1
|
Zhang J, Gu R, Miao X, Schmidt RH, Xu Z, Lu J, Ma Y, Yang T, Wang P, Liu Y, Wang X, Du X, Zheng N, Zhen S, Liang C, Xie Y, Wu Y, Li L, Reif JC, Jiang Y, Wang J, Fu J, Zhang H. GWAS-based population genetic analysis identifies bZIP29 as a heterotic gene in maize. PLANT COMMUNICATIONS 2025; 6:101289. [PMID: 39985171 DOI: 10.1016/j.xplc.2025.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Understanding the role of heterotic genes in contributing to heterosis is essential for advancing hybrid breeding. We analyzed plant height (PH), ear height (EH), and transcriptomic data from a maize hybrid population. Genome-wide association studies (GWASs) revealed that dominance effects of quantitative trait loci (QTLs) play a significant role in hybrid traits and mid-parent heterosis. By integrating GWAS, expression GWAS (eGWAS), and module eGWAS analysis, we prioritized six candidate heterotic genes underlying six QTLs, including one QTL that spans the bZIP29 gene. In the hybrid population, bZIP29 exhibits additive expression and dominance effects for both hybrid traits and mid-parent heterosis, with its favorable allele correlating positively with PH and EH. bZIP29 demonstrates dominance or over-dominance patterns in hybrids derived from crosses between transgenic and wild-type lines, contingent upon its expression. A tsCUT&Tag assay revealed that bZIP29 protein binds directly to a gene regulated by its associated expression QTL (eQTL) and six genes within expression modules governed by its associated module-eQTLs (meQTLs). Regulatory networks involving bZIP29 are more extensive in hybrid subpopulations than in the parental population. This study offers insights into key heterotic genes and networks that underpin the robust growth of hybrid maize.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Renate H Schmidt
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Zhenxiang Xu
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiawen Lu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Ma
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pingxi Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoli Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemei Du
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nannan Zheng
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sihan Zhen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengyong Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxin Xie
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jochen C Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Yong Jiang
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-breeding, Beijing Innovation Center for Crop Seed Technology of Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Cao N, Zhou W, Zhao F, Jiao G, Xie L, Lu A, Wu J, Zhu M, Liu Y, Yu J, Zhao R, Yang X, Hu S, Sheng Z, Wei X, Lv Y, Tang S, Shao G, Hu P. OsGATA7 and SMOS1 cooperatively determine rice taste quality by repressing OsGluA2 expression and protein biosynthesis. Nat Commun 2025; 16:3513. [PMID: 40223143 PMCID: PMC11994747 DOI: 10.1038/s41467-025-58823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Taste is crucial for the economic value of rice (Oryza sativa L.) and determines consumer preference. However, the mechanisms underlying taste formation have remained unclear. Here, we show that OsGATA7 contributes to desirable taste quality by affecting the swelling properties, texture, and taste value of cooked rice. OsGATA7 binds to the promoter of SMOS1, and activates its expression, thereby regulating taste quality. Furthermore, SMOS1 binds to the promoter of the protein biosynthesis gene OsGluA2, and recruits the PRC2 complex to repress its expression, leading to increased protein content. The overexpression of both OsGATA7 and SMOS1 reduces protein content and enhances taste quality. The haplotypes OsGATA7Hap1 and SMOS1Hap1 maintain low protein content and improve taste scores. Collectively, these findings reveal a regulatory mechanism for taste quality formation mediated by the OsGATA7-SMOS1 protein content module, and identify the elite haplotypes OsGATA7Hap1 and SMOS1Hap1 as a means to improve taste quality.
Collapse
Affiliation(s)
- Ni Cao
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Wei Zhou
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Ao Lu
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Jiamin Wu
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yongqiang Liu
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Junming Yu
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Rumeng Zhao
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Xinyi Yang
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Yusong Lv
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China.
