1
|
Su LY, Liu ZT, Wang XL, Chen PY, Liu H, Xiong JS, Xiong AS. Evolutionary trajectories and subfunctionalization of 2 key methyltransferase regulator subfamilies in plants. PLANT PHYSIOLOGY 2025; 198:kiaf191. [PMID: 40331371 DOI: 10.1093/plphys/kiaf191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
DNA methylation, a conserved epigenetic mark in both plants and animals, plays a critical role in growth, development, and adaptability. This study explores the origin, evolution, and functional diversification of 2 key methyltransferase regulators, DNAJ-domain-containing protein 1/2/3 (DNAJ1/2/3) and SU(VAR)3-9 HOMOLOG 1/3 (SUVH1/3), in plants. By analyzing genomic data from 21 algae and 86 land plants, we discovered that DNAJ1/2/3 originated within Magnoliopsida, while SUVH1/3 emerged in ferns and evolved through retrotransposition. Both protein families have undergone multiple duplication events and positive selection throughout plant evolution, resulting in their expansion and functional divergence. In dicotyledons, DNAJ1/2/3 diverged into 3 subclades, whereas SUVH1/3 underwent a common duplication event in its ancestral lineage, resulting in 2 subgroups. Structural domain analysis revealed that the evolution of PHD fingers in DNAJ1/2/3 and AT domains in SUVH1/3, under selective pressure, enhanced their interaction capabilities and contributed to the formation of complexes involved in DNA methylation and demethylation regulation. Expression profile analysis across various plant taxa demonstrated tissue-specific expression patterns, with higher expression levels observed in meristematic tissues and active cell regions. These findings elucidate the evolutionary patterns of DNAJ1/2/3 and SUVH1/3 and offer insights into their functional diversification in plants.
Collapse
Affiliation(s)
- Li-Yao Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zheng-Tai Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xi-Liang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Pei-Yan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jin-Song Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
2
|
Nyikó T, Gyula P, Ráth S, Sós‐Hegedűs A, Csorba T, Abbas SH, Bóka K, Pettkó‐Szandtner A, Móricz ÁM, Molnár BP, Erdei AL, Szittya G. INCREASED DNA METHYLATION 3 forms a potential chromatin remodelling complex with HAIRPLUS to regulate DNA methylation and trichome development in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70085. [PMID: 40121617 PMCID: PMC11930289 DOI: 10.1111/tpj.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
DNA methylation, a dynamic epigenetic mark influencing gene expression, is regulated by DNA demethylases that remove methylated cytosines at genomic regions marked by the INCREASED DNA METHYLATION (IDM) complex. In Arabidopsis, IDM3, a small α-crystalline domain-containing protein, stabilises the IDM complex. To investigate its role in tomato, we generated slidm3 mutants using genome editing. These mutants displayed a 'hairy' phenotype with increased glandular trichomes, resembling the hairplus (hap) mutant. Affinity purification of SlIDM3-GFP associated proteins identified several chromatin remodelling factors, including HAP. Genome-wide DNA methylation analysis revealed sequence context dependent alterations in the slidm3-1 plants, similar to the hap mutant. CHH methylation was predominantly increased, while CG methylation, particularly in intergenic regions, was decreased in both mutants. This imbalanced methylation suggests the presence of a 'methylstat' mechanism attempting to restore methylation levels at abnormally demethylated sites in the mutants. Comparative functional analysis of differentially methylated regions in the slidm3-1 and hap mutants identified potential methylation-regulated genes that could be linked to the hairy phenotype. Our findings indicate that SlIDM3 may form a chromatin remodelling complex with HAP, epigenetically regulating trichome development.
Collapse
Affiliation(s)
- Tünde Nyikó
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Péter Gyula
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Szilvia Ráth
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Anita Sós‐Hegedűs
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Tibor Csorba
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Syed Hussam Abbas
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Károly Bóka
- Department of Plant AnatomyEötvös Loránd UniversityBudapestHungary
| | | | - Ágnes M. Móricz
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research NetworkBudapestHungary
| | - Béla Péter Molnár
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research NetworkBudapestHungary
| | - Anna Laura Erdei
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research NetworkBudapestHungary
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - György Szittya
- Department of Plant BiotechnologyHungarian University of Agriculture and Life SciencesGödöllőHungary
| |
Collapse
|
3
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2025; 52:129-144. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
4
|
Xue Y, Cao X, Chen X, Deng X, Deng XW, Ding Y, Dong A, Duan CG, Fang X, Gong L, Gong Z, Gu X, He C, He H, He S, He XJ, He Y, He Y, Jia G, Jiang D, Jiang J, Lai J, Lang Z, Li C, Li Q, Li X, Liu B, Liu B, Luo X, Qi Y, Qian W, Ren G, Song Q, Song X, Tian Z, Wang JW, Wang Y, Wu L, Wu Z, Xia R, Xiao J, Xu L, Xu ZY, Yan W, Yang H, Zhai J, Zhang Y, Zhao Y, Zhong X, Zhou DX, Zhou M, Zhou Y, Zhu B, Zhu JK, Liu Q. Epigenetics in the modern era of crop improvements. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2784-3. [PMID: 39808224 DOI: 10.1007/s11427-024-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits. With recent technological advancements, epigenetic regulations at the single-cell level and at the large-scale population level are emerging as new focuses. This review offers an in-depth synthesis of the diverse epigenetic regulations, detailing the catalytic machinery and regulatory functions. It delves into the intricate interplay among various epigenetic elements and their collective influence on the modulation of crop traits. Furthermore, it examines recent breakthroughs in technologies for epigenetic modifications and their integration into strategies for crop improvement. The review underscores the transformative potential of epigenetic strategies in bolstering crop performance, advocating for the development of efficient tools to fully exploit the agricultural benefits of epigenetic insights.
Collapse
Affiliation(s)
- Yan Xue
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yong Ding
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cheng-Guo Duan
- Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chongsheng He
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082, China.
| | - Hang He
- Institute of Advanced Agricultural Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Shengbo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China.
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuehui He
- School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiao Luo
- Shandong Provincial Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yuan Wang
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhe Wu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, 510640, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yusheng Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, 63130, USA.
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huebei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France.
| | - Ming Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Talarico E, Zambelli A, Araniti F, Greco E, Chiappetta A, Bruno L. Unravelling the Epigenetic Code: DNA Methylation in Plants and Its Role in Stress Response. EPIGENOMES 2024; 8:30. [PMID: 39189256 PMCID: PMC11348131 DOI: 10.3390/epigenomes8030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress. This review explores the current understanding of epigenetic modifications, including DNA methylation, and their roles in modulating gene expression patterns under environmental stress conditions. The dynamic nature of epigenetic modifications, their crosstalk with stress-responsive pathways, and their potential implications for plant adaptation and crop improvement are highlighted in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Alice Zambelli
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy; (A.Z.); (F.A.)
