1
|
Yang X, Li J, Ren M, Pan X, Liu H, Jiang J, Li M, Yang Z, Han B, Ma L, Hao J, Duan Y, Yin Z, Xu Y, Xiang Z, Wu B. Comprehensive analysis of immune signatures in primary biliary cholangitis and autoimmune hepatitis. J Leukoc Biol 2024; 117:qiae085. [PMID: 38652703 DOI: 10.1093/jleuko/qiae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) are autoimmune diseases that target hepatocytes and bile duct cells, respectively. Despite their shared autoimmune nature, the differences in immunologic characteristics between them remain largely unexplored. This study seeks to elucidate the unique immunological profiles of PBC and AIH and to identify key differences. We comprehensively analyzed various T cell subsets and their receptor expression in a cohort of 45 patients, including 27 PBC and 18 AIH cases. Both diseases exhibited T cell exhaustion and senescence along with a surge in inflammatory cytokines. Significantly increased CD38+HLA-DR+CD8+ T cell populations were observed in both diseases. AIH was characterized by an upregulation of CD8+ terminally differentiated T, CD4+ effector memory T, and CD4+ terminally differentiated T cells, and a concurrent reduction in regulatory T cells. In contrast, PBC displayed a pronounced presence of T follicular helper (Tfh) cells and a contraction of CD4-CD8- T cell populations. Correlation analysis revealed that NKP46+ natural killer frequency was closely tied to alanine aminotransferase and aspartate aminotransferase levels, and TIGIT expression on T cells was associated with globulin level in AIH. In PBC, there is a significant correlation between Tfh cells and ALP levels. Moreover, the identified immune landscapes in both diseases strongly related to disease severity. Through logistic regression analysis, γδ T, TIGIT+Vδ2 T, and Tfh1 cell frequencies emerged as distinct markers capable of differentiating PBC from AIH. In conclusion, our analyses reveal that PBC and AIH share similarities and differences regarding to immune profiles. γδ T, TIGIT+Vδ2 T, and Tfh1 cell frequencies are potential noninvasive immunological markers that can differentiate PBC from AIH.
Collapse
Affiliation(s)
- Xiaoxue Yang
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Meiling Ren
- Yuexiu District Center for Disease Control and Prevention, No. 23, Jiaochang West Road, Yuexiu District, Guangzhou, Guangdong 510120, China
| | - Xuemei Pan
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Huiling Liu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Jie Jiang
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Man Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Zhe Yang
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Bingyu Han
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Lina Ma
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Jianlei Hao
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Yuanyuan Duan
- Department of Microbiology and Immunology, Health Science Center, School of Medicine, Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Ministry of Education, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Yan Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong 519000, China
| | - Zheng Xiang
- Department of Microbiology and Immunology, Health Science Center, School of Medicine, Jinan University, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Ministry of Education, No. 601 Huangpu W.Road, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong 510630, China
| |
Collapse
|
2
|
Fujiwara K, Fukuda Y, Sanada M, Koizumi S, Seza K, Saito M, Yokosuka O, Kato N. Analysis of autoimmune hepatitis with acute presentation in the early stage of illness. J Gastroenterol Hepatol 2024; 39:2120-2128. [PMID: 38860418 DOI: 10.1111/jgh.16657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND AIM There is no gold standard for making the diagnosis of autoimmune hepatitis (AIH), and the diagnosis of acute onset AIH (A-AIH) is most challenging. A-AIH sometimes develops into acute liver failure with poor prognosis if the diagnosis is delayed. Therefore, it is most important for the better prognosis to diagnose non-severe A-AIH early and treat appropriately. However, features in the early stage of A-AIH are unclear. We examined initial characteristics of non-severe A-AIH in detail and tried to find novel clinical features for the early diagnosis. METHODS Clinical, biochemical, immunological, radiological, and histological features of 71 patients (54 women, mean age 57.9 ± 14.3 years) with non-severe A-AIH admitted to community hospitals between 2001 and 2022 were analyzed retrospectively. RESULT Forty-six had no symptom on onset and liver injuries were discovered by regular medical checkups. The mean duration from onset to consultation was 25.0 ± 29.3 days. Liver histology showed acute hepatitis in 59% and chronic hepatitis in 41%. Patients with symptoms revealed more male sex (P = 0.039), higher alanine aminotransferase (P < 0.001), higher total bilirubin (P < 0.001), and higher rate of histological acute hepatitis (P = 0.0013) than those without symptoms significantly. Male sex, presence of symptoms on onset, occurrence of jaundice in the course, and histological acute hepatitis were correlated. CONCLUSIONS Sixty-five percent of non-severe A-AIH patients were asymptomatic on onset, suggesting that A-AIH would develop insidiously and present a longer clinical course than that reported. Male patients more often revealed true acute hepatitis clinically, biochemically, and histologically than female ones.
