1
|
Lan Z, Zhong S, Qu LJ. Plant reproduction: Seed size gated by central cell fertilization. Curr Biol 2025; 35:R389-R391. [PMID: 40393403 DOI: 10.1016/j.cub.2025.03.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Double fertilization produces the embryo and endosperm, the primary components of a seed. A recent study shows how central cell fertilization specifically initiates the opening of a vascular gate to ensure efficient allocation of maternal resources for optimal seed development.
Collapse
Affiliation(s)
- Zijun Lan
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Zhong
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | - Li-Jia Qu
- State Key Laboratory for Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
2
|
Liu X, Nakajima KP, Adhikari PB, Wu X, Zhu S, Okada K, Kagenishi T, Kurotani KI, Ishida T, Nakamura M, Sato Y, Kawakatsu Y, Xie L, Huang C, He J, Yokawa K, Sawa S, Higashiyama T, Bradford KJ, Notaguchi M, Kasahara RD. Fertilization-dependent phloem end gate regulates seed size. Curr Biol 2025; 35:2049-2063.e3. [PMID: 40199323 DOI: 10.1016/j.cub.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Seed formation is essential for plant propagation and food production. We present a novel mechanism for the regulation of seed size by a newly identified "gate" at the chalazal end of the ovule regulating nutrient transport into the developing seed. This gate is blocked by callose deposition in unfertilized mature ovules (closed state), but the callose is removed after central cell fertilization, allowing nutrient transport into the seed (open state). However, if fertilization fails, callose deposition persists, preventing transportation of nutrients from the funiculus. A mutant in an ovule-expressed β-1,3-glucanase gene (AtBG_ppap) showed incomplete callose degradation after fertilization and produced smaller seeds, apparently due to its partially closed state. By contrast, an AtBG_ppap overexpression line produced larger seeds due to continuous callose degradation, fully opening the gate for nutrient transport into the seed. The mechanism was also identified in rice, indicating that it potentially could be applied widely to angiosperms to increase seed size.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kohdai P Nakajima
- Department of Biology, Technion-Institute of Technology, Haifa 320000, Israel
| | - Prakash Babu Adhikari
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Xiaoyan Wu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shaowei Zhu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kentaro Okada
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Tomoko Kagenishi
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Takashi Ishida
- Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-chou, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-chou, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Liyang Xie
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen Huang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiale He
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ken Yokawa
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
| | - Shinichiro Sawa
- Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kent J Bradford
- Department of Plant Sciences, Seed Biotechnology Center, University of California, Davis, Davis, CA 95616, USA
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan; Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502, Japan.
| | - Ryushiro D Kasahara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
3
|
Zhong S, Lan Z, Qu LJ. Ingenious Male-Female Communication Ensures Successful Double Fertilization in Angiosperms. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:401-431. [PMID: 39952677 DOI: 10.1146/annurev-arplant-083123-071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The colonization of land by plants marked a pivotal transformation in terrestrial ecosystems. In order to adapt to the terrestrial environment, angiosperms, which dominate the terrestrial flora with around 300,000 species, have evolved sophisticated mechanisms for sexual reproduction involving intricate interactions between male and female structures, starting from pollen deposition on the stigma and culminating in double fertilization within the ovule. The pollen tube plays a crucial role by navigating through female tissues to deliver sperm cells. The molecular intricacies of these male-female interactions, involving numerous signaling pathways and regulatory proteins, have been extensively studied over the past two decades. This review summarizes recent findings on the regulatory mechanisms of these male-female interactions in angiosperms. We aim to provide a comprehensive understanding of plant reproductive biology and highlight the implications of these mechanisms for crop improvement and the development of new agricultural technologies.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing, China;
| | - Zijun Lan
- State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing, China;
| | - Li-Jia Qu
- State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing, China;
| |
Collapse
|
4
|
Qiu R, Liu Y, Cai Z, Li J, Wu C, Wang G, Lin C, Peng Y, Deng Z, Tang W, Wu W, Duan Y. Glucan Synthase-like 2 is Required for Seed Initiation and Filling as Well as Pollen Fertility in Rice. RICE (NEW YORK, N.Y.) 2023; 16:44. [PMID: 37804355 PMCID: PMC10560172 DOI: 10.1186/s12284-023-00662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The Glucan synthase-like (GSL) genes are indispensable for some important highly-specialized developmental and cellular processes involving callose synthesis and deposition in plants. At present, the best-characterized reproductive functions of GSL genes are those for pollen formation and ovary expansion, but their role in seed initiation remains unknown. RESULTS We identified a rice seed mutant, watery seed 1-1 (ws1-1), which contained a mutation in the OsGSL2 gene. The mutant produced seeds lacking embryo and endosperm but filled with transparent and sucrose-rich liquid. In a ws1-1 spikelet, the ovule development was normal, but the microsporogenesis and male gametophyte development were compromised, resulting in the reduction of fertile pollen. After fertilization, while the seed coat normally developed, the embryo failed to differentiate normally. In addition, the divided endosperm-free nuclei did not migrate to the periphery of the embryo sac but aggregated so that their proliferation and cellularization were arrested. Moreover, the degeneration of nucellus cells was delayed in ws1-1. OsGSL2 is highly expressed in reproductive organs and developing seeds. Disrupting OsGSL2 reduced callose deposition on the outer walls of the microspores and impaired the formation of the annular callose sheath in developing caryopsis, leading to pollen defect and seed abortion. CONCLUSIONS Our findings revealed that OsGSL2 is essential for rice fertility and is required for embryo differentiation and endosperm-free nucleus positioning, indicating a distinct role of OsGSL2, a callose synthase gene, in seed initiation, which provides new insight into the regulation of seed development in cereals.
