1
|
Naganuma H, Ishida H. Demonstration of Hepatic Vein Abnormalities Using Contrast-Enhanced Sonography in Liver Diseases. Diagnostics (Basel) 2025; 15:709. [PMID: 40150052 PMCID: PMC11941399 DOI: 10.3390/diagnostics15060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Contrast-enhanced US (CEUS) is now widely used to observe the hemodynamics of the liver. The CEUS diagnosis mainly consists of evaluating hepatic artery and portal vein flow changes in liver diseases, but it has not been widely used for the diagnosis of hepatic venous (HV) abnormalities in the clinical setting. For this background, this review tried to reconsider this problem. In short, observing HV CEUS findings, especially HV transit time, serves to largely narrow the differential diagnosis and increase the diagnostic confidence of the CEUS. However, diagnosing HV CEUS diagnosis in a wide range of liver diseases requires understanding of vascular anatomy of the upper abdomen and vascular structure of each disease. Additionally, interpreting CEUS findings of HCC should be prudent, because its drainage vessels change according to the histological progression, from the HV to the portal vein. Thus, the most important way of making use of the CEUS information is interpreting it in conjunction with the clinical data.
Collapse
Affiliation(s)
- Hiroko Naganuma
- Department of Gastroenterology, Yokote Municipal Hospital, Yokote 013-8602, Japan
| | - Hideaki Ishida
- Department of Gastroenterology, Akita Red Cross Hospital, Akita 010-1495, Japan
| |
Collapse
|
2
|
Marrero-Gonzalez AR, Diemer TJ, Nguyen SA, Camilon TJM, Meenan K, O'Rourke A. Application of artificial intelligence in laryngeal lesions: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2025; 282:1543-1555. [PMID: 39576322 PMCID: PMC11890366 DOI: 10.1007/s00405-024-09075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/06/2024] [Indexed: 03/09/2025]
Abstract
OBJECTIVE The objective of this systematic review and meta-analysis was to evaluate the diagnostic accuracy of AI-assisted technologies, including endoscopy, voice analysis, and histopathology, for detecting and classifying laryngeal lesions. METHODS A systematic search was conducted in PubMed, Embase, etc. for studies utilizing voice analysis, histopathology for laryngeal lesions, or AI-assisted endoscopy. The results of diagnostic accuracy, sensitivity and specificity were synthesized by a meta-analysis. RESULTS 12 studies employing AI-assisted endoscopy, 2 studies for voice analysis, and 4 studies for histopathology were included in the meta-analysis. The combined sensitivity of AI-assisted endoscopy was 91% (95% CI 87-94%) for the classification of benign from malignant lesions and 91% (95% CI 90-93%) for lesion detection. The highest accuracy pooled in detecting lesions versus healthy tissue was the AI-aided endoscopy was 94% (95% CI 92-97%). CONCLUSIONS For laryngeal lesions, AI-assisted endoscopy shows excellent diagnosis accuracy. But more sizable prospective trials are needed to confirm the practical clinical value.
Collapse
Affiliation(s)
- Alejandro R Marrero-Gonzalez
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC, 29425, USA
- School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Tanner J Diemer
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC, 29425, USA
- University of Arizona College of Medicine, Phoenix, Phoenix, AZ, USA
| | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC, 29425, USA.
| | - Terence J M Camilon
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC, 29425, USA
- University of South Carolina School of Medicine, Columbia, Columbia, SC, USA
| | - Kirsten Meenan
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC, 29425, USA
| | - Ashli O'Rourke
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC, 29425, USA
| |
Collapse
|
3
|
Ding W, Meng Y, Ma J, Pang C, Wu J, Tian J, Yu J, Liang P, Wang K. Contrast-enhanced ultrasound-based AI model for multi-classification of focal liver lesions. J Hepatol 2025:S0168-8278(25)00018-2. [PMID: 39848548 DOI: 10.1016/j.jhep.2025.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND & AIMS Accurate multi-classification is a prerequisite for appropriate management of focal liver lesions (FLLs). Ultrasound is the most common imaging examination but lacks accuracy. Contrast-enhanced ultrasound (CEUS) offers better performance but is highly dependent on operator experience. Therefore, we aimed to develop a CEUS-based artificial intelligence (AI) model for FLL multi-classification and evaluate its performance in multicenter clinical tests. METHODS Since January 2017 to December 2023, CEUS videos, immunohistochemical biomarkers and clinical information on solid FLLs >1 cm in adults were collected from 52 centers to build and test the model. The model was developed to classify FLLs into six types: hepatocellular carcinoma, hepatic metastasis, intrahepatic cholangiocarcinoma, hepatic hemangioma, hepatic abscess and others. First, Module-Disease, Module-Biomarker and Module-Clinic were built in training set A and a validation set. Then, three modules were aggregated as Model-DCB in training set B and an internal test set. Model-DCB performance was compared with CEUS and MRI radiologists in three external test sets. RESULTS In total 3,725 FLLs from 52 centers were divided into training set A (n = 2,088), the validation set (n = 592), training set B (n = 234), the internal test set (n = 110), and external test sets A (n = 113), B (n = 276) and C (n = 312). In external test sets A, B and C, Model-DCB achieved significantly better performance (accuracy from 0.85 to 0.86) than junior CEUS radiologists (0.59-0.73), and comparable performance to senior CEUS radiologists (0.79-0.85) and senior MRI radiologists (0.82-0.86). In multiple subgroup analyses on demographic characteristics, tumor characteristics and ultrasound devices, its accuracy ranged from 0.79 to 0.92. CONCLUSIONS CEUS-based Model-DCB provides accurate multi-classification of FLLs. It holds promise for a wide range of populations, especially those in remote areas who have difficulty accessing MRI. CLINICAL TRIAL NCT04682886. IMPACT AND IMPLICATIONS Ultrasound is the most common imaging examination for screening focal liver lesions (FLLs), but it lacks accuracy for multi-classification, which is a prerequisite for appropriate clinical management. Contrast-enhanced ultrasound (CEUS) offers better diagnostic performance but relies on the experience of radiologists. We developed a CEUS-based model (Model-DCB) that can help junior CEUS radiologists to achieve comparable diagnostic ability as senior CEUS radiologists and senior MRI radiologists. The combination of an ultrasound device, CEUS examination and Model-DCB means that even patients in remote areas can be accurately diagnosed through examination by junior radiologists.
Collapse
Affiliation(s)
- Wenzhen Ding
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaqing Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Ma
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Pang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiapeng Wu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China.
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, China.
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Takayama M, Ito K, Karako K, Mihara Y, Sasaki S, Ichida A, Takamoto T, Akamatsu N, Kawaguchi Y, Hasegawa K. An artificial intelligence-based recognition model of colorectal liver metastases in intraoperative ultrasonography with improved accuracy through algorithm integration. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2025; 32:58-68. [PMID: 39547943 PMCID: PMC11780306 DOI: 10.1002/jhbp.12089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND/PURPOSE Contrast-enhanced intraoperative ultrasonography (CE-IOUS) is crucial for detecting colorectal liver metastases (CLM) during surgery. Although artificial intelligence shows potential in diagnostic systems, its application in CE-IOUS is limited. METHODS This study aimed to develop an automatic tumor detection model using Mask region-based convolutional neural network (Mask R-CNN) for CE-IOUS images. CE-IOUS videos of the CLM from 121 patients were collected, generating ground truth data. A total of 2659 images were obtained. Two models were developed: the basic recognition model (BRM), which was trained on CE-mode images, and the subtraction model (SM), which used images created by a subtraction algorithm that highlighted the differences in pixel values between the basic-mode and CE-mode images. The subtraction algorithm focuses on echogenicity differences. These two models were combined into a combination model (CM), which assessed outcomes using the prediction probabilities from both models. RESULTS The optimal epochs were determined by the maximum area under the curve (AUC), and the thresholds were calculated accordingly. BRM, SM, and CM achieved 89.4%, 86.6%, and 96.5% accuracy, respectively. CM outperformed the individual models, achieving an AUC of 0.99. CONCLUSIONS A novel automated recognition model was developed for accurate CLM detection in CE-IOUS by integrating image- and algorithm-based models.