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy; (E.T.); (E.G.); (A.C.)
| |
Collapse
|
7
|
Xin X, Li P, Zhao X, Yu Y, Wang W, Jin G, Wang J, Sun L, Zhang D, Zhang F, Yu S, Su T. Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa. Nat Commun 2024; 15:5470. [PMID: 38937441 PMCID: PMC11211497 DOI: 10.1038/s41467-024-49721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| |
Collapse
|
8
|
Hu M, Xi Z, Wang J. Epigenetic Regulation of Subgenomic Gene Expression in Allotetraploid Brassica napus. PLANTS (BASEL, SWITZERLAND) 2023; 12:2608. [PMID: 37514223 PMCID: PMC10383903 DOI: 10.3390/plants12142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
The allotetraploid Brasscia napus has now been extensively utilized to reveal the genetic processes involved in hybridization and polyploidization. Here, transcriptome, WGBS, and Chip-Seq sequencing data were obtained to explore the regulatory consequences of DNA methylation and histone modifications on gene expression in B. napus. When compared with diploid parents, the expression levels of 14,266 (about 32%) and 17,054 (about 30%) genes were altered in the An and Cn subgenomes, respectively, and a total of 4982 DEGs were identified in B. napus. Genes with high or no expression in diploid parents often shifted to medium or low expression in B. napus. The number of genes with elevated methylation levels in gene promoters and gene body regions has increased in An and Cn subgenomes. The peak number of H3K4me3 modification increased, while the peak number of H3K27ac and H3K27me3 decreased in An and Cn subgenomes, and more genes that maintained parental histone modifications were identified in Cn subgenome. The differential multiples of DEGs in B. napus were positively correlated with DNA methylation levels in promoters and the gene body, and the differential multiples of these DEGs were also affected by the degree of variation in DNA methylation levels. Further analysis revealed that about 99% of DEGs were of DNA methylation, and about 68% of DEGs were modified by at least two types of DNA methylation and H3K4me3, H3K27ac, and H3K27me3 histone modifications. These results demonstrate that DNA methylation is crucial for gene expression regulation, and different epigenetic modifications have an essential function in regulating the differential expression of genes in B. napus.
Collapse
Affiliation(s)
- Meimei Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zengde Xi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Cadavid IC, Balbinott N, Margis R. Beyond transcription factors: more regulatory layers affecting soybean gene expression under abiotic stress. Genet Mol Biol 2023; 46:e20220166. [PMID: 36706026 PMCID: PMC9881580 DOI: 10.1590/1678-4685-gmb-2022-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2023] Open
Abstract
Abiotic stresses such as nutritional imbalance, salt, light intensity, and high and low temperatures negatively affect plant growth and development. Through the course of evolution, plants developed multiple mechanisms to cope with environmental variations, such as physiological, morphological, and molecular adaptations. Epigenetic regulation, transcription factor activity, and post-transcriptional regulation operated by RNA molecules are mechanisms associated with gene expression regulation under stress. Epigenetic regulation, including histone and DNA covalent modifications, triggers chromatin remodeling and changes the accessibility of transcription machinery leading to alterations in gene activity and plant homeostasis responses. Soybean is a legume widely produced and whose productivity is deeply affected by abiotic stresses. Many studies explored how soybean faces stress to identify key elements and improve productivity through breeding and genetic engineering. This review summarizes recent progress in soybean gene expression regulation through epigenetic modifications and circRNAs pathways, and points out the knowledge gaps that are important to study by the scientific community. It focuses on epigenetic factors participating in soybean abiotic stress responses, and chromatin modifications in response to stressful environments and draws attention to the regulatory potential of circular RNA in post-transcriptional processing.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, Brazil
| | - Natalia Balbinott
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, Brazil
| | - Rogerio Margis
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Biofisica, Porto Alegre, Brazil
| |
Collapse
|
10
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Wang Z, Zheng H, Huang J, Yang G, Yan K, Zhang S, Wu C, Zheng C. DEMETHYLATION REGULATOR 1 regulates DNA demethylation of the nuclear and mitochondrial genomes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2344-2360. [PMID: 36223079 DOI: 10.1111/jipb.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Active DNA demethylation effectively modulates gene expression during plant development and in response to stress. However, little is known about the upstream regulatory factors that regulate DNA demethylation. We determined that the demethylation regulator 1 (demr1) mutant exhibits a distinct DNA methylation profile at selected loci queried by methylation-sensitive polymerase chain reaction and globally based on whole-genome bisulfite sequencing. Notably, the transcript levels of the DNA demethylase gene REPRESSOR OF SILENCING 1 (ROS1) were lower in the demr1 mutant. We established that DEMR1 directly binds to the ROS1 promoter in vivo and in vitro, and the methylation level in the DNA methylation monitoring sequence of ROS1 promoter decreased by 60% in the demr1 mutant. About 40% of the hyper-differentially methylated regions (DMRs) in the demr1 mutant were shared with the ros1-4 mutant. Genetic analysis indicated that DEMR1 acts upstream of ROS1 to positively regulate abscisic acid (ABA) signaling during seed germination and seedling establishment stages. Surprisingly, the loss of DEMR1 function also caused a rise in methylation levels of the mitochondrial genome, impaired mitochondrial structure and an early flowering phenotype. Together, our results show that DEMR1 is a novel regulator of DNA demethylation of both the nuclear and mitochondrial genomes in response to ABA and plant development in Arabidopsis.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
12
|
Kosová V, Latzel V, Hadincová V, Münzbergová Z. Effect of DNA methylation, modified by 5-azaC, on ecophysiological responses of a clonal plant to changing climate. Sci Rep 2022; 12:17262. [PMID: 36241768 PMCID: PMC9568541 DOI: 10.1038/s41598-022-22125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic regulation of gene expression is expected to be an important mechanism behind phenotypic plasticity. Whether epigenetic regulation affects species ecophysiological adaptations to changing climate remains largely unexplored. We compared ecophysiological traits between individuals treated with 5-azaC, assumed to lead to DNA demethylation, with control individuals of a clonal grass originating from and grown under different climates, simulating different directions and magnitudes of climate change. We linked the ecophysiological data to proxies of fitness. Main effects of plant origin and cultivating conditions predicted variation in plant traits, but 5-azaC did not. Effects of 5-azaC interacted with conditions of cultivation and plant origin. The direction of the 5-azaC effects suggests that DNA methylation does not reflect species long-term adaptations to climate of origin and species likely epigenetically adjusted to the conditions experienced during experiment set-up. Ecophysiology translated to proxies of fitness, but the intensity and direction of the relationships were context dependent and affected by 5-azaC. The study suggests that effects of DNA methylation depend on conditions of plant origin and current climate. Direction of 5-azaC effects suggests limited role of epigenetic modifications in long-term adaptation of plants. It rather facilitates fast adaptations to temporal fluctuations of the environment.