Collapse
Affiliation(s)
- Ronghua Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengzheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieqiong Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chunyan Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gang Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenchen Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulin Peng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhanlin Deng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiqi Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiren Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuanlin Duan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory of Crop Breeding By Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Heydlauff J, Erbasol Serbes I, Vo D, Mao Y, Gieseking S, Nakel T, Harten T, Völz R, Hoffmann A, Groß-Hardt R. Dual and opposing roles of EIN3 reveal a generation conflict during seed growth. MOLECULAR PLANT 2022; 15:363-371. [PMID: 34848348 PMCID: PMC8837274 DOI: 10.1016/j.molp.2021.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 05/28/2023]
Abstract
Seed size critically affects grain yield of crops and hence represents a key breeding target. The development of embryo-nourishing endosperm is a key driver of seed expansion. We here report unexpected dual roles of the transcription factor EIN3 in regulating seed size. These EIN3 functions have remained largely undiscovered because they oppose each other. Capitalizing on the analysis of multiple ethylene biosynthesis mutants, we demonstrate that EIN3 represses endosperm and seed development in a pathway regulated by ethylene. We, in addition, provide evidence that EIN3-mediated synergid nucleus disintegration promotes endosperm expansion. Interestingly, synergid nucleus disintegration is not affected in various ethylene biosynthesis mutants, suggesting that this promoting function of EIN3 is independent of ethylene. Whereas the growth-inhibitory ethylene-dependent EIN3 action appears to be encoded by sporophytic tissue, the growth-promoting role of EIN3 is induced by fertilization, revealing a generation conflict that converges toward the key signaling component EIN3.
Collapse
Affiliation(s)
- Juliane Heydlauff
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Isil Erbasol Serbes
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Dieu Vo
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Yanbo Mao
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Sonja Gieseking
- ZMBP, University of Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Thomas Nakel
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Theresa Harten
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Ronny Völz
- ZMBP, University of Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Anja Hoffmann
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Rita Groß-Hardt
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany.
| |
Collapse
|
6
|
Huang J, Dong J, Qu LJ. From birth to function: Male gametophyte development in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102118. [PMID: 34625367 PMCID: PMC9039994 DOI: 10.1016/j.pbi.2021.102118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 05/08/2023]
Abstract
Male germline development in flowering plants involves two distinct and successive phases, microsporogenesis and microgametogenesis, which involve one meiosis followed by two rounds of mitosis. Many aspects of distinctions after mitosis between the vegetative cell and the male germ cells are seen, from morphology to structure, and the differential functions of the two cell types in the male gametophyte are differentially needed and required for double fertilization. The two sperm cells, carriers of the hereditary substances, depend on the vegetative cell/pollen tube to be delivered to the female gametophyte for double fertilization. Thus, the intercellular communication and coordinated activity within the male gametophyte probably represent the most subtle regulation in flowering plants to guarantee the success of reproduction. This review will focus on what we have known about the differentiation process and the functional diversification of the vegetative cell and the male germ cell, the most crucial cell types for plant fertility and crop production.