Collapse
Affiliation(s)
- Keiichi Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiro Fukuda
- Department of Gastroenterology, Seikeikai Chiba Medical Center, Chiba, Japan
| | - Masahiko Sanada
- Department of Gastroenterology, Yusokai Saisei Hospital, Chiba, Japan
| | - Shuko Koizumi
- Department of Gastroenterology, Seikeikai Chiba Medical Center, Chiba, Japan
| | - Katsushi Seza
- Department of Gastroenterology, Seikeikai Chiba Medical Center, Chiba, Japan
| | - Masaya Saito
- Department of Gastroenterology, Seikeikai Chiba Medical Center, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
3
|
Abstract
Genome-wide association analyses suggest that HLA genes including HLA-DRB*0301, HLA-DRB*0401, and HLA-B*3501 as well as non-HLA genes including CD28/CTLA4/ICOS and SYNPR increased AIH susceptibility. The destruction of hepatocytes is the result of the imbalance between proinflammatory cells and immunosuppressive cells, especially the imbalance between Tregs and Th17 cells. The microbiome in patients with AIH is decreased in diversity with a specific decline in Bifidobacterium and enrichment in Veillonella and Faecalibacterium. Recent evidence has demonstrated the pathogenic role of E. gallinarum and L.reuteri in inducing autoimmunity in the liver.
Collapse
Affiliation(s)
- Zhou Yuming
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Tang Ruqi
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Merrill Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| | - Ma Xiong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
5
|
Subramanian K, Paul S, Libby A, Patterson J, Arterbery A, Knight J, Castaldi C, Wang G, Avitzur Y, Martinez M, Lobritto S, Deng Y, Geliang G, Kroemer A, Fishbein T, Mason A, Dominguez-Villar M, Mariappan M, Ekong UD. HERV1-env Induces Unfolded Protein Response Activation in Autoimmune Liver Disease: A Potential Mechanism for Regulatory T Cell Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:732-744. [PMID: 36722941 PMCID: PMC10691554 DOI: 10.4049/jimmunol.2100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Regulatory T cells (Tregs) are not terminally differentiated but can acquire effector properties. Here we report an increased expression of human endogenous retrovirus 1 (HERV1-env) proteins in Tregs of patients with de novo autoimmune hepatitis and autoimmune hepatitis, which induces endoplasmic reticulum (ER) stress. HERV1-env-triggered ER stress activates all three branches (IRE1, ATF6, and PERK) of the unfolded protein response (UPR). Our coimmunoprecipitation studies show an interaction between HERV1-env proteins and the ATF6 branch of the UPR. The activated form of ATF6α activates the expression of RORC and STAT3 by binding to promoter sequences and induces IL-17A production. Silencing of HERV1-env results in recovery of Treg suppressive function. These findings identify ER stress and UPR activation as key factors driving Treg plasticity (species: human).