Collapse
Affiliation(s)
- Veronika Kosová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Latzel
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Věroslava Hadincová
- grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Zuzana Münzbergová
- grid.4491.80000 0004 1937 116XDepartment of Botany, Faculty of Science, Charles University, Prague, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| |
Collapse
|
13
|
Xiao X, Meng F, Satheesh V, Xi Y, Lei M. An Agrobacterium-mediated transient expression method contributes to functional analysis of a transcription factor and potential application of gene editing in Chenopodium quinoa. PLANT CELL REPORTS 2022; 41:1975-1985. [PMID: 35829752 DOI: 10.1007/s00299-022-02902-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
An efficient Agrobacterium-mediated transient expression method was developed, which contributed to the functional characterization of the transcription factor CqPHR1, and demonstrates the potential application of gene editing in quinoa. Chenopodium quinoa is a crop expected to ensure global food security in future due to its high resistance to multiple abiotic stresses and nutritional value. We cloned one of the paralogous genes of the Arabidopsis homolog PHR1 (PHOSPHATE STARVATION RESPONSE 1) in quinoa-inbred lines by reverse genetic approach. Overexpression of CqPHR1 driven by the constitutive CaMV 35S promoter in Arabidopsis phr1 mutant can complement its phenotypes, including the induction of phosphate starvation-induced (PSI) genes and anthocyanin accumulation in leaves. By Agrobacterium-mediated gene transient expression, we found that CqPHR1 localized in the nucleus of quinoa cells, and overexpression of CqPHR1 in quinoa cells promoted PSI genes expression, which further revealed the function of CqPHR1 as a transcription factor. We have also shown that the transient expression system can be used to express Cas9 protein in various quinoa-inbred lines and perform effective gene editing in quinoa tissue. The method developed in this study will be useful for verifying the effectiveness of gene-editing systems in quinoa cells and has potential application in the generation of gene-edited quinoa with heritable traits.
Collapse
Affiliation(s)
- Xinlong Xiao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fanxiao Meng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yue Xi
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
14
|
Niu C, Jiang L, Cao F, Liu C, Guo J, Zhang Z, Yue Q, Hou N, Liu Z, Li X, Tahir MM, He J, Li Z, Li C, Ma F, Guan Q. Methylation of a MITE insertion in the MdRFNR1-1 promoter is positively associated with its allelic expression in apple in response to drought stress. THE PLANT CELL 2022; 34:3983-4006. [PMID: 35897144 PMCID: PMC9520589 DOI: 10.1093/plcell/koac220] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are widely distributed in the plant genome and can be methylated. However, whether DNA methylation of MITEs is associated with induced allelic expression and drought tolerance is unclear. Here, we identified the drought-inducible MdRFNR1 (root-type ferredoxin-NADP+ oxidoreductase) gene in apple (Malus domestica). MdRFNR1 plays a positive role in drought tolerance by regulating the redox system, including increasing NADP+ accumulation and catalase and peroxidase activities and decreasing NADPH levels. Sequence analysis identified a MITE insertion (MITE-MdRF1) in the promoter of MdRFNR1-1 but not the MdRFNR1-2 allele. MdRFNR1-1 but not MdRFNR1-2 expression was significantly induced by drought stress, which was positively associated with the MITE-MdRF1 insertion and its DNA methylation. The methylated MITE-MdRF1 is recognized by the transcriptional anti-silencing factors MdSUVH1 and MdSUVH3, which recruit the DNAJ domain-containing proteins MdDNAJ1, MdDNAJ2, and MdDNAJ5, thereby activating MdRFNR1-1 expression under drought stress. Finally, we showed that MdSUVH1 and MdDNAJ1 are positive regulators of drought tolerance. These findings illustrate the molecular roles of methylated MITE-MdRF1 (which is recognized by the MdSUVH-MdDNAJ complex) in induced MdRFNR1-1 expression as well as the drought response of apple and shed light on the molecular mechanisms of natural variation in perennial trees.
Collapse
Affiliation(s)
| | | | | | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zitong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | | |
Collapse
|
15
|
Xiao X, Zhang J, Satheesh V, Meng F, Gao W, Dong J, Zheng Z, An GY, Nussaume L, Liu D, Lei M. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. NATURE PLANTS 2022; 8:1074-1081. [PMID: 36050464 DOI: 10.1038/s41477-022-01231-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The coordinated distribution of inorganic phosphate (Pi) between roots and shoots is an important process that plants use to maintain Pi homeostasis. SHORT-ROOT (SHR) is well characterized for its function in root radial patterning. Here we demonstrate a role of SHR in controlling Pi allocation from root to shoot by regulating PHOSPHATE1 in the root differentiation zone. We recovered a weak mutant allele of SHR in Arabidopsis that accumulates much less Pi in the shoot and shows a constitutive Pi starvation response under Pi-sufficient conditions. In addition, Pi starvation suppresses SHR protein accumulation and releases its inhibition on the HD-ZIP III transcription factor PHB. PHB accumulates and directly binds the promoter of PHOSPHATE2 to upregulate its transcription, resulting in PHOSPHATE1 degradation in the xylem-pole pericycle cells. Our findings reveal a previously unrecognized mechanism of how plants regulate Pi translocation from roots to shoots.
Collapse
Affiliation(s)
- Xinlong Xiao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jieqiong Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fanxiao Meng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenlan Gao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinsong Dong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zai Zheng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guo-Yong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Laurent Nussaume
- Aix Marseille University, CEA, CNRS, BIAM, UMR7265, EBM (Bioénergies et microalgues), Saint-Paul lez Durance, France
| | - Dong Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
16
|
Martínez-Rivas FJ, Blanco-Portales R, Molina-Hidalgo FJ, Caballero JL, Perez de Souza L, Alseekh S, Fernie AR, Muñoz-Blanco J, Rodríguez-Franco A. Azacytidine arrests ripening in cultivated strawberry (Fragaria × ananassa) by repressing key genes and altering hormone contents. BMC PLANT BIOLOGY 2022; 22:278. [PMID: 35672704 PMCID: PMC9172142 DOI: 10.1186/s12870-022-03670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coordinated in strawberry. RESULTS Repeated injections of the hypomethylating compound 5-azacytidine (AZA) into green and unripe Fragaria × ananassa receptacles fully arrested the ripening of the fruit. The process, however, was reversible since treated fruit parts reached full maturity within a few days after AZA treatment was stopped. Transcriptomic analyses showed that key genes responsible for the biosynthesis of anthocyanins, phenylpropanoids, and hormones such as abscisic acid (ABA) were affected by the AZA treatment. In fact, AZA downregulated genes associated with ABA biosynthetic genes but upregulated genes associated with its degradation. AZA treatment additionally downregulated a number of essential transcription factors associated with the regulation and control of ripening. Metabolic analyses revealed a marked imbalance in hormone levels, with treated parts accumulating auxins, gibberellins and ABA degradation products, as well as metabolites associated with unripe fruits. CONCLUSIONS AZA completely halted strawberry ripening by altering the hormone balance, and the expression of genes involves in hormone biosynthesis and degradation processes. These results contradict those previously obtained in other climacteric and fleshly fruits, where AZA led to premature ripening. In any case, our results suggests that the strawberry ripening process is governed by methylation marks.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - José Luis Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| | - Antonio Rodríguez-Franco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| |
Collapse
|
17
|
Hu H, Du J. Structure and mechanism of histone methylation dynamics in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102211. [PMID: 35452951 DOI: 10.1016/j.pbi.2022.102211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Histone methylation plays a central role in regulating chromatin state and gene expression in Arabidopsis and is involved in a variety of physiological and developmental processes. Dynamic regulation of histone methylation relies on both histone methyltransferase "writer" and histone demethylases "eraser" proteins. In this review, we focus on the four major histone methylation modifications in Arabidopsis H3, H3K4, H3K9, H3K27, and H3K36, and summarize current knowledge of the dynamic regulation of these modifications, with an emphasis on the biochemical and structural perspectives of histone methyltransferases and demethylases.