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre, China National Rice Research Institute, Hangzhou, P. R. China.
| |
Collapse
|
3
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
4
|
Liang K, Zhao C, Wang J, Zheng X, Yu F, Qiu F. Genetic variations in ZmEREB179 are associated with waterlogging tolerance in maize. J Genet Genomics 2025; 52:367-378. [PMID: 38636730 DOI: 10.1016/j.jgg.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Maize (Zea mays) is highly susceptible to waterlogging stress, which reduces both the yield and quality of this important crop. However, the molecular mechanism governing waterlogging tolerance is poorly understood. In this study, we identify a waterlogging- and ethylene-inducible gene ZmEREB179 that encodes an ethylene response factor (ERF) localized in the nucleus. Overexpression of ZmEREB179 in maize increases the sensitivity to waterlogging stress. Conversely, the zmereb179 knockout mutants are more tolerant to waterlogging, suggesting that ZmEREB179 functions as a negative regulator of waterlogging tolerance. A transcriptome analysis of the ZmEREB179-overexpressing plants reveals that the ERF-type transcription factor modulates the expression of various stress-related genes, including ZmEREB180. We find that ZmEREB179 directly targets the ZmEREB180 promoter and represses its expression. Notably, the analysis of a panel of 220 maize inbred lines reveals that genetic variations in the ZmEREB179 promoter (Hap2) are highly associated with waterlogging resistance. The functional association of Hap2 with waterlogging resistance is tightly co-segregated in two F2 segregating populations, highlighting its potential applications in breeding programs. Our findings shed light on the involvement of the transcriptional cascade of ERF genes in regulating plant-waterlogging tolerance.
Collapse
Affiliation(s)
- Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chenxu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xueqing Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Sheng H, Zhang H, Deng H, Zhang Z, Qiu F, Yang F. Maize COMPACT PLANT 3 regulates plant architecture and facilitates high-density planting. THE PLANT CELL 2025; 37:koaf029. [PMID: 39928526 PMCID: PMC11879032 DOI: 10.1093/plcell/koaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 02/06/2025] [Indexed: 02/12/2025]
Abstract
Compact plant architecture allows more efficient light capture under higher planting density. Thus, it is a crucial strategy for improving crop yield, particularly in maize (Zea mays L.). Here, we isolated a maize gene, COMPACT PLANT 3 (CT3), regulating plant architecture, using map-based cloning. CT3, encoding a GRAS protein, interacts with an AP2 transcription factor (TF), DWARF AND IRREGULAR LEAF 1 (DIL1). The genetic analysis showed that CT3 and DIL1 regulate leaf angle and plant height via the same pathway, supporting the biological role of their interaction by forming a complex. Transcriptome and DNA profiling analyses revealed that these 2 TFs share many common target genes. We further observed that CT3 functions as a co-regulator to enhance the DNA affinity and transcriptional activity of DIL1. This finding was further supported by the direct binding of DIL1 to 2 cell wall-related genes, ZmEXO1 and ZmXTH14, which were downregulated in the ct3 mutant. Furthermore, ZmEXO1 regulated plant architecture in a manner similar to CT3- and DIL1-mediated regulation. Zmexo1, ct3, and dil1 mutants showed defective cell wall integrity and had reduced cell wall-related components. The introduction of the ct3 or dil1 mutant allele into elite maize hybrids led to a more compact architecture and increased yield under high planting density. Our findings reveal a regulatory pathway of maize plant architecture and provide targets to increase yield under high planting density.