Collapse
Affiliation(s)
- Maho Takayama
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kyoji Ito
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kenji Karako
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yuichiro Mihara
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shu Sasaki
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akihiko Ichida
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takeshi Takamoto
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobuhisa Akamatsu
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yoshikuni Kawaguchi
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kiyoshi Hasegawa
- Hepato‐Biliary‐Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Ren L, Chen DB, Yan X, She S, Yang Y, Zhang X, Liao W, Chen H. Bridging the Gap Between Imaging and Molecular Characterization: Current Understanding of Radiomics and Radiogenomics in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2359-2372. [PMID: 39619602 PMCID: PMC11608547 DOI: 10.2147/jhc.s423549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide and the third leading cause of cancer-related deaths. Imaging plays a crucial role in the screening, diagnosis, and monitoring of HCC; however, the potential mechanism regarding phenotypes or molecular subtyping remains underexplored. Radiomics significantly expands the selection of features available by extracting quantitative features from imaging data. Radiogenomics bridges the gap between imaging and genetic/transcriptomic information by associating imaging features with critical genes and pathways, thereby providing biological annotations to these features. Despite challenges in interpreting these connections, assessing their universality, and considering the diversity in HCC etiology and genetic information across different populations, radiomics and radiogenomics offer new perspectives for precision treatment in HCC. This article provides an up-to-date summary of the advancements in radiomics and radiogenomics throughout the HCC care continuum, focusing on the clinical applications, advantages, and limitations of current techniques and offering prospects. Future research should aim to overcome these challenges to improve the prognosis of HCC patients and leverage imaging information for patient benefit.
Collapse
Affiliation(s)
- Liying Ren
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Dong Bo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xuanzhi Yan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Shaoping She
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Yao Yang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Xue Zhang
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People’s Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, 100044, People’s Republic of China
| |
Collapse
|
6
|
Loper MR, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography 2024; 10:1814-1831. [PMID: 39590942 PMCID: PMC11598375 DOI: 10.3390/tomography10110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Advancements in artificial intelligence (AI) have significantly transformed the field of abdominal radiology, leading to an improvement in diagnostic and disease management capabilities. This narrative review seeks to evaluate the current standing of AI in abdominal imaging, with a focus on recent literature contributions. This work explores the diagnosis and characterization of hepatobiliary, pancreatic, gastric, colonic, and other pathologies. In addition, the role of AI has been observed to help differentiate renal, adrenal, and splenic disorders. Furthermore, workflow optimization strategies and quantitative imaging techniques used for the measurement and characterization of tissue properties, including radiomics and deep learning, are highlighted. An assessment of how these advancements enable more precise diagnosis, tumor description, and body composition evaluation is presented, which ultimately advances the clinical effectiveness and productivity of radiology. Despite the advancements of AI in abdominal imaging, technical, ethical, and legal challenges persist, and these challenges, as well as opportunities for future development, are highlighted.
Collapse
Affiliation(s)
| | - Mina S. Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
7
|
Chatzipanagiotou OP, Loukas C, Vailas M, Machairas N, Kykalos S, Charalampopoulos G, Filippiadis D, Felekouras E, Schizas D. Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current literature. J Gastroenterol Hepatol 2024; 39:1994-2005. [PMID: 38923550 DOI: 10.1111/jgh.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) diagnosis mainly relies on its pathognomonic radiological profile, obviating the need for biopsy. The project of incorporating artificial intelligence (AI) techniques in HCC aims to improve the performance of image recognition. Herein, we thoroughly analyze and evaluate proposed AI models in the field of HCC diagnosis. METHODS A comprehensive review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases with the end of search date being the 30th of September 2023. The MESH terms "Artificial Intelligence," "Liver Cancer," "Hepatocellular Carcinoma," "Machine Learning," and "Deep Learning" were searched in the title and/or abstract. All references of the obtained articles were also evaluated for any additional information. RESULTS Our search resulted in 183 studies meeting our inclusion criteria. Across all diagnostic modalities, reported area under the curve (AUC) of most developed models surpassed 0.900. A B-mode US and a contrast-enhanced US model achieved AUCs of 0.947 and 0.957, respectively. Regarding the more challenging task of HCC diagnosis, a 2021 deep learning model, trained with CT scans, classified hepatic malignant lesions with an AUC of 0.986. Finally, a MRI machine learning model developed in 2021 displayed an AUC of 0.975 when differentiating small HCCs from benign lesions, while another MRI-based model achieved HCC diagnosis with an AUC of 0.970. CONCLUSIONS AI tools may lead to significant improvement in diagnostic management of HCC. Many models fared better or comparable to experienced radiologists while proving capable of elevating radiologists' accuracy, demonstrating promising results for AI implementation in HCC-related diagnostic tasks.
Collapse
Affiliation(s)
- Odysseas P Chatzipanagiotou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Constantinos Loukas
- Laboratory of Medical Physics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Georgios Charalampopoulos
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Dimitrios Filippiadis
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangellos Felekouras
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
8
|
Brooks JA, Kallenbach M, Radu IP, Berzigotti A, Dietrich CF, Kather JN, Luedde T, Seraphin TP. Artificial Intelligence for Contrast-Enhanced Ultrasound of the Liver: A Systematic Review. Digestion 2024:1-18. [PMID: 39312896 DOI: 10.1159/000541540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The research field of artificial intelligence (AI) in medicine and especially in gastroenterology is rapidly progressing with the first AI tools entering routine clinical practice, for example, in colorectal cancer screening. Contrast-enhanced ultrasound (CEUS) is a highly reliable, low-risk, and low-cost diagnostic modality for the examination of the liver. However, doctors need many years of training and experience to master this technique and, despite all efforts to standardize CEUS, it is often believed to contain significant interrater variability. As has been shown for endoscopy, AI holds promise to support examiners at all training levels in their decision-making and efficiency. METHODS In this systematic review, we analyzed and compared original research studies applying AI methods to CEUS examinations of the liver published between January 2010 and February 2024. We performed a structured literature search on PubMed, Web of Science, and IEEE. Two independent reviewers screened the articles and subsequently extracted relevant methodological features, e.g., cohort size, validation process, machine learning algorithm used, and indicative performance measures from the included articles. RESULTS We included 41 studies with most applying AI methods for classification tasks related to focal liver lesions. These included distinguishing benign versus malignant or classifying the entity itself, while a few studies tried to classify tumor grading, microvascular invasion status, or response to transcatheter arterial chemoembolization directly from CEUS. Some articles tried to segment or detect focal liver lesions, while others aimed to predict survival and recurrence after ablation. The majority (25/41) of studies used hand-picked and/or annotated images as data input to their models. We observed mostly good to high reported model performances with accuracies ranging between 58.6% and 98.9%, while noticing a general lack of external validation. CONCLUSION Even though multiple proof-of-concept studies for the application of AI methods to CEUS examinations of the liver exist and report high performance, more prospective, externally validated, and multicenter research is needed to bring such algorithms from desk to bedside.
Collapse
Affiliation(s)
- James A Brooks
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Michael Kallenbach
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Iuliana-Pompilia Radu
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Annalisa Berzigotti
- Department for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem and Permanence, Bern, Switzerland
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| | - Tobias P Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Dusseldorf, Medical Faculty at Heinrich-Heine-University, Dusseldorf, Germany
| |
Collapse
|
9
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
10
|
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, Ting YH, Tan JH, Kumar N, Hallinan JTPD. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review. Cancers (Basel) 2024; 16:2988. [PMID: 39272846 PMCID: PMC11394591 DOI: 10.3390/cancers16172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In spinal oncology, integrating deep learning with computed tomography (CT) imaging has shown promise in enhancing diagnostic accuracy, treatment planning, and patient outcomes. This systematic review synthesizes evidence on artificial intelligence (AI) applications in CT imaging for spinal tumors. A PRISMA-guided search identified 33 studies: 12 (36.4%) focused on detecting spinal malignancies, 11 (33.3%) on classification, 6 (18.2%) on prognostication, 3 (9.1%) on treatment planning, and 1 (3.0%) on both detection and classification. Of the classification studies, 7 (21.2%) used machine learning to distinguish between benign and malignant lesions, 3 (9.1%) evaluated tumor stage or grade, and 2 (6.1%) employed radiomics for biomarker classification. Prognostic studies included three (9.1%) that predicted complications such as pathological fractures and three (9.1%) that predicted treatment outcomes. AI's potential for improving workflow efficiency, aiding decision-making, and reducing complications is discussed, along with its limitations in generalizability, interpretability, and clinical integration. Future directions for AI in spinal oncology are also explored. In conclusion, while AI technologies in CT imaging are promising, further research is necessary to validate their clinical effectiveness and optimize their integration into routine practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Aric Lee
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Wei Chuan Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Kuan Ting Dominic Fong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Daoyong David Lai
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shuliang Ge
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shao Jin Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Yong Han Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
11
|
Baniasadi A, Das JP, Prendergast CM, Beizavi Z, Ma HY, Jaber MY, Capaccione KM. Imaging at the nexus: how state of the art imaging techniques can enhance our understanding of cancer and fibrosis. J Transl Med 2024; 22:567. [PMID: 38872212 PMCID: PMC11177383 DOI: 10.1186/s12967-024-05379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.
Collapse
Affiliation(s)
- Alireza Baniasadi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA.