Collapse
Affiliation(s)
- Hongmiao Hu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat Commun 2022; 13:1335. [PMID: 35288562 PMCID: PMC8921224 DOI: 10.1038/s41467-022-28940-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
A contribution of DNA methylation to defense against invading nucleic acids and maintenance of genome integrity is uncontested; however, our understanding of the extent of involvement of this epigenetic mark in genome-wide gene regulation and plant developmental control is incomplete. Here, we knock out all five known DNA methyltransferases in Arabidopsis, generating DNA methylation-free plants. This quintuple mutant exhibits a suite of developmental defects, unequivocally demonstrating that DNA methylation is essential for multiple aspects of plant development. We show that CG methylation and non-CG methylation are required for a plethora of biological processes, including pavement cell shape, endoreduplication, cell death, flowering, trichome morphology, vasculature and meristem development, and root cell fate determination. Moreover, we find that DNA methylation has a strong dose-dependent effect on gene expression and repression of transposable elements. Taken together, our results demonstrate that DNA methylation is dispensable for Arabidopsis survival but essential for the proper regulation of multiple biological processes. Our understanding of the extent of involvement of DNA methylation in genome-wide gene regulation and plant developmental control is incomplete. Here, the authors knock out all five known DNA methyltransferases and show the developmental and gene expression changes in the DNA methylation-free Arabidopsis plants.
Collapse
|
19
|
Sehrish S, Sumbal W, Xie M, Zhao C, Zuo R, Gao F, Liu S. Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L. Int J Mol Sci 2022; 23:ijms23041936. [PMID: 35216050 PMCID: PMC8879272 DOI: 10.3390/ijms23041936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022] Open
Abstract
SET domain group encoding proteins function as histone lysine methyltransferases. These proteins are involved in various biological processes, including plant development and adaption to the environment by modifying the chromatin structures. So far, the SET domain genes (SDGs) have not been systematically investigated in Brassica napus (B. napus). In the current study, through genome-wide analysis, a total of 122 SDGs were identified in the B. napus genome. These BnSDGs were subdivided into seven (I-VII) classes based on phylogeny analysis, domain configurations, and motif distribution. Segmental duplication was involved in the evolution of this family, and the duplicated genes were under strong purifying selection. The promoter sequence of BnSDGs consisted of various growth, hormones, and stress-related cis-acting elements along with transcription factor binding sites (TFBSs) for 20 TF families in 59 of the 122 BnSDGs. The gene ontology (GO) analysis revealed that BnSDGs were closely associated with histone and non-histone methylation and metal binding capacity localized mostly in the nucleus. The in silico expression analysis at four developmental stages in leaf, stem root, floral organ, silique, and seed tissues showed a broad range of tissue and stage-specific expression pattern. The expression analysis under four abiotic stresses (dehydration, cold, ABA, and salinity) also provided evidence for the importance of BnSDGs in stress environments. Based on expression analysis, we performed reverse transcription-quantitative PCR for 15 target BnSDGs in eight tissues (young leaf, mature leaf, root, stem, carpel, stamen, sepal, and petals). Our results were in accordance with the in silico expression data, suggesting the importance of these genes in plant development. In conclusion, this study lays a foundation for future functional studies on SDGs in B. napus.
Collapse
|
20
|
Wang L, Zheng K, Zeng L, Xu D, Zhu T, Yin Y, Zhan H, Wu Y, Yang DL. Reinforcement of CHH methylation through RNA-directed DNA methylation ensures sexual reproduction in rice. PLANT PHYSIOLOGY 2022; 188:1189-1209. [PMID: 34791444 PMCID: PMC8825330 DOI: 10.1093/plphys/kiab531] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 05/23/2023]
Abstract
DNA methylation is an important epigenetic mark that regulates the expression of genes and transposons. RNA-directed DNA methylation (RdDM) is the main molecular pathway responsible for de novo DNA methylation in plants. Although the mechanism of RdDM has been well studied in Arabidopsis (Arabidopsis thaliana), most mutations in RdDM genes cause no remarkable developmental defects in Arabidopsis. Here, we isolated and cloned Five Elements Mountain 1 (FEM1), which encodes RNA-dependent RNA polymerase 2 (OsRDR2) in rice (Oryza sativa). Mutation in OsRDR2 abolished the accumulation of 24-nt small interfering RNAs, and consequently substantially decreased genome-wide CHH (H = A, C, or T) methylation. Moreover, male and female reproductive development was disturbed, which led to sterility in osrdr2 mutants. We discovered that OsRDR2-dependent DNA methylation may regulate the expression of multiple key genes involved in stamen development, meiosis, and pollen viability. In wild-type (WT) plants but not in osrdr2 mutants, genome-wide CHH methylation levels were greater in panicles, stamens, and pistils than in seedlings. The global increase of CHH methylation in reproductive organs of the WT was mainly explained by the enhancement of RdDM activity, which includes OsRDR2 activity. Our results, which revealed a global increase in CHH methylation through enhancement of RdDM activity in reproductive organs, suggest a crucial role for OsRDR2 in the sexual reproduction of rice.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kezhi Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjun Zeng
- Yichun Academy of Science, Yichun 336000, Jiangxi Province, China
| | - Dachao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yumeng Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Fonseca R, Capel C, Yuste-Lisbona FJ, Quispe JL, Gómez-Martín C, Lebrón R, Hackenberg M, Oliver JL, Angosto T, Lozano R, Capel J. Functional characterization of the tomato HAIRPLUS gene reveals the implication of the epigenome in the control of glandular trichome formation. HORTICULTURE RESEARCH 2022; 9:uhab015. [PMID: 35039829 PMCID: PMC8795820 DOI: 10.1093/hr/uhab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/18/2022] [Accepted: 10/01/2021] [Indexed: 06/14/2023]
Abstract
Trichomes are specialised epidermal cells developed in the aerial surface of almost every terrestrial plant. These structures form physical barriers, which combined with their capability of synthesis of complex molecules, prevent plagues from spreading and confer trichomes a key role in the defence against herbivores. In this work, the tomato gene HAIRPLUS (HAP) that controls glandular trichome density in tomato plants was characterised. HAP belongs to a group of proteins involved in histone tail modifications although some also bind methylated DNA. HAP loss of function promotes epigenomic modifications in the tomato genome reflected in numerous differentially methylated cytosines and causes transcriptomic changes in hap mutant plants. Taken together, these findings demonstrate that HAP links epigenome remodelling with multicellular glandular trichome development and reveal that HAP is a valuable genomic tool for pest resistance in tomato breeding.