Collapse
Affiliation(s)
- Huangjun Sheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Fu Z, Jiang S, Sun Y, Zheng S, Zong L, Li P. Cut&tag: a powerful epigenetic tool for chromatin profiling. Epigenetics 2024; 19:2293411. [PMID: 38105608 PMCID: PMC10730171 DOI: 10.1080/15592294.2023.2293411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Analysis of transcription factors and chromatin modifications at the genome-wide level provides insights into gene regulatory processes, such as transcription, cell differentiation and cellular response. Chromatin immunoprecipitation is the most popular and powerful approach for mapping chromatin, and other enzyme-tethering techniques have recently become available for living cells. Among these, Cleavage Under Targets and Tagmentation (CUT&Tag) is a relatively novel chromatin profiling method that has rapidly gained popularity in the field of epigenetics since 2019. It has also been widely adapted to map chromatin modifications and TFs in different species, illustrating the association of these chromatin epitopes with various physiological and pathological processes. Scalable single-cell CUT&Tag can be combined with distinct platforms to distinguish cellular identity, epigenetic features and even spatial chromatin profiling. In addition, CUT&Tag has been developed as a strategy for joint profiling of the epigenome, transcriptome or proteome on the same sample. In this review, we will mainly consolidate the applications of CUT&Tag and its derivatives on different platforms, give a detailed explanation of the pros and cons of this technique as well as the potential development trends and applications in the future.
Collapse
Affiliation(s)
- Zhijun Fu
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Sanjie Jiang
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Yiwen Sun
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Shanqiao Zheng
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Liang Zong
- BGI Tech Solutions Co, Ltd. BGI-Wuhan, Wuhan, China
| | - Peipei Li
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
7
|
Luo Z, Wu L, Miao X, Zhang S, Wei N, Zhao S, Shang X, Hu H, Xue J, Zhang T, Yang F, Xu S, Li L. A dynamic regulome of shoot-apical-meristem-related homeobox transcription factors modulates plant architecture in maize. Genome Biol 2024; 25:245. [PMID: 39300560 DOI: 10.1186/s13059-024-03391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The shoot apical meristem (SAM), from which all above-ground tissues of plants are derived, is critical to plant morphology and development. In maize (Zea mays), loss-of-function mutant studies have identified several SAM-related genes, most encoding homeobox transcription factors (TFs), located upstream of hierarchical networks of hundreds of genes. RESULTS Here, we collect 46 transcriptome and 16 translatome datasets across 62 different tissues or stages from the maize inbred line B73. We construct a dynamic regulome for 27 members of three SAM-related homeobox subfamilies (KNOX, WOX, and ZF-HD) through machine-learning models for the detection of TF targets across different tissues and stages by combining tsCUT&Tag, ATAC-seq, and expression profiling. This dynamic regulome demonstrates the distinct binding specificity and co-factors for these homeobox subfamilies, indicative of functional divergence between and within them. Furthermore, we assemble a SAM dynamic regulome, illustrating potential functional mechanisms associated with plant architecture. Lastly, we generate a wox13a mutant that provides evidence that WOX13A directly regulates Gn1 expression to modulate plant height, validating the regulome of SAM-related homeobox genes. CONCLUSIONS The SAM-related homeobox transcription-factor regulome presents an unprecedented opportunity to dissect the molecular mechanisms governing SAM maintenance and development, thereby advancing our understanding of maize growth and shoot architecture.
Collapse
Affiliation(s)
- Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Leiming Wu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Zhang
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China
| | - Ningning Wei
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China
| | - Shiya Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiquan Xue
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China
| | - Tifu Zhang
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shutu Xu
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712199, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
8
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Ruan M, Zhao H, Wen Y, Chen H, He F, Hou X, Song X, Jiang H, Ruan YL, Wu L. The complex transcriptional regulation of heat stress response in maize. STRESS BIOLOGY 2024; 4:24. [PMID: 38668992 PMCID: PMC11052759 DOI: 10.1007/s44154-024-00165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024]
Abstract
As one of the most important food and feed crops worldwide, maize suffers much more tremendous damages under heat stress compared to other plants, which seriously inhibits plant growth and reduces productivity. To mitigate the heat-induced damages and adapt to high temperature environment, plants have evolved a series of molecular mechanisms to sense, respond and adapt high temperatures and heat stress. In this review, we summarized recent advances in molecular regulations underlying high temperature sensing, heat stress response and memory in maize, especially focusing on several important pathways and signals in high temperature sensing, and the complex transcriptional regulation of ZmHSFs (Heat Shock Factors) in heat stress response. In addition, we highlighted interactions between ZmHSFs and several epigenetic regulation factors in coordinately regulating heat stress response and memory. Finally, we laid out strategies to systematically elucidate the regulatory network of maize heat stress response, and discussed approaches for breeding future heat-tolerance maize.