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Conor M Prendergast
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Zahra Beizavi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Hong Y Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | | | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| |
Collapse
|
12
|
Hu H, Zhao Y, He C, Qian L, Huang P. Ultrasonography of Hepatocellular Carcinoma: From Diagnosis to Prognosis. J Clin Transl Hepatol 2024; 12:516-524. [PMID: 38779517 PMCID: PMC11106354 DOI: 10.14218/jcth.2024.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prominent contributor to cancer-related mortality worldwide. Early detection and diagnosis of liver cancer can significantly improve its prognosis and patient survival. Ultrasound technology, serving has undergone substantial advances as the primary method of HCC surveillance and has broadened its scope in recent years for effective management of HCC. This article is a comprehensive overview of ultrasound technology in the treatment of HCC, encompassing early detection, diagnosis, staging, treatment evaluation, and prognostic assessment. In addition, the authors summarized the application of contrast-enhanced ultrasound in the diagnosis of HCC and assessment of prognosis. Finally, the authors discussed further directions in this field by emphasizing overcoming existing obstacles and integrating cutting-edge technologies.
Collapse
Affiliation(s)
- Huisen Hu
- Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Ultrasound, Lanxi People’s Hospital, Lanxi, Zhejiang, China
| | - Yonglei Zhao
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengbin He
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lujie Qian
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Pintong Huang
- Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Zhou H, Ding J, Zhou Y, Wang Y, Zhao L, Shih CC, Xu J, Wang J, Tong L, Chen Z, Lin Q, Jing X. Malignancy diagnosis of liver lesion in contrast enhanced ultrasound using an end-to-end method based on deep learning. BMC Med Imaging 2024; 24:68. [PMID: 38515044 PMCID: PMC10956289 DOI: 10.1186/s12880-024-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEUS) is considered as an efficient tool for focal liver lesion characterization, given it allows real-time scanning and provides dynamic tissue perfusion information. An accurate diagnosis of liver lesions with CEUS requires a precise interpretation of CEUS images. However,it is a highly experience dependent task which requires amount of training and practice. To help improve the constrains, this study aims to develop an end-to-end method based on deep learning to make malignancy diagnosis of liver lesions using CEUS. METHODS A total of 420 focal liver lesions with 136 benign cases and 284 malignant cases were included. A deep learning model based on a two-dimensional convolution neural network, a long short-term memory (LSTM), and a linear classifier (with sigmoid) was developed to analyze the CEUS loops from different contrast imaging phases. For comparison, a 3D-CNN based method and a machine-learning (ML)-based time-intensity curve (TIC) method were also implemented for performance evaluation. RESULTS Results of the 4-fold validation demonstrate that the mean AUC is 0.91, 0.88, and 0.78 for the proposed method, the 3D-CNN based method, and the ML-based TIC method, respectively. CONCLUSIONS The proposed CNN-LSTM method is promising in making malignancy diagnosis of liver lesions in CEUS without any additional manual features selection.
Collapse
Affiliation(s)
- Hongyu Zhou
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Jianmin Ding
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yan Zhou
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yandong Wang
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Lei Zhao
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | | | - Jingping Xu
- Philips Ultrasound R&D Research, Shanghai, China
| | - Jianan Wang
- Philips Ultrasound R&D Research, Shanghai, China
| | - Ling Tong
- Philips Ultrasound R&D Research, Shanghai, China
| | - Zhouye Chen
- Philips Ultrasound R&D Research, Shanghai, China
| | - Qizhong Lin
- Philips Ultrasound R&D Research, Shanghai, China
| | - Xiang Jing
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
- Artificial Cell Engineering Technology Research Center, Tianjin, China.
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
| |
Collapse
|
14
|
Velardi GG, Lico M, Teti A, Maccarone R, Casuscelli G, Militano L, Trecroci IV, Mendicino M, Parlati A, De Caridi A, Loria G, Loria S, Loria S, Gambardella D, Tedesco M, Frosina F, Falco P, Loria F. Diagnosis of intrahepatic cholangiocarcinoma with CEUS. J Ultrason 2024; 24:20240005. [PMID: 38419841 PMCID: PMC10897370 DOI: 10.15557/jou.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/23/2023] [Indexed: 03/02/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare, heterogeneous, highly lethal tumor of the biliary tract. Due to the lack of effective treatments, an early identification of ICC is essential to achieve the best outcome in terms of therapy and prognosis aiming for a curative intent. ICC may arise on a normal liver or with an underlying liver disease, making the diagnosis more difficult and complex. Contrast-enhancement ultrasound (CEUS) is an accurate procedure able to detect ICC-specific contrast vascular pattern, and thus facilitating the correlation between radiological and histopathological findings with high specificity and sensitivity. CEUS has been shown to have a high diagnostic potential in the diagnosis of ICC thanks to the possibility of studying in real time the intralesional microcirculation and evaluating the precocity of the enhancement of the lesion during the arterial phase. All these features allow to differentiate the ICC from hepatocarcinoma (HCC) with high sensitivity and specificity. Furthermore, CEUS is a rapid, non-invasive, non-nephrotoxic or non-allergenic tool. The only limitations CEUS may have are related to the disease site and patient characteristics (obesity) and compliance, including the operator's experience. A clinical evaluation of the patient, together with tumor markers and biochemical tests assessment, to differentiate ICC from HCC are highly suggested.
Collapse
Affiliation(s)
| | - Matilde Lico
- Department of Radiology, Jazzolino Hospital, ASP Vibo Valentia, Vibo Valentia, Italy
| | - Angela Teti
- Department of Radiology, Jazzolino Hospital, ASP Vibo Valentia, Vibo Valentia, Italy
| | - Rosario Maccarone
- Department of Radiology, Jazzolino Hospital, ASP Vibo Valentia, Vibo Valentia, Italy
| | - Giuseppe Casuscelli
- Department of Radiology, Jazzolino Hospital, ASP Vibo Valentia, Vibo Valentia, Italy
| | - Letterio Militano
- Department of Radiology, Jazzolino Hospital, ASP Vibo Valentia, Vibo Valentia, Italy
| | | | - Maria Mendicino
- Department of Radiology, Giovanni Paolo II Hospital, ASP Catanzaro, Lamezia Terme, Italy
| | - Antonello Parlati
- Department of Radiology, Giovanni Paolo II Hospital, ASP Catanzaro, Lamezia Terme, Italy
| | - Adele De Caridi
- Department of Radiology, Giovanni Paolo II Hospital, ASP Catanzaro, Lamezia Terme, Italy
| | - Giuseppe Loria
- Department of Radiology, Giovanni Paolo II Hospital, ASP Catanzaro, Lamezia Terme, Italy
| | | | - Sveva Loria
- Unicamillus International Medical University, Roma, Italy, Italy
| | - Denise Gambardella
- Department of Surgery, Giovanni Paolo II Hospital, ASP Catanzaro, Lamezia Terme, Italy
| | - Manfredo Tedesco
- Department of Surgery, Giovanni Paolo II Hospital, ASP Catanzaro, Lamezia Terme, Italy
| | | | - Pierluigi Falco
- Department of Pediatric Oncohematology, Grande Ospedale Metropolitano, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Francesco Loria
- Department of Radiology, Jazzolino Hospital, ASP Vibo Valentia, Vibo Valentia, Italy
| |
Collapse
|
15
|
Kamiyama N, Sugimoto K, Nakahara R, Kakegawa T, Itoi T. Deep learning approach for discrimination of liver lesions using nine time-phase images of contrast-enhanced ultrasound. J Med Ultrason (2001) 2024; 51:83-93. [PMID: 38051461 PMCID: PMC12000262 DOI: 10.1007/s10396-023-01390-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Contrast-enhanced ultrasound (CEUS) shows different enhancement patterns depending on the time after administration of the contrast agent. The aim of this study was to evaluate the diagnostic performance of liver nodule characterization using our proposed deep learning model with input of nine CEUS images. METHODS A total of 181 liver lesions (48 benign, 78 hepatocellular carcinoma (HCC), and 55 non-HCC malignant) were included in this prospective study. CEUS were performed using the contrast agent Sonazoid, and in addition to B-mode images before injection, image clips were stored every minute up to 10 min. A deep learning model was developed by arranging three ResNet50 transfer learning models in parallel. This proposed model allowed inputting up to nine datasets of different phases of CEUS and performing image augmentation of nine images synchronously. Using the results, the correct prediction rate, sensitivity, and specificity between "benign" and "malignant" cases were analyzed for each combination of the time phase. These accuracy values were also compared with the washout score judged by a human. RESULTS The proposed model showed performance superior to the referential standard model when the dataset from B-mode to the 10-min images were used (sensitivity: 93.2%, specificity: 65.3%, average correct answer rate: 60.1%). It also maintained 90.2% sensitivity and 61.2% specificity even when the dataset was limited to 2 min after injection, and this accuracy was equivalent to or better than human scoring by experts. CONCLUSION Our proposed model has the potential to identify tumor types earlier than the Kupffer phase, but at the same time, machine learning confirmed that Kupffer-phase Sonazoid images contain essential information for the classification of liver nodules.