Collapse
Affiliation(s)
- Rocío Fonseca
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Jorge L Quispe
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Cristina Gómez-Martín
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Ricardo Lebrón
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - José L Oliver
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Trinidad Angosto
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Juan Capel
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
22
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
23
|
Ezhova TA. Paradoxes of Plant Epigenetics. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Plants have a unique ability to adapt ontogenesis to changing environmental conditions and the influence of stress factors. This ability is based on the existence of two specific features of epigenetic regulation in plants, which seem to be mutually exclusive at first glance. On the one hand, plants are capable of partial epigenetic reprogramming of the genome, which can lead to adaptation of physiology and metabolism to changed environmental conditions as well as to changes in ontogenesis programs. On the other hand, plants can show amazing stability of epigenetic modifications and the ability to transmit them to vegetative and sexual generations. The combination of these inextricably linked epigenetic features not only ensures survival in the conditions of a sessile lifestyle but also underlies a surprisingly wide morphological diversity of plants, which can lead to the appearance of morphs within one population and the existence of interpopulation morphological differences. The review discusses the molecular genetic mechanisms that cause a paradoxical combination of the stability and lability properties of epigenetic modifications and underlie the polyvariance of ontogenesis. We also consider the existing approaches for studying the role of epigenetic regulation in the manifestation of polyvariance of ontogenesis and discuss their limitations and prospects.
Collapse
|
24
|
Syngelaki E, Paetzold C, Hörandl E. Gene Expression Profiles Suggest a Better Cold Acclimation of Polyploids in the Alpine Species Ranunculus kuepferi (Ranunculaceae). Genes (Basel) 2021; 12:1818. [PMID: 34828424 PMCID: PMC8625111 DOI: 10.3390/genes12111818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alpine habitats are shaped by harsh abiotic conditions and cold climates. Temperature stress can affect phenotypic plasticity, reproduction, and epigenetic profiles, which may affect acclimation and adaptation. Distribution patterns suggest that polyploidy seems to be advantageous under cold conditions. Nevertheless, whether temperature stress can induce gene expression changes in different cytotypes, and how the response is initialized through gene set pathways and epigenetic control remain vague for non-model plants. The perennial alpine plant Ranunculus kuepferi was used to investigate the effect of cold stress on gene expression profiles. Diploid and autotetraploid individuals were exposed to cold and warm conditions in climate growth chambers and analyzed via transcriptome sequencing and qRT-PCR. Overall, cold stress changed gene expression profiles of both cytotypes and induced cold acclimation. Diploids changed more gene set pathways than tetraploids, and suppressed pathways involved in ion/cation homeostasis. Tetraploids mostly activated gene set pathways related to cell wall and plasma membrane. An epigenetic background for gene regulation in response to temperature conditions is indicated. Results suggest that perennial alpine plants can respond to temperature extremes via altered gene expression. Tetraploids are better acclimated to cold conditions, enabling them to colonize colder climatic areas in the Alps.
Collapse
Affiliation(s)
- Eleni Syngelaki
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Claudia Paetzold
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325 Frankfurt am Main, Germany;
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
25
|
Miao W, Dai J, Wang Y, Wang Q, Lu C, La Y, Niu J, Tan F, Zhou S, Wu Y, Chen H, La H. Roles of IDM3 and SDJ1/2/3 in Establishment and/or Maintenance of DNA Methylation in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:1409-1422. [PMID: 34185870 DOI: 10.1093/pcp/pcab091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Previous studies had demonstrated that in Arabidopsis, IDM3 is involved in ROS1-mediated DNA demethylation pathway, and SUVH-SDJ complex functions as a DNA methylation reader complex for enhancing gene transcription, which presumably recruits ROS1 to the promoters of target genes for DNA demethylation. Here, our analyses, however, showed that the IDM3 and SDJ1/2/3, the components of the SUVH-SDJ complex, are implicated in establishing and/or maintaining DNA methylation as well through DDR (DRD1-DMS3-RDM1) complex. idm3-3 or sdj1/2/3 mutations led to genome-wide DNA hypomethylation, and both mutants shared a large number of common hypo-DMRs (Differentially Methylated Regions) with rdm1-4 and dms3-4, suggesting that IDM3 and SDJ1/2/3 help establish and/or maintain DNA methylation, mediated by RdDM pathway, at a subset of genomic regions largely through DDR complex. IDM3 is able to strongly interact with RDM1 and DMS3, but weakly with SDJ1 and SDJ3; SDJ1 and SDJ3 is capable of interacting separately with RDM1 and DMS3. Furthermore, comparisons of DNA methylation features in idm3-3 and sdj1/2/3 indicated that idm3-3 and sdj1/2/3 mutations make differential impacts on DNA methylation levels and patterns on a genome-wide scale, indicating that they are targeted to quite distinct genomic regions for aiding in DNA methylation. Further analyses on ChIP-seq data demonstrated that RDM1, DMS3 and NRPE1 are enriched in IDM3- and SDJ1/2/3-targted regions. Altogether, our results provide clear demonstration that IDM3 and SDJ1/2/3 play a part in establishing and/or maintaining DNA methylation of a group of genomic regions, through the DDR complex.
Collapse
Affiliation(s)
- Wei Miao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yutong Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yumei La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiayu Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shaoxia Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Huhui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
26
|
Rashid MM, Vaishnav A, Verma RK, Sharma P, Suprasanna P, Gaur RK. Epigenetic regulation of salinity stress responses in cereals. Mol Biol Rep 2021; 49:761-772. [PMID: 34773178 DOI: 10.1007/s11033-021-06922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.
Collapse
Affiliation(s)
- Md Mahtab Rashid
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281121, India.,Agroecology and Environment, Agroscope (Reckenholz), 8046, Zürich, Switzerland
| | - Rakesh Kumar Verma
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - P Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - R K Gaur
- Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
27
|
Feng Z, Zhan X, Pang J, Liu X, Zhang H, Lang Z, Zhu JK. Genetic analysis implicates a molecular chaperone complex in regulating epigenetic silencing of methylated genomic regions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1451-1461. [PMID: 34289245 DOI: 10.1111/jipb.13155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
DNA cytosine methylation confers stable epigenetic silencing in plants and many animals. However, the mechanisms underlying DNA methylation-mediated genomic silencing are not fully understood. We conducted a forward genetic screen for cellular factors required for the silencing of a heavily methylated p35S:NPTII transgene in the Arabidopsis thaliana rdm1-1 mutant background, which led to the identification of a Hsp20 family protein, RDS1 (rdm1-1 suppressor 1). Loss-of-function mutations in RDS1 released the silencing of the p35S::NPTII transgene in rdm1-1 mutant plants, without changing the DNA methylation state of the transgene. Protein interaction analyses suggest that RDS1 exists in a protein complex consisting of the methyl-DNA binding domain proteins MBD5 and MBD6, two other Hsp20 family proteins, RDS2 and IDM3, a Hsp40/DNAJ family protein, and a Hsp70 family protein. Like rds1 mutations, mutations in RDS2, MBD5, or MBD6 release the silencing of the transgene in the rdm1 mutant background. Our results suggest that Hsp20, Hsp40, and Hsp70 proteins may form a complex that is recruited to some genomic regions with DNA methylation by methyl-DNA binding proteins to regulate the state of silencing of these regions.