Collapse
Affiliation(s)
- Mingxiu Ruan
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Heng Zhao
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujing Wen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Feng He
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbo Hou
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoqin Song
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China.
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Leiming Wu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Xie W, Cao W, Lu S, Zhao J, Shi X, Yue X, Wang G, Feng Z, Hu K, Chen Z, Zuo S. Knockout of transcription factor OsERF65 enhances ROS scavenging ability and confers resistance to rice sheath blight. MOLECULAR PLANT PATHOLOGY 2023; 24:1535-1551. [PMID: 37776021 PMCID: PMC10632786 DOI: 10.1111/mpp.13391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023]
Abstract
Rice sheath blight (ShB) is a devastating disease that severely threatens rice production worldwide. Induction of cell death represents a key step during infection by the ShB pathogen Rhizoctonia solani. Nonetheless, the underlying mechanisms remain largely unclear. In the present study, we identified a rice transcription factor, OsERF65, that negatively regulates resistance to ShB by suppressing cell death. OsERF65 was significantly upregulated by R. solani infection in susceptible cultivar Lemont and was highly expressed in the leaf sheath. Overexpression of OsERF65 (OsERF65OE) decreased rice resistance, while the knockout mutant (oserf65) exhibited significantly increased resistance against ShB. The transcriptome assay revealed that OsERF65 repressed the expression of peroxidase genes after R. solani infection. The antioxidative enzyme activity was significantly increased in oserf65 plants but reduced in OsERF65OE plants. Consistently, hydrogen peroxide content was apparently reduced in oserf65 plants but accumulated in OsERF65OE plants. OsERF65 directly bound to the GCC box in the promoter regions of four peroxidase genes and suppressed their transcription, reducing the ability to scavenge reactive oxygen species (ROS). The oserf65 mutant exhibited a slight decrease in plant height but increased grain yield. Overall, our results revealed an undocumented role of OsERF65 that acts as a crucial regulator of rice resistance to R. solani and a potential target for improving both ShB resistance and rice yield.
Collapse
Affiliation(s)
- Wenya Xie
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Wenlei Cao
- College of Tourism and Cuisine, Yangzhou UniversityYangzhouChina
| | - Shuaibing Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Jianhua Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Xiaopin Shi
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Xuanyu Yue
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Guangda Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaInstitutes of Agricultural Science and Technology Development, Yangzhou UniversityYangzhouChina
| |
Collapse
|
11
|
Wen C, Yuan Z, Zhang X, Chen H, Luo L, Li W, Li T, Ma N, Mao F, Lin D, Lin Z, Lin C, Xu T, Lü P, Lin J, Zhu F. Sea-ATI unravels novel vocabularies of plant active cistrome. Nucleic Acids Res 2023; 51:11568-11583. [PMID: 37850650 PMCID: PMC10681729 DOI: 10.1093/nar/gkad853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.
Collapse
Affiliation(s)
- Chenjin Wen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhen Yuan
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaotian Zhang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hao Chen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Lin Luo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wanying Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tian Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nana Ma
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fei Mao
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Dongmei Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhanxi Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chentao Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tongda Xu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Juncheng Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fangjie Zhu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
12
|
Huang X, Lu Z, Zhai L, Li N, Yan H. The Small Auxin-Up RNA SAUR10 Is Involved in the Promotion of Seedling Growth in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3880. [PMID: 38005777 PMCID: PMC10675480 DOI: 10.3390/plants12223880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Small auxin-up-regulated RNAs (SAURs) are genes rapidly activated in response to auxin hormones, significantly affecting plant growth and development. However, there is limited information available about the specific functions of SAURs in rice due to the presence of extensive redundant genes. In this study, we found that OsSAUR10 contains a conserved downstream element in its 3' untranslated region that causes its transcripts to be unstable, ultimately leading to the immediate degradation of the mRNA in rice. In our investigation, we discovered that OsSAUR10 is located in the plasma membrane, and its expression is regulated in a tissue-specific, developmental, and hormone-dependent manner. Additionally, we created ossaur10 mutants using the CRISPR/Cas9 method, which resulted in various developmental defects such as dwarfism, narrow internodes, reduced tillers, and lower yield. Moreover, histological observation comparing wild-type and two ossaur10 mutants revealed that OsSAUR10 was responsible for cell elongation. However, overexpression of OsSAUR10 resulted in similar phenotypes to the wild-type. Our research also indicated that OsSAUR10 plays a role in regulating the expression of two groups of genes involved in auxin biosynthesis (OsYUCCAs) and auxin polar transport (OsPINs) in rice. Thus, our findings suggest that OsSAUR10 acts as a positive plant growth regulator by contributing to auxin biosynthesis and polar transport.