Collapse
Affiliation(s)
- Naohisa Kamiyama
- Ultrasound General Imaging, GE HealthCare Japan, 127 Asahigaoka-4, Hino, Tokyo, 191-0065, Japan.
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Ryuichi Nakahara
- Department of Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Tatsuya Kakegawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| |
Collapse
|
16
|
Zhao T, Zeng Z, Li T, Tao W, Yu X, Feng T, Bu R. USC-ENet: a high-efficiency model for the diagnosis of liver tumors combining B-mode ultrasound and clinical data. Health Inf Sci Syst 2023; 11:15. [PMID: 36950106 PMCID: PMC10025174 DOI: 10.1007/s13755-023-00217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 03/21/2023] Open
Abstract
Purpose Ultrasound image acquisition has the advantages of being low cost, rapid, and non-invasive, and it does not produce radiation. Currently, ultrasound is widely used in the diagnosis of liver tumors. However, owing to the complex presentation and diverse features of benign and malignant liver tumors, accurate diagnosis of liver tumors using ultrasound is difficult even for experienced radiologists. In recent years, artificial intelligence-assisted diagnosis has proven to provide effective support to radiologists. However, there is room for further improvement in the existing ultrasound artificial intelligence diagnostic model of liver tumor. First, the image diagnostic model may not fully consider relevant clinical data in the decision-making process. Second, owing to the difficulty in collecting biopsy pathology and physician-labeled ultrasound data of liver tumors, training datasets are usually small, and commonly used large neural networks tend to overfit on small datasets, which seriously affects the generalization of the model. Methods In this study, we propose a deep learning-assisted diagnosis model called USC-ENet, which integrates B-mode ultrasound features of liver tumors and clinical data of patients, and we design a small neural network specifically for small-scale medical images combined with an attention mechanism. Results and conclusion Real data from 542 patients with liver tumors (N = 2168 images) are used during model training and validation. Experiments show that USC-ENet can achieve a good classification effect (area under the curve = 0.956, sensitivity = 0.915, and specificity = 0.880) after small-scale data training, and it has certain interpretability, showing good potential for clinical adoption. In conclusion, our model provides not only a reliable second opinion for radiologists but also a reference for junior radiologists who lack clinical experience.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Longquan Road, Kunming, 650221 Yunnan China
| | - Zhiyong Zeng
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Longquan Road, Kunming, 650221 Yunnan China
| | - Tong Li
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Longquan Road, Kunming, 650221 Yunnan China
| | - Wenjing Tao
- Department of Medical Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road, Kunming, 650101 Yunnan China
| | - Xing Yu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Longquan Road, Kunming, 650221 Yunnan China
| | - Tao Feng
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Longquan Road, Kunming, 650221 Yunnan China
| | - Rui Bu
- Department of Medical Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road, Kunming, 650101 Yunnan China
| |
Collapse
|
17
|
Urhuț MC, Săndulescu LD, Streba CT, Mămuleanu M, Ciocâlteu A, Cazacu SM, Dănoiu S. Diagnostic Performance of an Artificial Intelligence Model Based on Contrast-Enhanced Ultrasound in Patients with Liver Lesions: A Comparative Study with Clinicians. Diagnostics (Basel) 2023; 13:3387. [PMID: 37958282 PMCID: PMC10650544 DOI: 10.3390/diagnostics13213387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) is widely used in the characterization of liver tumors; however, the evaluation of perfusion patterns using CEUS has a subjective character. This study aims to evaluate the accuracy of an automated method based on CEUS for classifying liver lesions and to compare its performance with that of two experienced clinicians. The system used for automatic classification is based on artificial intelligence (AI) algorithms. For an interpretation close to the clinical setting, both clinicians knew which patients were at high risk for hepatocellular carcinoma (HCC), but only one was aware of all the clinical data. In total, 49 patients with 59 liver tumors were included. For the benign and malignant classification, the AI model outperformed both clinicians in terms of specificity (100% vs. 93.33%); still, the sensitivity was lower (74% vs. 93.18% vs. 90.91%). In the second stage of multiclass diagnosis, the automatic model achieved a diagnostic accuracy of 69.93% for HCC and 89.15% for liver metastases. Readers demonstrated greater diagnostic accuracy for HCC (83.05% and 79.66%) and liver metastases (94.92% and 96.61%) compared to the AI system; however, both were experienced sonographers. The AI model could potentially assist and guide less-experienced clinicians to discriminate malignant from benign liver tumors with high accuracy and specificity.
Collapse
Affiliation(s)
- Marinela-Cristiana Urhuț
- Department of Gastroenterology, Emergency County Hospital of Craiova, Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Larisa Daniela Săndulescu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Costin Teodor Streba
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Oncometrics S.R.L., 200677 Craiova, Romania;
| | - Mădălin Mămuleanu
- Oncometrics S.R.L., 200677 Craiova, Romania;
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania
| | - Adriana Ciocâlteu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Sergiu Marian Cazacu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.T.S.); (A.C.); (S.M.C.)
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
18
|
Campello CA, Castanha EB, Vilardo M, Staziaki PV, Francisco MZ, Mohajer B, Watte G, Moraes FY, Hochhegger B, Altmayer S. Machine learning for malignant versus benign focal liver lesions on US and CEUS: a meta-analysis. Abdom Radiol (NY) 2023; 48:3114-3126. [PMID: 37365266 DOI: 10.1007/s00261-023-03984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES To perform a meta-analysis of the diagnostic performance of learning (ML) algorithms (conventional and deep learning algorithms) for the classification of malignant versus benign focal liver lesions (FLLs) on US and CEUS. METHODS Available databases were searched for relevant published studies through September 2022. Studies met eligibility criteria if they evaluate the diagnostic performance of ML for the classification of malignant and benign focal liver lesions on US and CEUS. The pooled per-lesion sensitivities and specificities for each modality with 95% confidence intervals were calculated. RESULTS A total of 8 studies on US, 11 on CEUS, and 1 study evaluating both methods met the inclusion criteria with a total of 34,245 FLLs evaluated. The pooled sensitivity and specificity of ML for the malignancy classification of FLLs were 81.7% (95% CI, 77.2-85.4%) and 84.8% (95% CI, 76.0-90.8%) for US, compared to 87.1% (95% CI, 81.8-91.0%) and 87.0% (95% CI, 83.1-90.1%) for CEUS. In the subgroup analysis of studies that evaluated deep learning algorithms, the sensitivity and specificity of CEUS (n = 4) increased to 92.4% (95% CI, 88.5-95.0%) and 88.2% (95% CI, 81.1-92.9%). CONCLUSIONS The diagnostic performance of ML algorithms for the malignant classification of FLLs was high for both US and CEUS with overall similar sensitivity and specificity. The similar performance of US may be related to the higher prevalence of DL models in that group.
Collapse
Affiliation(s)
- Carlos Alberto Campello
- School of Medicine, Universidade Federal do Mato Grosso, 2367 Quarenta e Nove St, Cuiabá, Brazil
| | - Everton Bruno Castanha
- School of Medicine, Universidade Federal de Pelotas, 538 Prof. Dr. Araújo St. Pelotas, Pelotas, Brazil
| | - Marina Vilardo
- School of Medicine, Universidade Catolica de Brasilia, QS 07, Brasília, Brazil
| | - Pedro V Staziaki
- Department of Radiology, University of Vermont Medical Center, 111 Colchester Ave, Burlington, USA
| | - Martina Zaguini Francisco
- Department of Radiology, Universidade Federal de Ciencias da Saude de Porto Alegre, 245 Sarmento Leite St, Porto Alegre, Brazil
| | - Bahram Mohajer
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, USA
| | - Guilherme Watte
- Department of Radiology, Universidade Federal de Ciencias da Saude de Porto Alegre, 245 Sarmento Leite St, Porto Alegre, Brazil
| | - Fabio Ynoe Moraes
- Department of Oncology, Queen's University, 76 Stuart St, Kingston, Canada
| | - Bruno Hochhegger
- Department of Radiology, University of Florida, 1600 SW Archer Rd, Gainesville, USA
| | - Stephan Altmayer
- Department of Radiology, Stanford University, 300 Pasteur Drive, Suite H1330, Stanford, USA.
| |
Collapse
|
19
|
Vetter M, Waldner MJ, Zundler S, Klett D, Bocklitz T, Neurath MF, Adler W, Jesper D. Artificial intelligence for the classification of focal liver lesions in ultrasound - a systematic review. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2023; 44:395-407. [PMID: 37001563 DOI: 10.1055/a-2066-9372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Focal liver lesions are detected in about 15% of abdominal ultrasound examinations. The diagnosis of frequent benign lesions can be determined reliably based on the characteristic B-mode appearance of cysts, hemangiomas, or typical focal fatty changes. In the case of focal liver lesions which remain unclear on B-mode ultrasound, contrast-enhanced ultrasound (CEUS) increases diagnostic accuracy for the distinction between benign and malignant liver lesions. Artificial intelligence describes applications that try to emulate human intelligence, at least in subfields such as the classification of images. Since ultrasound is considered to be a particularly examiner-dependent technique, the application of artificial intelligence could be an interesting approach for an objective and accurate diagnosis. In this systematic review we analyzed how artificial intelligence can be used to classify the benign or malignant nature and entity of focal liver lesions on the basis of B-mode or CEUS data. In a structured search on Scopus, Web of Science, PubMed, and IEEE, we found 52 studies that met the inclusion criteria. Studies showed good diagnostic performance for both the classification as benign or malignant and the differentiation of individual tumor entities. The results could be improved by inclusion of clinical parameters and were comparable to those of experienced investigators in terms of diagnostic accuracy. However, due to the limited spectrum of lesions included in the studies and a lack of independent validation cohorts, the transfer of the results into clinical practice is limited.