Collapse
Affiliation(s)
- Zhengyan Feng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Jia Pang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
28
|
Scheid R, Chen J, Zhong X. Biological role and mechanism of chromatin readers in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102008. [PMID: 33581373 PMCID: PMC8222062 DOI: 10.1016/j.pbi.2021.102008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 05/05/2023]
Abstract
Epigenetic modifications are important gene regulatory mechanisms conserved in plants, animals, and fungi. Chromatin reader domains are protein-protein/DNA interaction modules acting within the chromatin-modifying complex to function as molecular interpreters of the epigenetic code. Understanding how reader proteins recognize specific epigenetic modifications and mediate downstream chromatin and transcriptional events is fundamental to many biological processes. Recent studies have uncovered a number of novel reader proteins with diverse functions and mechanisms in plants. Here, we provide an overview of the recent progress on reader-mark recognition modes, the mechanisms by which reader proteins influence chromatin dynamics, and how reader-chromatin interactions regulate biological function. Because of space limitations, this review focuses on reader domains in plants that specifically bind histone methylation, histone acetylation, and DNA methylation.
Collapse
Affiliation(s)
- Ray Scheid
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jiani Chen
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
29
|
Zhang YZ, Lin J, Ren Z, Chen CX, Miki D, Xie SS, Zhang J, Chang YN, Jiang J, Yan J, Li QQ, Zhu JK, Duan CG. Genome-wide distribution and functions of the AAE complex in epigenetic regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:707-722. [PMID: 33438356 DOI: 10.1111/jipb.13068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhizhong Ren
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chun-Xiang Chen
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jun Yan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, 91766, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, 47907, USA
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
30
|
Zhan X, Lu Y, Zhu JK, Botella JR. Genome editing for plant research and crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:3-33. [PMID: 33369120 DOI: 10.1111/jipb.13063] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel (insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
Collapse
Affiliation(s)
- Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Xianyang, 712100, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
31
|
Kong X, Hong Y, Hsu YF, Huang H, Liu X, Song Z, Zhu JK. SIZ1-Mediated SUMOylation of ROS1 Enhances Its Stability and Positively Regulates Active DNA Demethylation in Arabidopsis. MOLECULAR PLANT 2020; 13:1816-1824. [PMID: 32927102 DOI: 10.1016/j.molp.2020.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/21/2020] [Accepted: 09/08/2020] [Indexed: 05/20/2023]
Abstract
The 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1)-mediated active DNA demethylation is critical for shaping the genomic DNA methylation landscape in Arabidopsis. Whether and how the stability of ROS1 may be regulated by post-translational modifications is unknown. Using a methylation-sensitive PCR (CHOP-PCR)-based forward genetic screen for Arabidopsis DNA hyper-methylation mutants, we identified the SUMO E3 ligase SIZ1 as a critical regulator of active DNA demethylation. Dysfunction of SIZ1 leads to hyper-methylation at approximately 1000 genomic regions. SIZ1 physically interacts with ROS1 and mediates the SUMOylation of ROS1. The SUMOylation of ROS1 is reduced in siz1 mutant plants. Compared with that in wild-type plants, the protein level of ROS1 is significantly decreased, whereas there is an increased level of ROS1 transcripts in siz1 mutant plants. Our results suggest that SIZ1-mediated SUMOylation of ROS1 promotes its stability and positively regulates active DNA demethylation.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Feng Hsu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Huan Huang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Zhe Song
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Wang L, Qiao H. Chromatin regulation in plant hormone and plant stress responses. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:164-170. [PMID: 33142261 PMCID: PMC8237520 DOI: 10.1016/j.pbi.2020.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
The gene expression is tightly regulated temporally and spatially to ensure the plant and animal proper development, function, growth, and survival under different environmental conditions. Chromatin regulation plays a central role in the gene expression by providing transcription factors and the transcription machinery with dynamic access to an otherwise tightly packaged genome. In this review, we will summarize recent progress in understanding the roles of chromatin regulation in the gene expression, and their contribution to the plant hormone and stress responses. We highlight the most recent publications within this topic and underline the roles of chromatin regulation in gene expression.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
33
|
Miura K, Yoshida H, Nosaki S, Kaneko MK, Kato Y. RAP Tag and PMab-2 Antibody: A Tagging System for Detecting and Purifying Proteins in Plant Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:510444. [PMID: 33013955 PMCID: PMC7511514 DOI: 10.3389/fpls.2020.510444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/26/2020] [Indexed: 05/25/2023]
Abstract
An affinity tag system requires both high affinity and specificity. The RAP tag epitope DMVNPGLEDRIE, derived from rat podoplanin (PDPN), is specifically recognized by PMab-2 monoclonal antibodies in rats. Here, we demonstrated that high levels of PMab-2 can be produced in Nicotiana benthamiana and plant-derived PMab-2 possesses similar activity to CHO-derived PMab-2, and the RAP tag presents a useful tagging system for detecting and purifying proteins from plant cells. The heavy chain of PMab-2 fused with KDEL, an endoplasmic reticulum retention sequence, and the light chain of the antibody were introduced into N. benthamiana by agroinfiltration. The expression of PMab-2 peaked 4 days after agroinfiltration, and approximately 0.3 mg/g fresh weight of the antibody was accumulated. After purification, the plant-derived PMab-2 successfully recognized rat PDPN expressed in CHO-K1 cells and exhibited almost the same binding activity as CHO-derived PMab-2. The RAP-tagged proteins expressed in plant cells were specifically recognized by PMab-2. These results indicate that PMab-2 can accumulate at high levels in N. benthamiana and is easily purified and that the RAP tagging system presents a useful tool for detecting and purifying proteins of interest in plant cells.
Collapse
Affiliation(s)
- Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hideki Yoshida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Shohei Nosaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
34
|
Zhang J, Zhang YZ, Jiang J, Duan CG. The Crosstalk Between Epigenetic Mechanisms and Alternative RNA Processing Regulation. Front Genet 2020; 11:998. [PMID: 32973889 PMCID: PMC7472560 DOI: 10.3389/fgene.2020.00998] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
As a co-transcriptional process, RNA processing, including alternative splicing and alternative polyadenylation, is crucial for the generation of multiple mRNA isoforms. RNA processing mechanisms are widespread across all higher eukaryotes and play critical roles in cell differentiation, organ development and disease response. Recently, significant progresses have been made in understanding the mechanism of RNA processing. RNA processing is regulated by trans-acting factors such as splicing factors, RNA-binding proteins and cis-sequences in pre-mRNA, and increasing evidence suggests that epigenetic mechanisms, which are important for the dynamic regulation and state of specific chromatic regions, are also involved in co-transcriptional RNA processing. In contrast, recent studies also suggest that alternative RNA processing also has a feedback regulation on epigenetic mechanisms. In this review, we discuss recent studies and summarize the current knowledge on the epigenetic regulation of alternative RNA processing. In addition, a feedback regulation of RNA processing on epigenetic regulators is also discussed.