Collapse
Affiliation(s)
- Kumar Subramanian
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Saikat Paul
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Libby
- Dept of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jordan Patterson
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Adam Arterbery
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, ON, Canada
| | - Mercedes Martinez
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Steve Lobritto
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Gan Geliang
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Alexander Kroemer
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Thomas Fishbein
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Mason
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Udeme D. Ekong
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
6
|
Xiong T, Lv XS, Wu GJ, Guo YX, Liu C, Hou FX, Wang JK, Fu YF, Liu FQ. Single-Cell Sequencing Analysis and Multiple Machine Learning Methods Identified G0S2 and HPSE as Novel Biomarkers for Abdominal Aortic Aneurysm. Front Immunol 2022; 13:907309. [PMID: 35769488 PMCID: PMC9234288 DOI: 10.3389/fimmu.2022.907309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying biomarkers for abdominal aortic aneurysms (AAA) is key to understanding their pathogenesis, developing novel targeted therapeutics, and possibly improving patients outcomes and risk of rupture. Here, we identified AAA biomarkers from public databases using single-cell RNA-sequencing, weighted co-expression network (WGCNA), and differential expression analyses. Additionally, we used the multiple machine learning methods to identify biomarkers that differentiated large AAA from small AAA. Biomarkers were validated using GEO datasets. CIBERSORT was used to assess immune cell infiltration into AAA tissues and investigate the relationship between biomarkers and infiltrating immune cells. Therefore, 288 differentially expressed genes (DEGs) were screened for AAA and normal samples. The identified DEGs were mostly related to inflammatory responses, lipids, and atherosclerosis. For the large and small AAA samples, 17 DEGs, mostly related to necroptosis, were screened. As biomarkers for AAA, G0/G1 switch 2 (G0S2) (Area under the curve [AUC] = 0.861, 0.875, and 0.911, in GSE57691, GSE47472, and GSE7284, respectively) and for large AAA, heparinase (HPSE) (AUC = 0.669 and 0.754, in GSE57691 and GSE98278, respectively) were identified and further verified by qRT-PCR. Immune cell infiltration analysis revealed that the AAA process may be mediated by T follicular helper (Tfh) cells and the large AAA process may also be mediated by Tfh cells, M1, and M2 macrophages. Additionally, G0S2 expression was associated with neutrophils, activated and resting mast cells, M0 and M1 macrophages, regulatory T cells (Tregs), resting dendritic cells, and resting CD4 memory T cells. Moreover, HPSE expression was associated with M0 and M1 macrophages, activated and resting mast cells, Tregs, and resting CD4 memory T cells. Additional, G0S2 may be an effective diagnostic biomarker for AAA, whereas HPSE may be used to confer risk of rupture in large AAAs. Immune cells play a role in the onset and progression of AAA, which may improve its diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Shuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Gu-Jie Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yao-Xing Guo
- Department of Pathology, College of Basic Medical Sciences China Medical University, Shenyang, China
| | - Chang Liu
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fang-Xia Hou
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jun-Kui Wang
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yi-Fan Fu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fu-Qiang Liu
- Department of Cardiovascular, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Fu-Qiang Liu,
| |
Collapse
|
7
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmmune hepatitis. Cell Mol Immunol 2022; 19:158-176. [PMID: 34580437 PMCID: PMC8475398 DOI: 10.1038/s41423-021-00768-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a T-cell mediated, inflammatory liver disease affecting all ages and characterized by female preponderance, elevated serum transaminase and immunoglobulin G levels, positive circulating autoantibodies, and presence of interface hepatitis at liver histology. AIH type 1, affecting both adults and children, is defined by positive anti-nuclear and/or anti-smooth muscle antibodies, while type 2 AIH, affecting mostly children, is defined by positive anti-liver-kidney microsomal type 1 and/or anti-liver cytosol type 1 antibody. While the autoantigens of type 2 AIH are well defined, being the cytochrome P4502D6 (CYP2D6) and the formiminotransferase cyclodeaminase (FTCD), in type 1 AIH they remain to be identified. AIH-1 predisposition is conferred by possession of the MHC class II HLA DRB1*03 at all ages, while DRB1*04 predisposes to late onset disease; AIH-2 is associated with possession of DRB1*07 and DRB1*03. The majority of patients responds well to standard immunosuppressive treatment, based on steroid and azathioprine; second- and third-line drugs should be considered in case of intolerance or insufficient response. This review offers a comprehensive overview of pathophysiological and clinical aspects of AIH.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino & Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, Switzerland.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK.