Collapse
Affiliation(s)
- Marcel Vetter
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Sebastian Zundler
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Daniel Klett
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universitat Jena, Jena, Germany
- Leibniz-Institute of Photonic Technology, Friedrich Schiller University Jena, Jena, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Daniel Jesper
- Department of Internal Medicine 1, Erlangen University Hospital Department of Medicine 1 Gastroenterology Endocrinology and Pneumology, Erlangen, Germany
| |
Collapse
|
20
|
Singh S, Hoque S, Zekry A, Sowmya A. Radiological Diagnosis of Chronic Liver Disease and Hepatocellular Carcinoma: A Review. J Med Syst 2023; 47:73. [PMID: 37432493 PMCID: PMC10335966 DOI: 10.1007/s10916-023-01968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Medical image analysis plays a pivotal role in the evaluation of diseases, including screening, surveillance, diagnosis, and prognosis. Liver is one of the major organs responsible for key functions of metabolism, protein and hormone synthesis, detoxification, and waste excretion. Patients with advanced liver disease and Hepatocellular Carcinoma (HCC) are often asymptomatic in the early stages; however delays in diagnosis and treatment can lead to increased rates of decompensated liver diseases, late-stage HCC, morbidity and mortality. Ultrasound (US) is commonly used imaging modality for diagnosis of chronic liver diseases that includes fibrosis, cirrhosis and portal hypertension. In this paper, we first provide an overview of various diagnostic methods for stages of liver diseases and discuss the role of Computer-Aided Diagnosis (CAD) systems in diagnosing liver diseases. Second, we review the utility of machine learning and deep learning approaches as diagnostic tools. Finally, we present the limitations of existing studies and outline future directions to further improve diagnostic accuracy, as well as reduce cost and subjectivity, while also improving workflow for the clinicians.
Collapse
Affiliation(s)
- Sonit Singh
- School of CSE, UNSW Sydney, High St, Kensington, 2052, NSW, Australia.
| | - Shakira Hoque
- Gastroenterology and Hepatology Department, St George Hospital, Hogben St, Kogarah, 2217, NSW, Australia
| | - Amany Zekry
- St George and Sutherland Clinical Campus, School of Clinical Medicine, UNSW, High St, Kensington, 2052, NSW, Australia
- Gastroenterology and Hepatology Department, St George Hospital, Hogben St, Kogarah, 2217, NSW, Australia
| | - Arcot Sowmya
- School of CSE, UNSW Sydney, High St, Kensington, 2052, NSW, Australia
| |
Collapse
|
21
|
Wang Y, Yuan D, Sun H, Pan X, Lu F, Li H, Huang Y, Tang S. Non-invasive preoperative prediction of Edmondson-Steiner grade of hepatocellular carcinoma based on contrast-enhanced ultrasound using ensemble learning. Front Oncol 2023; 13:1116129. [PMID: 37476377 PMCID: PMC10354515 DOI: 10.3389/fonc.2023.1116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/15/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose This study aimed to explore the clinical value of non-invasive preoperative Edmondson-Steiner grade of hepatocellular carcinoma (HCC) using contrast-enhanced ultrasound (CEUS). Methods 212 cases of HCCs were retrospectively included, including 83 cases of high-grade HCCs and 129 cases of low-grade HCCs. Three representative CEUS images were selected from the arterial phase, portal vein phase, and delayed phase and stored in a 3-dimensional array. ITK-SNAP was used to segment the tumor lesions manually. The Radiomics method was conducted to extract high-dimensional features on these contrast-enhanced ultrasound images. Then the independent sample T-test and the Least Absolute Shrinkage and Selection Operator (LASSO) were employed to reduce the feature dimensions. The optimized features were modeled by a classifier based on ensemble learning, and the Edmondson Steiner grading was predicted in an independent testing set using this model. Results A total of 1338 features were extracted from the 3D images. After the dimension reduction, 10 features were finally selected to establish the model. In the independent testing set, the integrated model performed best, with an AUC of 0.931. Conclusion This study proposed an Edmondson-Steiner grading method for HCC with CEUS. The method has good classification performance on independent testing sets, which can provide quantitative analysis support for clinical decision-making.
Collapse
Affiliation(s)
- Yao Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongbo Yuan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hang Sun
- School of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
| | - Xiaoguang Pan
- Computer Science and Technology, School of Information and Control Engineering, Liaoning Petrochemical University, Fushun, China
| | - Fangnan Lu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hong Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shaoshan Tang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Brunese MC, Fantozzi MR, Fusco R, De Muzio F, Gabelloni M, Danti G, Borgheresi A, Palumbo P, Bruno F, Gandolfo N, Giovagnoni A, Miele V, Barile A, Granata V. Update on the Applications of Radiomics in Diagnosis, Staging, and Recurrence of Intrahepatic Cholangiocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13081488. [PMID: 37189589 DOI: 10.3390/diagnostics13081488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND This paper offers an assessment of radiomics tools in the evaluation of intrahepatic cholangiocarcinoma. METHODS The PubMed database was searched for papers published in the English language no earlier than October 2022. RESULTS We found 236 studies, and 37 satisfied our research criteria. Several studies addressed multidisciplinary topics, especially diagnosis, prognosis, response to therapy, and prediction of staging (TNM) or pathomorphological patterns. In this review, we have covered diagnostic tools developed through machine learning, deep learning, and neural network for the recurrence and prediction of biological characteristics. The majority of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to make differential diagnosis easier for radiologists to predict recurrence and genomic patterns. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Maria Chiara Brunese
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
23
|
Mămuleanu M, Urhuț CM, Săndulescu LD, Kamal C, Pătrașcu AM, Ionescu AG, Șerbănescu MS, Streba CT. An Automated Method for Classifying Liver Lesions in Contrast-Enhanced Ultrasound Imaging Based on Deep Learning Algorithms. Diagnostics (Basel) 2023; 13:1062. [PMID: 36980369 PMCID: PMC10047233 DOI: 10.3390/diagnostics13061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEUS) is an important imaging modality in the diagnosis of liver tumors. By using contrast agent, a more detailed image is obtained. Time-intensity curves (TIC) can be extracted using a specialized software, and then the signal can be analyzed for further investigations. METHODS The purpose of the study was to build an automated method for extracting TICs and classifying liver lesions in CEUS liver investigations. The cohort contained 50 anonymized video investigations from 49 patients. Besides the CEUS investigations, clinical data from the patients were provided. A method comprising three modules was proposed. The first module, a lesion segmentation deep learning (DL) model, handled the prediction of masks frame-by-frame (region of interest). The second module performed dilation on the mask, and after applying colormap to the image, it extracted the TIC and the parameters from the TIC (area under the curve, time to peak, mean transit time, and maximum intensity). The third module, a feed-forward neural network, predicted the final diagnosis. It was trained on the TIC parameters extracted by the second model, together with other data: gender, age, hepatitis history, and cirrhosis history. RESULTS For the feed-forward classifier, five classes were chosen: hepatocarcinoma, metastasis, other malignant lesions, hemangioma, and other benign lesions. Being a multiclass classifier, appropriate performance metrics were observed: categorical accuracy, F1 micro, F1 macro, and Matthews correlation coefficient. The results showed that due to class imbalance, in some cases, the classifier was not able to predict with high accuracy a specific lesion from the minority classes. However, on the majority classes, the classifier can predict the lesion type with high accuracy. CONCLUSIONS The main goal of the study was to develop an automated method of classifying liver lesions in CEUS video investigations. Being modular, the system can be a useful tool for gastroenterologists or medical students: either as a second opinion system or a tool to automatically extract TICs.
