristics in vitro. Results We identified a gene expression signature composed of 19 genes associated with fatty acid oxidation (FAO) that was significantly associated with patient outcome. We validated this observation in eight independent breast cancer datasets, and also observed the FAO signature to be prognostic in other cancer types. Furthermore, the FAO signature expression was significantly downregulated in tumours, compared to normal tissues from a variety of anatomic origins. In breast cancer, the expression of CPT1A was higher in oestrogen receptor (ER)-positive, compared to ER-negative tumours and cell lines. Importantly, overexpression of CPT1A significantly decreased the proliferation and wound healing migration rates of MDA-MB231 breast cancer cells, compared to basal expression control. Conclusions Our findings suggest that FAO is downregulated in multiple tumour types, and activation of this pathway may lower cancer cell proliferation, and is associated with improved outcomes in some cancers. Electronic supplementary material The online version of this article (10.1186/s12885-018-4626-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aziz Aiderus
- Centre for Translational Cancer Research and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Michael A Black
- Centre for Translational Cancer Research and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Anita K Dunbier
- Centre for Translational Cancer Research and Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
16
|
Chang WC, Huang SF, Lee YM, Lai HC, Cheng BH, Cheng WC, Ho JYP, Jeng LB, Ma WL. Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival. Oncotarget 2018; 8:692-704. [PMID: 27893427 PMCID: PMC5352189 DOI: 10.18632/oncotarget.13524] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/11/2016] [Indexed: 02/03/2023] Open
Abstract
Androgens, estrogens, progesterone and related signals are reported to be involved in the pathology of gastric cancer. However, varied conclusions exist based on serum hormone levels, receptor expressions, and in vitro or in vivo studies. This report used a web-based gene survival analyzer to evaluate biochemical processes, including cholesterol importing via lipoprotein/receptors (L/R route), steroidogenic enzymes, and steroid receptors, in gastric cancer patients prognosis. The sex hormone receptors (androgen receptor, progesterone receptor, and estrogen receptor ESR1 or ESR2), L/R route (low/high-density lipoprotein receptors, LDLR/LRP6/SR-B1 and lipoprotein lipase, LPL) and steroidogenic enzymes (CYP11A1, HSD3B1, CYP17, HSD17B1, HSD3B1, CYP19A1 and SRD5A1) were associated with 5-year survival of gastric cancer patients. The AR, PR, ESR1 and ESR2 are progression promoters, as are the L/R route LDLR, LRP6, SR-B1 and LPL. It was found that CYP11A1, HSD3B1, CYP17, HSD17B1 and CYP19A1 promote progression, but dihydrotestosterone (DHT) converting enzyme SRD5A1 suppresses progression. Analyzing steroidogenic lipidome with a hazard ratio score algorithm found that CYP19A1 is the progression confounder in surgery, HER2 positive or negative patients. Finally, in the other patient cohort from TCGA, CYP19A1 was expressed higher in the tumor compared to that in normal counterparts, and also promoted progression. Lastly, exemestrane (type II aromatase inhibitor) dramatically suppress GCa cell growth in pharmacological tolerable doses in vitro. This work depicts a route-specific outside-in delivery of cholesterol to promote disease progression, implicating a host-to-tumor macroenvironmental regulation. The result indicating lipoprotein-mediated cholesterol entry and steroidogenesis are GCa progression biosignatures. And the exemestrane clinical trial in GCa patients of unmet medical needs is suggested.
Collapse
Affiliation(s)
- Wei-Chun Chang
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, Department of Gastroenterology, Research Center for Tumor Medical Science, and Organ Transplantation Center, China Medical University/Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences/Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Fen Huang
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, Department of Gastroenterology, Research Center for Tumor Medical Science, and Organ Transplantation Center, China Medical University/Hospital, Taichung, Taiwan
| | - Yang-Ming Lee
- Graduate Institute of Biomedical Sciences/Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsueh-Chou Lai
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, Department of Gastroenterology, Research Center for Tumor Medical Science, and Organ Transplantation Center, China Medical University/Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences/Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bi-Hua Cheng
- Department of OBs& GYN, Chia-Yi Chang-Gong Memorial Hospital, Chia-Yi, Taiwan
| | - Wei-Chung Cheng
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, Department of Gastroenterology, Research Center for Tumor Medical Science, and Organ Transplantation Center, China Medical University/Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences/Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jason Yen-Ping Ho
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, Department of Gastroenterology, Research Center for Tumor Medical Science, and Organ Transplantation Center, China Medical University/Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, Department of Gastroenterology, Research Center for Tumor Medical Science, and Organ Transplantation Center, China Medical University/Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Sex Hormone Research Center, Department of Obstetrics and Gynecology, Department of Gastroenterology, Research Center for Tumor Medical Science, and Organ Transplantation Center, China Medical University/Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences/Clinical Medical Science, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
17
|
Kawasaki K, Eizuka M, Nakamura S, Endo M, Yanai S, Akasaka R, Toya Y, Fujita Y, Uesugi N, Ishida K, Sugai T, Matsumoto T. Association between white opaque substance under magnifying colonoscopy and lipid droplets in colorectal epithelial neoplasms. World J Gastroenterol 2017; 23:8367-8375. [PMID: 29307996 PMCID: PMC5743507 DOI: 10.3748/wjg.v23.i47.8367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the association between white opaque substance (WOS) and histologically verified lipid droplets in colorectal epithelial neoplasms.
METHODS We reviewed colonoscopy records at our institution from 2014 to 2016 and identified cases of endoscopically or surgically resected colorectal epithelial neoplasms observed by magnifying narrow-band imaging (M-NBI) colonoscopy. Immunohistochemistry was used to stain tumors with a monoclonal antibody specific to adipophilin as a marker of lipids. The expression and distribution of adipophilin were compared between WOS-positive and WOS-negative lesions and among tumors classified by histologic type and depth of invasion.