Collapse
Affiliation(s)
- Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (L.Z.); (N.L.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Zhanhua Lu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Lisheng Zhai
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (L.Z.); (N.L.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Na Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (L.Z.); (N.L.)
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550001, China
- Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang 550001, China
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, China; (X.H.); (L.Z.); (N.L.)
| |
Collapse
|
13
|
Wang X, Han L, Li J, Shang X, Liu Q, Li L, Zhang H. Next-generation bulked segregant analysis for Breeding 4.0. Cell Rep 2023; 42:113039. [PMID: 37651230 DOI: 10.1016/j.celrep.2023.113039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Functional cloning and manipulation of genes controlling various agronomic traits are important for boosting crop production. Although bulked segregant analysis (BSA) is an efficient method for functional cloning, its low throughput cannot satisfy the current need for crop breeding and food security. Here, we review the rationale and development of conventional BSA and discuss its strengths and drawbacks. We then propose next-generation BSA (NG-BSA) integrating multiple cutting-edge technologies, including high-throughput phenotyping, biological big data, and the use of machine learning. NG-BSA increases the resolution of genetic mapping and throughput for cloning quantitative trait genes (QTGs) and optimizes candidate gene selection while providing a means to elucidate the interaction network of QTGs. The ability of NG-BSA to efficiently batch-clone QTGs makes it an important tool for dissecting molecular mechanisms underlying various traits, as well as for the improvement of Breeding 4.0 strategy, especially in targeted improvement and population improvement of crops.
Collapse
Affiliation(s)
- Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qian Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
14
|
Wang X, Li J, Han L, Liang C, Li J, Shang X, Miao X, Luo Z, Zhu W, Li Z, Li T, Qi Y, Li H, Lu X, Li L. QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize. Nat Commun 2023; 14:5232. [PMID: 37633966 PMCID: PMC10460418 DOI: 10.1038/s41467-023-41022-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Genetic dissection of agronomic traits is important for crop improvement and global food security. Phenotypic variation of tassel branch number (TBN), a major breeding target, is controlled by many quantitative trait loci (QTLs). The lack of large-scale QTL cloning methodology constrains the systematic dissection of TBN, which hinders modern maize breeding. Here, we devise QTG-Miner, a multi-omics data-based technique for large-scale and rapid cloning of quantitative trait genes (QTGs) in maize. Using QTG-Miner, we clone and verify seven genes underlying seven TBN QTLs. Compared to conventional methods, QTG-Miner performs well for both major- and minor-effect TBN QTLs. Selection analysis indicates that a substantial number of genes and network modules have been subjected to selection during maize improvement. Selection signatures are significantly enriched in multiple biological pathways between female heterotic groups and male heterotic groups. In summary, QTG-Miner provides a large-scale approach for rapid cloning of QTGs in crops and dissects the genetic base of TBN for further maize breeding.