Collapse
Affiliation(s)
- Jian Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Zhe Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
35
|
Ning YQ, Liu N, Lan KK, Su YN, Li L, Chen S, He XJ. DREAM complex suppresses DNA methylation maintenance genes and precludes DNA hypermethylation. NATURE PLANTS 2020; 6:942-956. [PMID: 32661276 DOI: 10.1038/s41477-020-0710-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
The DNA methyltransferases MET1 and CMT3 are known to be responsible for maintenance of DNA methylation at symmetric CG and CHG sites, respectively, in Arabidopsis thaliana. However, it is unknown how the expression of methyltransferase genes is regulated in different cell states and whether change in expression affects DNA methylation at the whole-genome level. Using a reverse genetic screen, we identified TCX5, a tesmin/TSO1-like CXC domain-containing protein, and demonstrated that it is a transcriptional repressor of genes required for maintenance of DNA methylation, which include MET1, CMT3, DDM1, KYP and VIMs. TCX5 functions redundantly with its paralogue TCX6 in repressing the expression of these genes. In the tcx5 tcx6 double mutant, expression of these genes is markedly increased, thereby leading to markedly increased DNA methylation at CHG sites and, to a lesser extent, at CG sites at the whole-genome level. Furthermore, our whole-genome DNA methylation analysis indicated that the CG and CHG methylation level is lower in differentiated quiescent cells than in dividing cells in the wild type but is comparable in the tcx5/6 mutant, suggesting that TCX5/6 are required for maintenance of the difference in DNA methylation between the two cell types. We identified TCX5/6-containing multi-subunit complexes, which are known as DREAM in other eukaryotes, and demonstrated that the Arabidopsis DREAM components function as a whole to preclude DNA hypermethylation. Given that the DREAM complexes are conserved from plants to animals, the preclusion of DNA hypermethylation by DREAM complexes may represent a conserved mechanism in eukaryotes.
Collapse
Affiliation(s)
- Yong-Qiang Ning
- National Institute of Biological Sciences, Beijing, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Na Liu
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ke-Ke Lan
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
36
|
Gallego-Bartolomé J. DNA methylation in plants: mechanisms and tools for targeted manipulation. THE NEW PHYTOLOGIST 2020; 227:38-44. [PMID: 32159848 DOI: 10.1111/nph.16529] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/19/2020] [Indexed: 05/23/2023]
Abstract
DNA methylation is an epigenetic mark that regulates multiple processes, such as gene expression and genome stability. Mutants and pharmacological treatments have been instrumental in the study of this mark in plants, although their genome-wide effect complicates the direct association between changes in methylation and a particular phenotype. A variety of tools that allow locus-specific manipulation of DNA methylation can be used to assess its direct role in specific processes, as well as to create novel epialleles. Recently, new tools that recruit the methylation machinery directly to target loci through programmable DNA-binding proteins have expanded the tool kit available to researchers. This review provides an overview of DNA methylation in plants and discusses the tools that have recently been developed for its manipulation.
Collapse
Affiliation(s)
- Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de Valencia, 46011, Valencia, Spain
| |
Collapse
|
37
|
Xu L, Yuan K, Yuan M, Meng X, Chen M, Wu J, Li J, Qi Y. Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat Transposable Elements. MOLECULAR PLANT 2020; 13:851-863. [PMID: 32087371 DOI: 10.1016/j.molp.2020.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 05/24/2023]
Abstract
Tillering is a major determinant of rice plant architecture and grain yield. Here, we report that depletion of rice OsNRPD1a and OsNRPD1b, two orthologs of the largest subunit of RNA polymerase IV, leads to a high-tillering phenotype, in addition to dwarfism and smaller panicles. OsNRPD1a and OsNRPD1b are required for the production of 24-nt small interfering RNAs that direct DNA methylation at transposable elements (TEs) including miniature inverted-repeat TEs (MITEs). Interestingly, many genes are regulated either positively or negatively by TE methylation. Among them, OsMIR156d and OsMIR156j, which promote rice tillering, are repressed by CHH methylation at two MITEs in the promoters. By contrast, D14, which suppresses rice tillering, is activated by CHH methylation at an MITE in its downstream. Our findings reveal regulation of rice tillering by RNA-directed DNA methylation at MITEs and provide potential targets for agronomic trait enhancement through epigenome editing.
Collapse
Affiliation(s)
- Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kun Yuan
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiangbing Meng
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Li
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
38
|
Xu L, Jiang H. Writing and Reading Histone H3 Lysine 9 Methylation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:452. [PMID: 32435252 PMCID: PMC7218100 DOI: 10.3389/fpls.2020.00452] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotes, histone H3 lysine 9 methylation (H3K9me) mediates the silencing of invasive and repetitive sequences by preventing the expression of aberrant gene products and the activation of transposition. In Arabidopsis, while it is well known that dimethylation of histone H3 at lysine 9 (H3K9me2) is maintained through a feedback loop between H3K9me2 and DNA methylation, the details of the H3K9me2-dependent silencing pathway have not been fully elucidated. Recently, the regulation and the function of H3K9 methylation have been extensively characterized. In this review, we summarize work from the recent studies regarding the regulation of H3K9me2, emphasizing the process of deposition and reading and the biological significance of H3K9me2 in Arabidopsis.
Collapse
Affiliation(s)
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
39
|
Fan SK, Ye JY, Zhang LL, Chen HS, Zhang HH, Zhu YX, Liu XX, Jin CW. Inhibition of DNA demethylation enhances plant tolerance to cadmium toxicity by improving iron nutrition. PLANT, CELL & ENVIRONMENT 2020; 43:275-291. [PMID: 31703150 DOI: 10.1111/pce.13670] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 05/03/2023]
Abstract
Although the alteration of DNA methylation due to abiotic stresses, such as exposure to the toxic metal cadmium (Cd), has been often observed in plants, little is known about whether such epigenetic changes are linked to the ability of plants to adapt to stress. Herein, we report a close linkage between DNA methylation and the adaptational responses in Arabidopsis plants under Cd stress. Exposure to Cd significantly inhibited the expression of three DNA demethylase genes ROS1/DML2/DML3 (RDD) and elevated DNA methylation at the genome-wide level in Col-0 roots. Furthermore, the profile of DNA methylation in Cd-exposed Col-0 roots was similar to that in the roots of rdd triple mutants, which lack RDD, indicating that Cd-induced DNA methylation is associated with the inhibition of RDD. Interestingly, the elevation in DNA methylation in rdd conferred a higher tolerance against Cd stress and improved cellular Fe nutrition in the root tissues. In addition, lowering the Fe supply abolished improved Cd tolerance due to the lack of RDD in rdd. Together, these data suggest that the inhibition of RDD-mediated DNA demethylation in the roots by Cd would in turn enhance plant tolerance to Cd stress by improving Fe nutrition through a feedback mechanism.
Collapse
Affiliation(s)
- Shi Kai Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Lin Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Hong Shan Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Hai Hua Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Liu R, Lang Z. The mechanism and function of active DNA demethylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:148-159. [PMID: 31628716 DOI: 10.1111/jipb.12879] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 05/26/2023]
Abstract
DNA methylation is a conserved and important epigenetic mark in both mammals and plants. DNA methylation can be dynamically established, maintained, and removed through different pathways. In plants, active DNA demethylation is initiated by the RELEASE OF SILENCING 1 (ROS1) family of bifunctional DNA glycosylases/lyases. Accumulating evidence suggests that DNA demethylation is important in many processes in plants. In this review, we summarize recent studies on the enzymes and regulatory factors that have been identified in the DNA demethylation pathway. We also review the functions of active DNA demethylation in plant development as well as biotic and abiotic stress responses. Finally, we highlight those aspects of DNA demethylation that require additional research.