RESULTS Under M-NBI colonoscopy, 81 lesions were positive for WOS and 48 lesions were negative for WOS. The rate of adipophilin expression was significantly higher in WOS-positive lesions (95.1%) than in WOS-negative lesions (68.7%) (P = 0.0001). The incidence of deep adipophilin expression was higher in WOS-positive lesions (24.7%) than in WOS-negative lesions (4.2%) (P = 0.001). The incidence of deep expression was predominant among cancers with massive submucosal invasion (62.5%) compared to adenoma (7.2%) and high-grade dysplasia or cancers with slight submucosal invasion (12.7%) (P = 0.0001).
CONCLUSION The distribution of lipid droplets may be closely associated with the visibility of WOS under M-NBI colonoscopy, and with histologic grade and depth of tumor invasion.
Collapse
Affiliation(s)
- Keisuke Kawasaki
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | - Makoto Eizuka
- Department of Diagnostic Pathology, Iwate Medical University, Morioka 020-8505, Japan
| | - Shotaro Nakamura
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | - Masaki Endo
- Kaiunbashi Endoscopy Clinic, Morioka 020-0022, Japan
| | - Shunichi Yanai
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | - Risaburo Akasaka
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| | - Yasuko Fujita
- Department of Diagnostic Pathology, Iwate Medical University, Morioka 020-8505, Japan
| | - Noriyuki Uesugi
- Department of Diagnostic Pathology, Iwate Medical University, Morioka 020-8505, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Iwate Medical University, Morioka 020-8505, Japan
| | - Tamotsu Sugai
- Department of Diagnostic Pathology, Iwate Medical University, Morioka 020-8505, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka 020-8505, Japan
| |
Collapse
|
18
|
Shen C, Song YH, Xie Y, Wang X, Wang Y, Wang C, Liu S, Xue SL, Li Y, Liu B, Tang Z, Chen W, Song J, Amin HM, Zhou J. Downregulation of HADH promotes gastric cancer progression via Akt signaling pathway. Oncotarget 2017; 8:76279-76289. [PMID: 29100311 PMCID: PMC5652705 DOI: 10.18632/oncotarget.19348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/30/2017] [Indexed: 01/23/2023] Open
Abstract
HADH is a key enzyme in fatty acid oxidation. The aim of this study was to identify the role of HADH in gastric cancer. We analyzed the expression of HADH in 102 pairs of gastric cancer samples. Western blot analysis revealed that HADH was decreased in stage I/II gastric cancer samples compared to matched adjacent normal gastric tissue, and its expression was further decreased in stage III/IV samples. Importantly, the reduced expression of HADH was associated with increased expression of p-Akt and reduced expression of PTEN in the gastric carcinoma tumor samples. To determine the significance of HADH downregulation in gastric cancer progression, we tested the impact of HADH knockdown or overexpression on the migration and invasion of the gastric cancer cells using a transwell assay. Knockdown of HADH significantly promoted gastric cancer cell migration and invasion, which was associated with increased expression of p-Akt. The PI3K inhibitor LY294002 inhibited HADH shRNA induced migration/invasion, and abolished the upregulation of p-Akt. By contrast, HADH overexpression inhibited the migration and invasion of MKN45 cells. Herein, for the first time, we demonstrate that downregulation of HADH promotes gastric cancer progression via activation of Akt signaling pathway.
Collapse
Affiliation(s)
- Congcong Shen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Yufeng Xie
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Xiaoxiao Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Yunliang Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Chao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Songbai Liu
- Suzhou Vocational Health College, Suzhou Key Laboratory of Biotechnology for Laboratory Medicine, Suzhou, P. R. China
| | - Sheng-Li Xue
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Yangxin Li
- Department of Cardiovascular Surgery & Institute of Cardiovascular Science, First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Bin Liu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, P. R. China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Jenny Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, P. R. China
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| |
Collapse
|
19
|
Yang H, Chen H, Hao G, Mei T, Zhang H, Chen W, Chen YQ. Increased fatty acid accumulation following overexpression of glycerol‐3‐phosphate dehydrogenase and suppression of β‐oxidation in oleaginous fungus
Mortierella alpina. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Guangfei Hao
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Tiantian Mei
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiJiangsuP. R. China
- Synergetic Innovation Center of Food Safety and NutritionWuxiJiangsuP. R. China
- Department of Cancer BiologyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
20
|
Yao K. Clinical Application of Magnifying Endoscopy with Narrow-Band Imaging in the Stomach. Clin Endosc 2015; 48:481-90. [PMID: 26668793 PMCID: PMC4676664 DOI: 10.5946/ce.2015.48.6.481] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Magnifying endoscopy with narrow-band imaging (M-NBI) can visualize superficial microanatomies in the stomach. The normal morphology of the microanatomy visualized by M-NBI differs according to the part of the stomach. The gastric fundic glandular mucosa appears as a regular honeycomb-like subepithelial capillary network (SECN) pattern with a regular collecting venule pattern and regular oval crypt opening with circular marginal crypt epithelium (MCE) pattern. The gastric pyloric glandular mucosa displays a regular coil-shaped SECN pattern and regular polygonal or curved MCE pattern. For a diagnosis of early gastric cancer using M-NBI, the vessel plus surface classification system was developed. This system is clinically useful for the differential diagnosis of focal gastritis and small depressed cancer and for determining the horizontal extent of early gastric cancer for successful endoscopic resection. Advantages of M-NBI over conventional endoscopic imaging techniques with white light include accurate diagnosis and cost effectiveness. This technique is a breakthrough in the endoscopic diagnostic field.
Collapse
Affiliation(s)
- Kenshi Yao
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| |
Collapse
|