| | - Giorgina Mieli-Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| |
Collapse
|
8
|
Wang J, Tang Y, Wu C, Li W, Wang B, Jin M, Yin C, Li X. PD‐1
+
CXCR5
‐
CD4
+
T cells are correlated with the severity of lung adenocarcinoma malignant processes. Scand J Immunol 2021. [DOI: 10.1111/sji.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Jin Wang
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
- Department of Thoracic Surgery The First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yawei Tang
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Chunli Wu
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Weiping Li
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
- Department of Hematology The Second Hospital of Dalian Medical University Dalian China
| | - Bing Wang
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Minli Jin
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Chunlai Yin
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Xia Li
- Department of Immunology College of Basic Medical Sciences Dalian Medical University Dalian China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Autoimmune hepatitis (AIH) is a chronic disease characterized by a lymphocyte infiltrate in the liver. For decades, nonspecific immunosuppression has been used to limit chronic liver inflammation. The high risk of relapse, the treatments side effects, and the significant number of refractory patients are the main clinical issues that require efforts to understand AIH immune mechanisms. RECENT FINDINGS The balance between regulatory CD4 T cells, known to control autoimmunity, and effector CD4 T cells, that recognize liver self-antigens and mediate the liver inflammation, appears central in AIH immune mechanisms. Recent advances in the identification of pathogenic auto-reactive CD4 T cells, and of new mechanisms of immune regulatory defects in AIH patients, give new insights into the pathophysiology of this disease. SUMMARY In this review, we propose an overview of the central role of CD4 T cells (both regulatory and pathogenic) in mechanisms of AIH, with a focus on recent advances regarding defective regulatory mechanisms and immune profile of auto-reactive CD4 T cells. These findings may have implication for the orientation of new therapeutic strategies to treat AIH, such as regulatory T-cell infusion or targeting B cells and cytokines released by pathogenic CD4 T cells.
Collapse
Affiliation(s)
- Anaïs Cardon
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | | | | |
Collapse
|
10
|
Renand A, Cervera-Marzal I, Gil L, Dong C, Garcia A, Kervagoret E, Aublé H, Habes S, Chevalier C, Vavasseur F, Clémenceau B, Cardon A, Judor JP, Mosnier JF, Tanné F, Laplaud DA, Brouard S, Gournay J, Milpied P, Conchon S. Integrative molecular profiling of autoreactive CD4 T cells in autoimmune hepatitis. J Hepatol 2020; 73:1379-1390. [PMID: 32649971 DOI: 10.1016/j.jhep.2020.05.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS In most autoimmune disorders, crosstalk of B cells and CD4 T cells results in the accumulation of autoantibodies. In autoimmune hepatitis (AIH), the presence of anti-soluble liver antigen (SLA) autoantibodies is associated with reduced overall survival, but the associated autoreactive CD4 T cells have not yet been characterised. Herein, we isolated and deeply characterised SLA-specific CD4 T cells in patients with AIH. METHODS We used brief ex vivo restimulation with overlapping SLA peptides to isolate and phenotype circulating SLA-specific CD4 T cells, and integrative single-cell RNA-seq (scRNA-seq) to characterise their transcriptome and T-cell receptor (TCR) repertoire. Autoreactive TCRs were cloned and used to identify dominant SLA-derived epitopes. SLA-specific CD4 T cells were tracked in peripheral blood through TCR sequencing to identify their phenotypic niche. We further characterised disease-associated peripheral blood T cells by high-content flow cytometry in 42 patients with AIH and 17 controls with non-alcoholic steatohepatitis. RESULTS Autoreactive SLA-specific CD4 T cells were only detected in patients with anti-SLA autoantibodies and had a memory PD-1+CXCR5-CCR6-CD27+ phenotype. ScRNA-seq revealed their pro-inflammatory/B-helper profile. SLA81-100 and SLA177-204 contain dominant T-cell epitopes. Autoreactive TCR clonotypes were predominantly found in the memory PD-1+CXCR5-CD4 T cells, which were significantly increased in the blood of patients with AIH and supported B-cell differentiation through IL-21. Finally, we identified specific T-cell phenotypes linked to disease activity and IgG level during AIH. CONCLUSIONS We provide a deep characterisation of rare circulating autoreactive CD4 T cells and identify their peripheral reservoir in AIH. We also propose a specific phenotype of autoreactive T cells related to AIH disease activity, which will be essential to track, delineate, and potentially target these pathogenic cells. LAY SUMMARY One principal characteristic of autoimmune hepatitis (AIH), like for many other autoimmune diseases, is the accumulation of autoantibodies produced by B lymphocytes following their interaction with autoreactive CD4 T lymphocytes. In this study, we identified and characterised with high resolution these CD4 T cells. This will be essential to track, delineate, and potentially target them during AIH.