Collapse
Affiliation(s)
- Mădălin Mămuleanu
- Department of Automatic Control and Electronics, University of Craiova, 200585 Craiova, Romania
- Oncometrics S.R.L., 200677 Craiova, Romania
| | | | - Larisa Daniela Săndulescu
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Constantin Kamal
- Oncometrics S.R.L., 200677 Craiova, Romania
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana-Maria Pătrașcu
- Oncometrics S.R.L., 200677 Craiova, Romania
- Department of Hematology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alin Gabriel Ionescu
- Oncometrics S.R.L., 200677 Craiova, Romania
- Department of History of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mircea-Sebastian Șerbănescu
- Oncometrics S.R.L., 200677 Craiova, Romania
- Department of Medical Informatics and Statistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Costin Teodor Streba
- Oncometrics S.R.L., 200677 Craiova, Romania
- Department of Gastroenterology, Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
24
|
Feng X, Cai W, Zheng R, Tang L, Zhou J, Wang H, Liao J, Luo B, Cheng W, Wei A, Zhao W, Jing X, Liang P, Yu J, Huang Q. Diagnosis of hepatocellular carcinoma using deep network with multi-view enhanced patterns mined in contrast-enhanced ultrasound data. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2023; 118:105635. [DOI: 10.1016/j.engappai.2022.105635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
25
|
Xu Y, Zheng B, Liu X, Wu T, Ju J, Wang S, Lian Y, Zhang H, Liang T, Sang Y, Jiang R, Wang G, Ren J, Chen T. Improving artificial intelligence pipeline for liver malignancy diagnosis using ultrasound images and video frames. Brief Bioinform 2023; 24:bbac569. [PMID: 36575566 PMCID: PMC10390801 DOI: 10.1093/bib/bbac569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2022] Open
Abstract
Recent developments of deep learning methods have demonstrated their feasibility in liver malignancy diagnosis using ultrasound (US) images. However, most of these methods require manual selection and annotation of US images by radiologists, which limit their practical application. On the other hand, US videos provide more comprehensive morphological information about liver masses and their relationships with surrounding structures than US images, potentially leading to a more accurate diagnosis. Here, we developed a fully automated artificial intelligence (AI) pipeline to imitate the workflow of radiologists for detecting liver masses and diagnosing liver malignancy. In this pipeline, we designed an automated mass-guided strategy that used segmentation information to direct diagnostic models to focus on liver masses, thus increasing diagnostic accuracy. The diagnostic models based on US videos utilized bi-directional convolutional long short-term memory modules with an attention-boosted module to learn and fuse spatiotemporal information from consecutive video frames. Using a large-scale dataset of 50 063 US images and video frames from 11 468 patients, we developed and tested the AI pipeline and investigated its applications. A dataset of annotated US images is available at https://doi.org/10.5281/zenodo.7272660.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Computer Science and Technology & Institute of Artificial Intelligence & BNRist, Tsinghua University, Beijing, China
| | - Bowen Zheng
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- Department of Computer Science and Technology & Institute of Artificial Intelligence & BNRist, Tsinghua University, Beijing, China
| | - Tao Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jinxiu Ju
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shijie Wang
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yufan Lian
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongjun Zhang
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tong Liang
- Foshan Traditional Chinese Medicine Hospital, Foshan, Guangdong, China
| | - Ye Sang
- The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, China
| | - Rui Jiang
- Department of Automation & BNRist, Tsinghua University, Beijing, China
| | - Guangyu Wang
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jie Ren
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ting Chen
- Department of Computer Science and Technology & Institute of Artificial Intelligence & BNRist, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010069. [PMID: 36671641 PMCID: PMC9854883 DOI: 10.3390/bioengineering10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Ultrasound (US) is often used to diagnose liver masses. Ensemble learning has recently been commonly used for image classification, but its detailed methods are not fully optimized. The purpose of this study is to investigate the usefulness and comparison of some ensemble learning and ensemble pruning techniques using multiple convolutional neural network (CNN) trained models for image classification of liver masses in US images. Dataset of the US images were classified into four categories: benign liver tumor (BLT) 6320 images, liver cyst (LCY) 2320 images, metastatic liver cancer (MLC) 9720 images, primary liver cancer (PLC) 7840 images. In this study, 250 test images were randomly selected for each class, for a total of 1000 images, and the remaining images were used as the training. 16 different CNNs were used for training and testing ultrasound images. The ensemble learning used soft voting (SV), weighted average voting (WAV), weighted hard voting (WHV) and stacking (ST). All four types of ensemble learning (SV, ST, WAV, and WHV) showed higher values of accuracy than the single CNN. All four types also showed significantly higher deep learning (DL) performance than ResNeXt101 alone. For image classification of liver masses using US images, ensemble learning improved the performance of DL over a single CNN.
Collapse
|
27
|
Ma L, Wang R, He Q, Huang L, Wei X, Lu X, Du Y, Luo J, Liao H. Artificial intelligence-based ultrasound imaging technologies for hepatic diseases. ILIVER 2022; 1:252-264. [DOI: 10.1016/j.iliver.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Development and validation of a combined nomogram model based on deep learning contrast-enhanced ultrasound and clinical factors to predict preoperative aggressiveness in pancreatic neuroendocrine neoplasms. Eur Radiol 2022; 32:7965-7975. [PMID: 35389050 DOI: 10.1007/s00330-022-08703-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES This study aimed to develop and validate a combined nomogram model based on deep learning (DL) contrast-enhanced ultrasound (CEUS) and clinical factors to preoperatively predict the aggressiveness of pancreatic neuroendocrine neoplasms (PNENs). METHODS In this retrospective study, consecutive patients with histologically proven PNENs underwent CEUS examination at the initial work-up between January 2010 and October 2020. Patients were randomly allocated to the training and test sets. Typical sonographic and enhanced images of PNENs were selected to fine-tune the SE-ResNeXt-50 network. A combined nomogram model was developed by incorporating the DL predictive probability with clinical factors using multivariate logistic regression analysis. The utility of the proposed model was evaluated using receiver operator characteristic, calibration, and decision curve analysis. RESULTS A total of 104 patients were evaluated, including 80 (mean age ± standard deviation, 47 years ± 12; 56 males) in the training set and 24 (50 years ± 12; 14 males) in the test set. The DL model displayed effective image recognition with an AUC of 0.81 (95%CI: 0.62-1.00) in the test set. The combined nomogram model that incorporated independent clinical risk factors, such as tumor size, arterial enhancement level, and DL predictive probability, showed strong discrimination, with an AUC of 0.85 (95%CI: 0.69-1.00) in the test set with good calibration. Decision curve analysis verified the clinical usefulness of the combined nomogram. CONCLUSIONS The combined nomogram model could serve as a preoperative, noninvasive, and precise evaluation tool to differentiate aggressive and non-aggressive PNENs. KEY POINTS • Tumor size (odds ratio [OR], 1.58; p = 0.02), arterial enhancement level (OR, 0.04; p = 0.008), and deep learning predictive probability (OR, 288.46; p < 0.001) independently predicted aggressiveness of pancreatic neuroendocrine neoplasms preoperatively. • The combined model predicted aggressiveness better than the clinical model (AUC: 0.97 vs. 0.87, p = 0.009), achieving AUC values of 0.97 and 0.85 in the training set and the test set, respectively.
Collapse
|
29
|
Zhu D, Li J, Li Y, Wu J, Zhu L, Li J, Wang Z, Xu J, Dong F, Cheng J. Multimodal ultrasound fusion network for differentiating between benign and malignant solid renal tumors. Front Mol Biosci 2022; 9:982703. [PMID: 36148014 PMCID: PMC9488515 DOI: 10.3389/fmolb.2022.982703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: We aim to establish a deep learning model called multimodal ultrasound fusion network (MUF-Net) based on gray-scale and contrast-enhanced ultrasound (CEUS) images for classifying benign and malignant solid renal tumors automatically and to compare the model's performance with the assessments by radiologists with different levels of experience. Methods: A retrospective study included the CEUS videos of 181 patients with solid renal tumors (81 benign and 100 malignant tumors) from June 2012 to June 2021. A total of 9794 B-mode and CEUS-mode images were cropped from the CEUS videos. The MUF-Net was proposed to combine gray-scale and CEUS images to differentiate benign and malignant solid renal tumors. In this network, two independent branches were designed to extract features from each of the two modalities, and the features were fused using adaptive weights. Finally, the network output a classification score based on the fused features. The model's performance was evaluated using five-fold cross-validation and compared with the assessments of the two groups of radiologists with different levels of experience. Results: For the discrimination between benign and malignant solid renal tumors, the junior radiologist group, senior radiologist group, and MUF-Net achieved accuracy of 70.6%, 75.7%, and 80.0%, sensitivity of 89.3%, 95.9%, and 80.4%, specificity of 58.7%, 62.9%, and 79.1%, and area under the receiver operating characteristic curve of 0.740 (95% confidence internal (CI): 0.70-0.75), 0.794 (95% CI: 0.72-0.83), and 0.877 (95% CI: 0.83-0.93), respectively. Conclusion: The MUF-Net model can accurately classify benign and malignant solid renal tumors and achieve better performance than senior radiologists. Key points: The CEUS video data contain the entire tumor microcirculation perfusion characteristics. The proposed MUF-Net based on B-mode and CEUS-mode images can accurately distinguish between benign and malignant solid renal tumors with an area under the receiver operating characteristic curve of 0.877, which surpasses senior radiologists' assessments by a large margin.