Collapse
Affiliation(s)
- Ruie Liu
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
41
|
Zhu G, Chang Y, Xu X, Tang K, Chen C, Lei M, Zhu JK, Duan CG. EXPORTIN 1A prevents transgene silencing in Arabidopsis by modulating nucleo-cytoplasmic partitioning of HDA6. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1243-1254. [PMID: 30697937 DOI: 10.1111/jipb.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 05/28/2023]
Abstract
In eukaryotic cells, transport of macromolecules across the nuclear envelope is an essential process that ensures rapid exchange of cellular components, including protein and RNA molecules. Chromatin regulators involved in epigenetic control are among the molecules exported across the nuclear envelope, but the significance of this nucleo-cytoplasmic trafficking is not well understood. Here, we use a forward screen to isolate XPO1A (a nuclear export receptor in Arabidopsis) as an anti-silencing factor that protects transgenes from transcriptional silencing. Loss-of-function of XPO1A leads to locus-specific DNA hypermethylation at transgene promoters and some endogenous loci. We found that XPO1A directly interacts with histone deacetylase HDA6 in vivo and that the xpo1a mutation causes increased nuclear retention of HDA6 protein and results in reduced histone acetylation and enhanced transgene silencing. Our results reveal a new mechanism of epigenetic regulation through the modulation of XPO1A-dependent nucleo-cytoplasm partitioning of a chromatin regulator.
Collapse
Affiliation(s)
- Guohui Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chunxiang Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
42
|
Dong MY, Fan XW, Li YZ. Cassava AGPase genes and their encoded proteins are different from those of other plants. PLANTA 2019; 250:1621-1635. [PMID: 31399791 DOI: 10.1007/s00425-019-03247-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Cassava AGPase and AGPase genes have some unique characteristics. ADP-glucose pyrophosphorylase (AGPase) is a rate-limiting enzyme for starch synthesis. In this study, cassava AGPase genes (MeAGP) were analyzed based on six cultivars and one wild species. A total of seven MeAGPs was identified, including four encoding AGPase large subunits (MeAGPLs 1, 2, 3 and 4) and three encoding AGPase small subunits (MeAGPSs 1, 2 and 3). The copy number of MeAGPs varied in cassava germplasm materials. There were 14 introns for MeAGPLs 1, 2 and 3, 13 introns for MeAGPL4, and 8 introns for other three MeAGPSs. Multiple conservative amino acid sequence motifs were found in the MeAGPs. There were differences in amino acids at binding sites of substrates and regulators among different MeAGP subunits and between MeAGPs and a potato AGPase small subunit (1YP2:B). MeAGPs were all located in chloroplasts. MeAGP expression was not only associated with gene copy number and types/combinations, regions and levels of the DNA methylation but was also affected by environmental factors with the involvement of various transcription factors in multiple regulation networks and in various cis-elements in the gene promoter regions. The MeAGP activity also changed with environmental conditions and had potential differences among the subunits. Taken together, MeAGPs differ in number from those of Arabidopsis, potato, maize, banana, sweet potato, and tomato.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
43
|
A model for the aberrant DNA methylomes in aging cells and cancer cells. Biochem Soc Trans 2019; 47:997-1003. [PMID: 31320500 DOI: 10.1042/bst20180218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/25/2022]
Abstract
Abstract
DNA methylation at the fifth position of cytosine is a major epigenetic mark conserved in plants and mammals. Genome-wide DNA methylation patterns are dynamically controlled by integrated activities of establishment, maintenance, and removal. In both plants and mammals, a pattern of global DNA hypomethylation coupled with increased methylation levels at some specific genomic regions arises at specific developmental stages and in certain abnormal cells, such as mammalian aging cells and cancer cells as well as some plant epigenetic mutants. Here we provide an overview of this distinct DNA methylation pattern in mammals and plants, and propose that a methylstat, which is a cis-element responsive to both DNA methylation and active demethylation activities and controlling the transcriptional activity of a key DNA methylation regulator, can help to explain the enigmatic DNA methylation patterns in aging cells and cancer cells.
Collapse
|
44
|
Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:10576-10585. [PMID: 31064880 DOI: 10.1073/pnas.1904143116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic markers, such as histone acetylation and DNA methylation, determine chromatin organization. In eukaryotic cells, metabolites from organelles or the cytosol affect epigenetic modifications. However, the relationships between metabolites and epigenetic modifications are not well understood in plants. We found that peroxisomal acyl-CoA oxidase 4 (ACX4), an enzyme in the fatty acid β-oxidation pathway, is required for suppressing the silencing of some endogenous loci, as well as Pro35S:NPTII in the ProRD29A:LUC/C24 transgenic line. The acx4 mutation reduces nuclear histone acetylation and increases DNA methylation at the NOS terminator of Pro35S:NPTII and at some endogenous genomic loci, which are also targeted by the demethylation enzyme REPRESSOR OF SILENCING 1 (ROS1). Furthermore, mutations in multifunctional protein 2 (MFP2) and 3-ketoacyl-CoA thiolase-2 (KAT2/PED1/PKT3), two enzymes in the last two steps of the β-oxidation pathway, lead to similar patterns of DNA hypermethylation as in acx4 Thus, metabolites from fatty acid β-oxidation in peroxisomes are closely linked to nuclear epigenetic modifications, which may affect diverse cellular processes in plants.
Collapse
|
45
|
Zhao QQ, Lin RN, Li L, Chen S, He XJ. A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:120-139. [PMID: 30589221 DOI: 10.1111/jipb.12767] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 05/29/2023]
Abstract
Although the mechanism of DNA methylation-mediated gene silencing is extensively studied, relatively little is known about how promoter methylated genes are protected from transcriptional silencing. SUVH1, an Arabidopsis Su(var)3-9 homolog, was previously shown to be required for the expression of a few promoter methylated genes. By chromatin immunoprecipitation combined with sequencing, we demonstrate that SUVH1 binds to methylated genomic loci targeted by RNA-directed DNA methylation. SUVH1 and its homolog SUVH3 function partially redundantly and interact with three DNAJ domain-containing homologs, SDJ1, SDJ2, and SDJ3, thus forming a complex which we named SUVH-SDJ. The SUVH-SDJ complex components are co-localized in a large number of methylated promoters and are required for the expression of a subset of promoter methylated genes. We demonstrate that the SUVH-SDJ complex components have transcriptional activation activity. SUVH1 and SUVH3 function synergistically with SDJ1, SDJ2, and SDJ3 and are required for plant viability. This study reveals how the SUVH-SDJ complex protects promoter methylated genes from transcriptional silencing and suggests that the transcriptional activation of promoter methylated genes mediated by the SUVH-SDJ complex may play a critical role in plant growth and development.
Collapse
Affiliation(s)
- Qiang-Qiang Zhao
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Rong-Nan Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
46
|
Gong Z. A SUVH-DNAJ/SDJ protein complex activates the expression of promoter-methylated genes in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:90-92. [PMID: 30637989 DOI: 10.1111/jipb.12777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 11/01/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|