Collapse
Affiliation(s)
- Amédée Renand
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Iñaki Cervera-Marzal
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Laurine Gil
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Chuang Dong
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Alexandra Garcia
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Erwan Kervagoret
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Hélène Aublé
- Centre d'Investigation Clinique gastro-nutrition, CHU Nantes, Nantes, France
| | - Sarah Habes
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France
| | - Caroline Chevalier
- Centre d'Investigation Clinique gastro-nutrition, CHU Nantes, Nantes, France
| | - Fabienne Vavasseur
- Centre d'Investigation Clinique gastro-nutrition, CHU Nantes, Nantes, France
| | | | - Anaïs Cardon
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jean-Paul Judor
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jean-François Mosnier
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France; Service Anatomie et Cytologie Pathologiques, CHU Nantes, Nantes, France
| | - Florence Tanné
- Service d'hépato gastroentérologie, CHU Cavale Blanche, Brest, France
| | - David-Axel Laplaud
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France; Service de Neurologie et CIC 1413, CHU Nantes, Nantes, France
| | - Sophie Brouard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Jérôme Gournay
- Service Hepato-gastro-entérologie et Assistance Nutritionnelle, CHU Nantes, Nantes, France; Institut des Maladies de l'Appareil Digestif, IMAD, CHU Nantes, Nantes, France
| | - Pierre Milpied
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, CIML, Marseille, France
| | - Sophie Conchon
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.
| |
Collapse
|
11
|
Li L, Xu P, Zhou Q, Xu J. The Function of T Follicular Helper Cells in the Autoimmune Liver Diseases. J Immunol Res 2020; 2020:5679254. [PMID: 33294464 PMCID: PMC7691009 DOI: 10.1155/2020/5679254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022] Open
Abstract
T follicular helper (TFH) cells are recognized as a subtype of T cells that are involved in the germinal center formation and B cell development. When dysregulated, TFH cells may represent an important mechanism that contributes to a heightened humoral response and autoantibody production in autoimmune liver diseases (AILDs). TFH cells participate in the immune response associated with AILDs by expressing surface receptors such as programmed cell death protein-1, C-X-C motif chemokine receptor 5, and inducible T cell costimulators, as well as cytokines such as interleukin-21. TFH cells also downregulate chemokine (C-C motif) receptor 7 and promote the dysregulation of the T follicular regulatory/TFH axis. This review highlights the importance of TFH cells in AILDs.
Collapse
Affiliation(s)
- Lin Li
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Panyang Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun 130021, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases. Cell Mol Immunol 2020; 18:523-527. [PMID: 32868910 PMCID: PMC8027819 DOI: 10.1038/s41423-020-00529-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The interactions of CD4+ T cells and B cells are fundamental for the generation of protective antibody responses, as well as for the development of harmful autoimmune diseases. Recent studies of human tissues and blood samples have established a new subset of CD4+ B helper T cells named peripheral helper T (Tph) cells. Unlike T follicular helper (Tfh) cells, which interact with B cells within lymphoid organs, Tph cells provide help to B cells within inflamed tissues. Tph cells share many B helper-associated functions with Tfh cells and induce B cell differentiation toward antibody-producing cells. The differentiation mechanism is also partly shared between Tph and Tfh cells in humans, and both Tfh and Tph cells can be found within the same tissues, including cancer tissues. However, Tph cells display features distinct from those of Tfh cells, such as the expression of chemokine receptors associated with Tph cell localization within inflamed tissues and a low Bcl-6/Blimp1 ratio. Unlike that of Tfh cells, current evidence shows that the target of Tph cells is limited to memory B cells. In this review, we first summarize recent findings on human Tph cells and discuss how Tph and Tfh cells play shared and distinct roles in human diseases.