Collapse
Affiliation(s)
- Dongmei Zhu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen, China
- Department of Ultrasound, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Junyu Li
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Yan Li
- Department of Ultrasound, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Ji Wu
- Department of Urology Surgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Zhu
- Department of Ultrasound, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian Li
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Zimo Wang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Jinfeng Xu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Fajin Dong
- Department of Ultrasound, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Jun Cheng
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Alizadeh A, Joukar F, Ghorani N, Mansour-Ghanaei A, Tabatabaii M, Faraji N, Zeinali T, Naghipour M, Mansour-Ghanaei F. Prevalence of Hepatic Space-Occupying Lesions Based on Sonographic Findings in Patients Referred to Guilan Cohort Center, Iran. HEPATITIS MONTHLY 2022; 22. [DOI: 10.5812/hepatmon-127545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/03/2025]
Abstract
Background: Early diagnosis of hepatic lesions can result in more successful treatment. Objectives: The present study aimed to diagnose hepatic space-occupying lesions by sonography in Guilan Cohort Center participants. Methods: In this cross-sectional prospective epidemiological research studies of Iranian adults (PERSIAN) Guilan cohort study (Sowme'eh Sara, Guilan, Iran) conducted in 2014 - 2017, the sample included 960 individuals of both genders, aged 35 - 60 years. A radiologist examined all individuals with sonography to determine hepatic space-occupying lesions. Demographical and clinical characteristics were recorded via a questionnaire. Data analysis was performed using SPSS software (version 16). Results: Only 2.3% of the patients were diagnosed with hepatic lesions such as hemangioma, hepatic cysts, and other lesions with frequencies of 1.1%, 0.8%, and 0.4%, respectively. Also, there was a significant relationship between gender and the presence of hepatic lesions (P < 0.05). The frequencies of hepatic lesions were 1.7% and 3.6% in men and women and 1.6%, 2.5%, and 4.4% in the age groups of 35 - 45, 45 - 55, and over 55 years, respectively. Conclusions: Hemangioma was the most common hepatic lesion diagnosed in ultrasonography examinations. Moreover, the only factor influencing the frequency of hepatic lesions was gender, which was found twice more in women than in men.
Collapse
|
31
|
Cao LL, Peng M, Xie X, Chen GQ, Huang SY, Wang JY, Jiang F, Cui XW, Dietrich CF. Artificial intelligence in liver ultrasound. World J Gastroenterol 2022; 28:3398-3409. [PMID: 36158262 PMCID: PMC9346461 DOI: 10.3748/wjg.v28.i27.3398] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is playing an increasingly important role in medicine, especially in the field of medical imaging. It can be used to diagnose diseases and predict certain statuses and possible events that may happen. Recently, more and more studies have confirmed the value of AI based on ultrasound in the evaluation of diffuse liver diseases and focal liver lesions. It can assess the severity of liver fibrosis and nonalcoholic fatty liver, differentially diagnose benign and malignant liver lesions, distinguish primary from secondary liver cancers, predict the curative effect of liver cancer treatment and recurrence after treatment, and predict microvascular invasion in hepatocellular carcinoma. The findings from these studies have great clinical application potential in the near future. The purpose of this review is to comprehensively introduce the current status and future perspectives of AI in liver ultrasound.
Collapse
Affiliation(s)
- Liu-Liu Cao
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Mei Peng
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiang Xie
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Gong-Quan Chen
- Department of Medical Ultrasound, Minda Hospital of Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Shu-Yan Huang
- Department of Medical Ultrasound, The First People's Hospital of Huaihua, Huaihua 418000, Hunan Province, China
| | - Jia-Yu Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Jiang
- Department of Medical Ultrasound, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern 3626, Switzerland
| |
Collapse
|
32
|
De Muzio F, Grassi F, Dell’Aversana F, Fusco R, Danti G, Flammia F, Chiti G, Valeri T, Agostini A, Palumbo P, Bruno F, Cutolo C, Grassi R, Simonetti I, Giovagnoni A, Miele V, Barile A, Granata V. A Narrative Review on LI-RADS Algorithm in Liver Tumors: Prospects and Pitfalls. Diagnostics (Basel) 2022; 12:1655. [PMID: 35885561 PMCID: PMC9319674 DOI: 10.3390/diagnostics12071655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the sixth most detected tumor and the third leading cause of tumor death worldwide. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with specific risk factors and a targeted population. Imaging plays a major role in the management of HCC from screening to post-therapy follow-up. In order to optimize the diagnostic-therapeutic management and using a universal report, which allows more effective communication among the multidisciplinary team, several classification systems have been proposed over time, and LI-RADS is the most utilized. Currently, LI-RADS comprises four algorithms addressing screening and surveillance, diagnosis on computed tomography (CT)/magnetic resonance imaging (MRI), diagnosis on contrast-enhanced ultrasound (CEUS) and treatment response on CT/MRI. The algorithm allows guiding the radiologist through a stepwise process of assigning a category to a liver observation, recognizing both major and ancillary features. This process allows for characterizing liver lesions and assessing treatment. In this review, we highlighted both major and ancillary features that could define HCC. The distinctive dynamic vascular pattern of arterial hyperenhancement followed by washout in the portal-venous phase is the key hallmark of HCC, with a specificity value close to 100%. However, the sensitivity value of these combined criteria is inadequate. Recent evidence has proven that liver-specific contrast could be an important tool not only in increasing sensitivity but also in diagnosis as a major criterion. Although LI-RADS emerges as an essential instrument to support the management of liver tumors, still many improvements are needed to overcome the current limitations. In particular, features that may clearly distinguish HCC from cholangiocarcinoma (CCA) and combined HCC-CCA lesions and the assessment after locoregional radiation-based therapy are still fields of research.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy;
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Federica Dell’Aversana
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Ginevra Danti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Federica Flammia
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Giuditta Chiti
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Tommaso Valeri
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Andrea Agostini
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Area of Cardiovascular and Interventional Imaging, Department of Diagnostic Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Fisciano, Italy;
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 81100 Naples, Italy; (F.G.); (F.D.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, University Politecnica delle Marche, 60126 Ancona, Italy; (T.V.); (A.A.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, Via Tronto 10/a, 60126 Torrette, Italy
| | - Vittorio Miele
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; (G.D.); (F.F.); (G.C.); (V.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (P.P.); (F.B.)
| | - Antonio Barile
- Emergency Radiology, San Salvatore Hospital, Via Lorenzo Natali 1, 67100 L’Aquila, Italy;
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (I.S.); (V.G.)
| |
Collapse
|
33
|
Liu L, Tang C, Li L, Chen P, Tan Y, Hu X, Chen K, Shang Y, Liu D, Liu H, Liu H, Nie F, Tian J, Zhao M, He W, Guo Y. Deep learning radiomics for focal liver lesions diagnosis on long-range contrast-enhanced ultrasound and clinical factors. Quant Imaging Med Surg 2022; 12:3213-3226. [PMID: 35655832 PMCID: PMC9131334 DOI: 10.21037/qims-21-1004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/18/2022] [Indexed: 11/15/2023]
Abstract
BACKGROUND Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions (FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range contrast-enhanced ultrasound (CEUS) cines and clinical factors. METHODS Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two hospitals. Four DL radiomics models, namely Four Stream 3D convolutional neural network (FS3DU) (trained with CEUS cines only), FS3DU+A (trained with CEUS cines and alpha fetoprotein), FS3DU+H (trained with CEUS cines and hepatitis), and FS3DU+A+H (trained with CEUS cines, alpha fetoprotein, and hepatitis), were formed based on 3D convolutional neural networks (CNNs). They used approximately 20-s preoperative CEUS cines and/or clinical factors to extract spatiotemporal features for the classification of FLLs and the location of the region of interest. The area under curve of the receiver operating characteristic and diagnosis speed were calculated to evaluate the models in the IV and EV cohorts, and they were compared with those of two radiologists. Two-sided Delong tests were used to calculate the statistical differences between the models and radiologists. RESULTS FS3DU+A+H, which incorporated CEUS cines, hepatitis, and alpha fetoprotein, achieved the highest area under curve of 0.969 (95% CI: 0.901-1.000) and 0.957 (95% CI: 0.894-1.000) among radiologists and other models in IV and EV cohorts, respectively. A significant difference was observed when comparing FS3DU and radiologist 2 (all P<0.05). The diagnosis speed of all the models was the same (10.76 s per patient), and it was two times faster than those of the radiologists (radiologist 1: 23.74 and 27.75 s; radiologist 2: 25.95 and 29.50 s in IV and EV cohorts, respectively). CONCLUSIONS The proposed DL radiomics demonstrated excellent performance on the benign and malignant diagnosis of FLLs by combining CEUS cines and clinical factors. It could help the individualized characterization of FLLs, and enhance the accuracy of diagnosis in the future.