Collapse
Affiliation(s)
- Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08901, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08901, USA.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China.
| |
Collapse
|
7
|
Zhong S, Liu M, Wang Z, Huang Q, Hou S, Xu YC, Ge Z, Song Z, Huang J, Qiu X, Shi Y, Xiao J, Liu P, Guo YL, Dong J, Dresselhaus T, Gu H, Qu LJ. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 2019; 364:364/6443/eaau9564. [PMID: 31147494 DOI: 10.1126/science.aau9564] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/14/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
Reproductive isolation is a prerequisite for speciation. Failure of communication between female tissues of the pistil and paternal pollen tubes imposes hybridization barriers in flowering plants. Arabidopsis thaliana LURE1 (AtLURE1) peptides and their male receptor PRK6 aid attraction of the growing pollen tube to the ovule. Here, we report that the knockout of the entire AtLURE1 gene family did not affect fertility, indicating that AtLURE1-PRK6-mediated signaling is not required for successful fertilization within one Arabidopsis species. AtLURE1s instead function as pollen tube emergence accelerators that favor conspecific pollen over pollen from other species and thus promote reproductive isolation. We also identified maternal peptides XIUQIU1 to -4, which attract pollen tubes regardless of species. Cooperation between ovule attraction and pollen tube growth acceleration favors conspecific fertilization and promotes reproductive isolation.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Meiling Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingpei Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Saiying Hou
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xinyu Qiu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yihao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Junyu Xiao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China. .,The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| |
Collapse
|
8
|
Zhong S, Qu LJ. Cysteine-rich peptides: signals for pollen tube guidance, species isolation and beyond. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1243-1245. [PMID: 31444684 DOI: 10.1007/s11427-019-9819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China. .,The National Plant Gene Research Center (Beijing), Beijing, 100101, China.
| |
Collapse
|
9
|
Milutinovic M, Lindsey BE, Wijeratne A, Hernandez JM, Grotewold N, Fernández V, Grotewold E, Brkljacic J. Arabidopsis EMSY-like (EML) histone readers are necessary for post-fertilization seed development, but prevent fertilization-independent seed formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:99-109. [PMID: 31203898 DOI: 10.1016/j.plantsci.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Seed development is a complex regulatory process that includes a transition from gametophytic to sporophytic program. The synchronized development of different seed compartments (seed coat, endosperm and embryo) depends on a balance in parental genome contributions. In the most severe cases, the disruption of the balance leads to seed abortion. This represents one of the main obstacles for the engineering of asexual reproduction through seeds (apomixis), and for generating new interspecies hybrids. The repression of auxin synthesis by the Polycomb Repressive Complex 2 (PRC2) is a major mechanism contributing to sensing genome balance. However, current efforts focusing on decreasing PRC2 or elevating auxin levels have not yet resulted in the production of apomictic seed. Here, we show that EMSY-Like Tudor/Agenet H3K36me3 histone readers EML1 and EML3 are necessary for early stages of seed development to proceed at a normal rate in Arabidopsis. We further demonstrate that both EML1 and EML3 are required to prevent the initiation of seed development in the absence of fertilization. Based on the whole genome expression analysis, we identify auxin transport and signaling genes as the most enriched downstream targets of EML1 and EML3. We hypothesize that EML1 and EML3 function to repress and soften paternal gene expression by fine-tuning auxin responses. Discovery of this pathway may contribute to the engineering of apomixis and interspecies hybrids.
Collapse
Affiliation(s)
- Milica Milutinovic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Benson E Lindsey
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Asela Wijeratne
- Department of Molecular Genetics, Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - J Marcela Hernandez
- Department of Molecular Genetics, Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Nikolas Grotewold
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Virginia Fernández
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Erich Grotewold
- Department of Molecular Genetics, Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Abstract
This review by Figueiredo and Köhler describes the molecular mechanisms driving seed development. They review the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development. The evolution of seeds defines a remarkable landmark in the history of land plants. A developing seed contains three genetically distinct structures: the embryo, the nourishing tissue, and the seed coat. While fertilization is necessary to initiate seed development in most plant species, apomicts have evolved mechanisms allowing seed formation independently of fertilization. Despite their socio–economical relevance, the molecular mechanisms driving seed development have only recently begun to be understood. Here we review the current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
11
|
Qu LJ, Sun MX. Plant reproduction: Recent discoveries from China. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:591-593. [PMID: 28805951 DOI: 10.1111/jipb.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Li-Jia Qu
- College of Life Sciences, Peking University, Beijing, China
| | - Meng-Xiang Sun
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|