Collapse
|
13
|
Kimura N, Yamagiwa S, Sugano T, Horigome R, Setsu T, Tominaga K, Kamimura H, Takamura M, Terai S. Usefulness of chemokine C-C receptor 7 - /programmed cell death-1 + follicular helper T cell subset frequencies in the diagnosis of autoimmune hepatitis. Hepatol Res 2019; 49:1026-1033. [PMID: 31020718 DOI: 10.1111/hepr.13356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
AIM A significant concern for autoimmune hepatitis (AIH) patients is diagnostic specificity. Delayed treatment due to delayed diagnosis leads to poor survival. We recently reported that chemokine C-C receptor 7 (CCR7)- /programmed cell death-1 (PD-1)+ follicular helper T (Tfh) cells could be involved in AIH pathogenesis. We hypothesized that Tfh cell frequencies might contribute to AIH diagnosis. METHODS Peripheral blood was collected from 12 patients with AIH from April 2013 to March 2016, as well as 24 patients with hepatitis B virus (HBV) infection and 44 healthy controls (HC). Mononuclear cells were separated using a Ficoll gradient, and surface markers were investigated using flow cytometry. RESULTS The frequency of CCR7- PD-1+ Tfh cells was significantly higher in AIH patients (39.1 ± 8.6) compared to that in HC (25.1 ± 7.9%, P < 0.01) and HBV patients (22.7 ± 7.8, P < 0.01). The area under the receiver operating characteristic curve for the frequency of the CCR7- PD-1+ Tfh cell subset for AIH and HC and AIH and HBV was 0.905 and 0.927, respectively. The frequency of the CCR7- PD-1+ Tfh cell subset was not correlated with International Autoimmune Hepatitis Group (IAIHG) scoring, Simplified AIH scoring, or Japanese diagnostic guidelines (R = 0.10, 0.947; R = 0.0008, 0.180; and R = 0.348, 0.558, respectively). Therefore, these frequencies could diagnose AIH patients who were not diagnosed with the IAIHG or simplified AIH scores. CONCLUSIONS The frequency of the peripheral CCR7- PD-1+ Tfh cell subset could be useful for diagnosing AIH even in patients who were not diagnosed with IAIHG or simplified AIH scores.
Collapse
Affiliation(s)
- Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyuki Sugano
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryoko Horigome
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Tominaga
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
14
|
Das T, Bergen IM, Koudstaal T, van Hulst JA, van Loo G, Boonstra A, Vanwolleghem T, Leung PS, Gershwin ME, Hendriks RW, Kool M. DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology. J Autoimmun 2019; 102:167-178. [DOI: 10.1016/j.jaut.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
|
15
|
Taubert R, Hupa-Breier KL, Jaeckel E, Manns MP. Novel therapeutic targets in autoimmune hepatitis. J Autoimmun 2018; 95:34-46. [DOI: 10.1016/j.jaut.2018.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
16
|
Rao DA. T Cells That Help B Cells in Chronically Inflamed Tissues. Front Immunol 2018; 9:1924. [PMID: 30190721 PMCID: PMC6115497 DOI: 10.3389/fimmu.2018.01924] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Chronically inflamed tissues commonly accrue lymphocyte aggregates that facilitate local T cell-B cell interactions. These aggregates can range from small, loosely arranged lymphocyte clusters to large, organized ectopic lymphoid structures. In some cases, ectopic lymphoid structures develop germinal centers that house prototypical T follicular helper (Tfh) cells with high expression of Bcl6, CXCR5, PD-1, and ICOS. However, in many chronically inflamed tissues, the T cells that interact with B cells show substantial differences from Tfh cells in their surface phenotypes, migratory capacity, and transcriptional regulation. This review discusses observations from multiple diseases and models in which tissue-infiltrating T cells produce factors associated with B cell help, including IL-21 and the B cell chemoattractant CXCL13, yet vary dramatically in their resemblance to Tfh cells. Particular attention is given to the PD-1hi CXCR5− Bcl6low T peripheral helper (Tph) cell population in rheumatoid arthritis, which infiltrates inflamed synovium through expression of chemokine receptors such as CCR2 and augments synovial B cell responses via CXCL13 and IL-21. The factors that regulate CD4+ T cell production of CXCL13 and IL-21 in these settings are also discussed. Understanding the range of T cell populations that can provide help to B cells within chronically inflamed tissues is essential to recognize these cells in diverse inflammatory conditions and to optimize either broad or selective therapeutic targeting of B cell-helper T cells.