Collapse
Affiliation(s)
- Li Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunlin Tang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Li
- CHISON Medical Technologies Co., LTD, Wuxi, China
| | - Ping Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Tan
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaixuan Chen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Liu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongjun Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Nie
- Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiawei Tian
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
34
|
Kiss S, Pintér J, Molontay R, Nagy M, Farkas N, Sipos Z, Fehérvári P, Pecze L, Földi M, Vincze Á, Takács T, Czakó L, Izbéki F, Halász A, Boros E, Hamvas J, Varga M, Mickevicius A, Faluhelyi N, Farkas O, Váncsa S, Nagy R, Bunduc S, Hegyi PJ, Márta K, Borka K, Doros A, Hosszúfalusi N, Zubek L, Erőss B, Molnár Z, Párniczky A, Hegyi P, Szentesi A. Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases. Sci Rep 2022; 12:7827. [PMID: 35552440 PMCID: PMC9098474 DOI: 10.1038/s41598-022-11517-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them.
Collapse
Affiliation(s)
- Szabolcs Kiss
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - József Pintér
- Human and Social Data Science Lab, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - Roland Molontay
- Human and Social Data Science Lab, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
- Stochastics Research Group, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Egry József u. 1, Budapest, 1111, Hungary
| | - Marcell Nagy
- Human and Social Data Science Lab, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Institute of Bioanalysis, Medical School, University of Pécs, Honvéd u. 1, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
| | - Péter Fehérvári
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István u. 2, Budapest, 1078, Hungary
| | - László Pecze
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
| | - Mária Földi
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - Áron Vincze
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Ifjúság út 13, Pécs, 7624, Hungary
| | - Tamás Takács
- Department of Medicine, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - László Czakó
- Department of Medicine, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - Ferenc Izbéki
- Department of Internal Medicine, Szent György Teaching Hospital of County Fejér, Seregélyesi út 3, Székesfehérvár, 8000, Hungary
| | - Adrienn Halász
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary
- Department of Internal Medicine, Szent György Teaching Hospital of County Fejér, Seregélyesi út 3, Székesfehérvár, 8000, Hungary
| | - Eszter Boros
- Department of Internal Medicine, Szent György Teaching Hospital of County Fejér, Seregélyesi út 3, Székesfehérvár, 8000, Hungary
| | - József Hamvas
- Bajcsy-Zsilinszky Hospital, Maglódi út 89-91, Budapest, 1106, Hungary
| | - Márta Varga
- Department of Gastroenterology, BMKK Dr Rethy Pal Hospital, Gyulai út 18, Békéscsaba, 5600, Hungary
| | - Artautas Mickevicius
- Vilnius University Hospital Santaros Clinics, Clinics of Abdominal Surgery, Nephrourology and Gastroenterology, Faculty of Medicine, Vilnius University, Santariškių g. 2, 08410, Vilnius, Lithuania
| | - Nándor Faluhelyi
- Department of Medical Imaging, Medical School, University of Pécs, Ifjúság út 13, Pécs, 7624, Hungary
| | - Orsolya Farkas
- Department of Medical Imaging, Medical School, University of Pécs, Ifjúság út 13, Pécs, 7624, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Rita Nagy
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Stefania Bunduc
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474, Bucharest, Romania
| | - Péter Jenő Hegyi
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Katalin Márta
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Katalin Borka
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Attila Doros
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Transplantation and Surgery, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Nóra Hosszúfalusi
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Szentkirályi u. 46, Budapest, 1088, Hungary
| | - László Zubek
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78, Budapest, 1082, Hungary
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78, Budapest, 1082, Hungary
- Department of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, ul. św. Marii Magdaleny 14, 61861, Poznan, Wielkopolska, Poland
| | - Andrea Párniczky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Andrea Szentesi
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary.
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.
| |
Collapse
|
35
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|
36
|
Peng J, Huang J, Huang G, Zhang J. Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Front Oncol 2021; 11:730282. [PMID: 34745952 PMCID: PMC8566880 DOI: 10.3389/fonc.2021.730282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives We aimed to develop radiology-based models for the preoperative prediction of the initial treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) since the integration of radiomics and deep learning (DL) has not been reported for TACE. Methods Three hundred and ten intermediate-stage HCC patients who underwent TACE were recruited from three independent medical centers. Based on computed tomography (CT) images, recursive feature elimination (RFE) was used to select the most useful radiomics features. Five radiomics conventional machine learning (cML) models and a DL model were used for training and validation. Mutual correlations between each model were analyzed. The accuracies of integrating clinical variables, cML, and DL models were then evaluated. Results Good predictive accuracies were showed across the two cohorts in the five cML models, especially the random forest algorithm (AUC = 0.967 and 0.964, respectively). DL showed high accuracies in the training and validation cohorts (AUC = 0.981 and 0.972, respectively). Significant mutual correlations were revealed between tumor size and the five cML models and DL model (each P < 0.001). The highest accuracies were achieved by integrating DL and the random forest algorithm in the training and validation cohorts (AUC = 0.995 and 0.994, respectively). Conclusion The radiomics cML models and DL model showed notable accuracy for predicting the initial response to TACE treatment. Moreover, the integrated model could serve as a novel and accurate method for prediction in intermediate-stage HCC.
Collapse
Affiliation(s)
- Jie Peng
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Jinhua Huang
- Department of Minimal Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Zhuang H, Zhang J, Liao F. A systematic review on application of deep learning in digestive system image processing. THE VISUAL COMPUTER 2021; 39:2207-2222. [PMID: 34744231 PMCID: PMC8557108 DOI: 10.1007/s00371-021-02322-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 05/07/2023]
Abstract
With the advent of the big data era, the application of artificial intelligence represented by deep learning in medicine has become a hot topic. In gastroenterology, deep learning has accomplished remarkable accomplishments in endoscopy, imageology, and pathology. Artificial intelligence has been applied to benign gastrointestinal tract lesions, early cancer, tumors, inflammatory bowel diseases, livers, pancreas, and other diseases. Computer-aided diagnosis significantly improve diagnostic accuracy and reduce physicians' workload and provide a shred of evidence for clinical diagnosis and treatment. In the near future, artificial intelligence will have high application value in the field of medicine. This paper mainly summarizes the latest research on artificial intelligence in diagnosing and treating digestive system diseases and discussing artificial intelligence's future in digestive system diseases. We sincerely hope that our work can become a stepping stone for gastroenterologists and computer experts in artificial intelligence research and facilitate the application and development of computer-aided image processing technology in gastroenterology.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Jixiang Zhang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|
38
|
Granata V, Grassi R, Fusco R, Belli A, Cutolo C, Pradella S, Grazzini G, La Porta M, Brunese MC, De Muzio F, Ottaiano A, Avallone A, Izzo F, Petrillo A. Diagnostic evaluation and ablation treatments assessment in hepatocellular carcinoma. Infect Agent Cancer 2021; 16:53. [PMID: 34281580 PMCID: PMC8287696 DOI: 10.1186/s13027-021-00393-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
This article provides an overview of diagnostic evaluation and ablation treatment assessment in Hepatocellular Carcinoma (HCC). Only studies, in the English language from January 2010 to January 202, evaluating the diagnostic tools and assessment of ablative therapies in HCC patients were included. We found 173 clinical studies that satisfied the inclusion criteria.HCC may be noninvasively diagnosed by imaging findings. Multiphase contrast-enhanced imaging is necessary to assess HCC. Intravenous extracellular contrast agents are used for CT, while the agents used for MRI may be extracellular or hepatobiliary. Both gadoxetate disodium and gadobenate dimeglumine may be used in hepatobiliary phase imaging. For treatment-naive patients undergoing CT, unenhanced imaging is optional; however, it is required in the post treatment setting for CT and all MRI studies. Late arterial phase is strongly preferred over early arterial phase. The choice of modality (CT, US/CEUS or MRI) and MRI contrast agent (extracelllar or hepatobiliary) depends on patient, institutional, and regional factors. MRI allows to link morfological and functional data in the HCC evaluation. Also, Radiomics is an emerging field in the assessment of HCC patients.Postablation imaging is necessary to assess the treatment results, to monitor evolution of the ablated tissue over time, and to evaluate for complications. Post- thermal treatments, imaging should be performed at regularly scheduled intervals to assess treatment response and to evaluate for new lesions and potential complications.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
- Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Milan, Italy
| | | | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Silvia Pradella
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giulia Grazzini
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Maria Chiara Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Ottaiano
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|