Collapse
Affiliation(s)
- Deepak A Rao
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Renand A, Habes S, Mosnier JF, Aublé H, Judor JP, Vince N, Hulin P, Nedellec S, Métairie S, Archambeaud I, Brouard S, Gournay J, Conchon S. Immune Alterations in Patients With Type 1 Autoimmune Hepatitis Persist Upon Standard Immunosuppressive Treatment. Hepatol Commun 2018; 2:968-981. [PMID: 30094407 PMCID: PMC6078209 DOI: 10.1002/hep4.1202] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a rare disease characterized by an immune attack of the liver. This study consists of a comprehensive analysis of immune alterations related to AIH at diagnosis, and during remission phase under treatment. A total of 37 major lymphocyte populations were analyzed from the peripheral blood of new‐onset AIH patients (AIHn; n = 14), AIH patients with controlled disease (n = 11), and healthy subjects (n = 14). Liver biopsy analyses were performed to complete the blood phenotypic analysis. Four blood lymphocyte populations were significantly altered in AIHn patients at diagnosis compared with healthy subjects. Levels of mucosal‐associated invariant T cells (MAIT), Type 1/Type 17 helper (Th1/ Th17) cells, clusters of differentiation (CD4) T cells, and invariant natural killer T cells were decreased, whereas MAIT granzyme B+ (GrB) cells were increased. A trend toward an increase of CD8+CD161+GrB+ cells was also observed. These alterations were not restored with standard immunosuppressive treatments. In the liver of AIHn patients, CD4, forkhead box P3 (Foxp3), and MAIT cell markers were enriched in the portal tract, and CD8, CD161, and GrB markers were enriched in the hepatic lobule. During remission, the hepatic lobule was clear of infiltrating T cells, but residual CD4 and MAIT cells were found in the portal tract, where Foxp3 was decreased, as previously described. In vitro, MAIT cells were functionally altered in AIH patients. Ex vivo MAIT cell activity (GrB) was linked to severe fibrosis. Conclusion: Our work proposes a global view of the lymphocyte alterations from diagnosis to remission phase in AIH patients. The absence of blood immune homeostasis restoration and the persistence of a CD4 infiltrate in the liver under standard immunosuppression could form the basis of the high risk of relapse observed in AIH. (Hepatology Communications 2018; 00:000‐000)
Collapse
Affiliation(s)
- Amédée Renand
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Université de Nantes Nantes France.,Institut de Transplantation Urologie Néphrologie CHU de Nantes Nantes France
| | - Sarah Habes
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Université de Nantes Nantes France.,Institut de Transplantation Urologie Néphrologie CHU de Nantes Nantes France.,Service Hépato-Gastro-entérologie et Assistance Nutritionnelle CHU Nantes Nantes France
| | - Jean-François Mosnier
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Université de Nantes Nantes France.,Service Anatomie et Cytologie Pathologiques CHU Nantes Nantes France
| | - Hélène Aublé
- Centre d'Investigation Clinique gastro-nutrition CHU Nantes Nantes France
| | - Jean-Paul Judor
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Université de Nantes Nantes France.,Institut de Transplantation Urologie Néphrologie CHU de Nantes Nantes France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Université de Nantes Nantes France.,Institut de Transplantation Urologie Néphrologie CHU de Nantes Nantes France
| | - Philippe Hulin
- MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS Université de Nantes Nantes France
| | - Steven Nedellec
- MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS Université de Nantes Nantes France
| | - Sylvie Métairie
- Service Chirurgie Digestive et Endocrinienne CHU Nantes Nantes France
| | - Isabelle Archambeaud
- Service Hépato-Gastro-entérologie et Assistance Nutritionnelle CHU Nantes Nantes France.,Institut des Maladies de l'Appareil Digestif, IMAD CHU Nantes Nantes France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Université de Nantes Nantes France.,Institut de Transplantation Urologie Néphrologie CHU de Nantes Nantes France
| | - Jérôme Gournay
- Service Hépato-Gastro-entérologie et Assistance Nutritionnelle CHU Nantes Nantes France.,Institut des Maladies de l'Appareil Digestif, IMAD CHU Nantes Nantes France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM Université de Nantes Nantes France.,Institut de Transplantation Urologie Néphrologie CHU de Nantes Nantes France
| |
Collapse
|
18
|
Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, Duffau P, Blanco P, Richez C. T Follicular Helper Cells in Autoimmune Disorders. Front Immunol 2018; 9:1637. [PMID: 30065726 PMCID: PMC6056609 DOI: 10.3389/fimmu.2018.01637] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells are a distinct subset of CD4+ T lymphocytes, specialized in B cell help and in regulation of antibody responses. They are required for the generation of germinal center reactions, where selection of high affinity antibody producing B cells and development of memory B cells occur. Owing to the fundamental role of Tfh cells in adaptive immunity, the stringent control of their production and function is critically important, both for the induction of an optimal humoral response against thymus-dependent antigens but also for the prevention of self-reactivity. Indeed, deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. In the present review, we briefly introduce the molecular factors involved in Tfh cell formation in the context of a normal immune response, as well as markers associated with their identification (transcription factor, surface marker expression, and cytokine production). We then consider in detail the role of Tfh cells in the pathogenesis of a broad range of autoimmune diseases, with a special focus on systemic lupus erythematosus and rheumatoid arthritis, as well as on the other autoimmune/inflammatory disorders. We summarize the observed alterations in Tfh numbers, activation state, and circulating subset distribution during autoimmune and some other inflammatory disorders. In addition, central role of interleukin-21, major cytokine produced by Tfh cells, is discussed, as well as the involvement of follicular regulatory T cells, which share characteristics with both Tfh and regulatory T cells.
Collapse
Affiliation(s)
- Noémie Gensous
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Manon Charrier
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Dorothée Duluc
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | | | | | - Estibaliz Lazaro
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Christophe Richez
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Mieli-Vergani G, Vergani D, Czaja AJ, Manns MP, Krawitt EL, Vierling JM, Lohse AW, Montano-Loza AJ. Autoimmune hepatitis. Nat Rev Dis Primers 2018; 4:18017. [PMID: 29644994 DOI: 10.1038/nrdp.2018.17] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune hepatitis (AIH) is a severe liver disease that affects children and adults worldwide. The diagnosis of AIH relies on increased serum transaminase and immunoglobulin G levels, presence of autoantibodies and interface hepatitis on liver histology. AIH arises in genetically predisposed individuals when a trigger, such as exposure to a virus, leads to a T cell-mediated autoimmune response directed against liver autoantigens; this immune response is permitted by inadequate regulatory immune control leading to a loss of tolerance. AIH responds favourably to immunosuppressive treatment, which should be started as soon as the diagnosis is made. Standard regimens include fairly high initial doses of corticosteroids (prednisone or prednisolone), which are tapered gradually as azathioprine is introduced. For those patients who do not respond to standard treatment, second-line drugs should be considered, including mycophenolate mofetil, calcineurin inhibitors, mechanistic target of rapamycin (mTOR) inhibitors and biologic agents, which should be administered only in specialized hepatology centres. Liver transplantation is a life-saving option for those who progress to end-stage liver disease, although AIH can recur or develop de novo after transplantation. In-depth investigation of immune pathways and analysis of changes to the intestinal microbiota should advance our knowledge of the pathogenesis of AIH and lead to novel, tailored and better tolerated therapies.
Collapse
Affiliation(s)
- Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, Denmark Hill, SE5 9RS London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, Denmark Hill, SE5 9RS London, UK
| | - Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Edward L Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|