Collapse
Affiliation(s)
- Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengyong Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiaxin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tianhuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Huihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
15
|
Li J, Wang X, Wei J, Miao X, Shang X, Li L. Genetic mapping and functional analysis of a classical tassel branch number mutant Tp2 in maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1183697. [PMID: 37332723 PMCID: PMC10275490 DOI: 10.3389/fpls.2023.1183697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
Tassel branch number is a key trait that contributes greatly to grain yield in maize (Zea mays). We obtained a classical mutant from maize genetics cooperation stock center, Teopod2 (Tp2), which exhibits severely decreased tassel branch. We conducted a comprehensive study, including phenotypic investigation, genetic mapping, transcriptome analysis, overexpression and CRISPR knock-out, and tsCUT&Tag of Tp2 gene for the molecular dissection of Tp2 mutant. Phenotypic investigation showed that it is a pleiotropic dominant mutant, which is mapped to an interval of approximately 139-kb on Chromosome 10 harboring two genes Zm00001d025786 and zma-miR156h. Transcriptome analysis showed that the relative expression level of zma-miR156h was significantly increased in mutants. Meanwhile, overexpression of zma-miR156h and knockout materials of ZmSBP13 exhibited significantly decreased tassel branch number, a similar phenotype with Tp2 mutant, suggesting that zma-miR156h is the causal gene of Tp2 and targets ZmSBP13 gene. Besides, the potential downstream genes of ZmSBP13 were uncovered and showed that it may target multiple proteins to regulate inflorescence structure. Overall, we characterized and cloned Tp2 mutant, and proposed a zma-miR156h-ZmSBP13 model functioning in regulating tassel branch development in maize, which is an essential measure to satisfy the increasing demands of cereals.
Collapse
Affiliation(s)
- Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xi Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Junfeng Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
16
|
Zhang A, Peng Y, Wu J, Zhang W. Low-input single-cell based chromatin profiling in plants. TRENDS IN PLANT SCIENCE 2023; 28:728-729. [PMID: 36922326 DOI: 10.1016/j.tplants.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Aicen Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yulian Peng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Jing Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
17
|
Ma C, Li R, Sun Y, Zhang M, Li S, Xu Y, Song J, Li J, Qi J, Wang L, Wu J. ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1041-1058. [PMID: 36349965 DOI: 10.1111/jipb.13404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Both herbivory and jasmonic acid (JA) activate the biosynthesis of defensive metabolites in maize, but the mechanism underlying this remains unclear. We generated maize mutants in which ZmMYC2a and ZmMYC2b, two transcription factor genes important in JA signaling, were individually or both knocked out. Genetic and biochemical analyses were used to elucidate the functions of ZmMYC2 proteins in the maize response to simulated herbivory and JA. Compared with the wild-type (WT) maize, the double mutant myc2ab was highly susceptible to insects, and the levels of benzoxazinoids and volatile terpenes, and the levels of their biosynthesis gene transcripts, were much lower in the mutants than in the WT maize after simulated insect feeding or JA treatment. Moreover, ZmMYC2a and ZmMYC2b played a redundant role in maize resistance to insects and JA signaling. Transcriptome and Cleavage Under Targets and Tagmentation-Sequencing (CUT&Tag-Seq) analysis indicated that ZmMYC2s physically targeted 60% of the JA-responsive genes, even though only 33% of these genes were transcriptionally ZmMYC2-dependent. Importantly, CUT&Tag-Seq and dual luciferase assays revealed that ZmMYC2s transactivate the benzoxazinoid and volatile terpene biosynthesis genes IGPS1/3, BX10/11/12/14, and TPS10/2/3/4/5/8 by directly binding to their promoters. Furthermore, several transcription factors physically targeted by ZmMYC2s were identified, and these are likely to function in the regulation of benzoxazinoid biosynthesis. This work reveals the transcriptional regulatory landscapes of both JA signaling and ZmMYC2s in maize and provides comprehensive mechanistic insight into how JA signaling modulates defenses in maize responses to herbivory through ZmMYC2s.
Collapse
Affiliation(s)
- Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyue Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Mou Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Miao X, Zhu W, Jin Q, Song Z, Li L. ZmHOX32 is related to photosynthesis and likely functions in plant architecture of maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1119678. [PMID: 37035059 PMCID: PMC10073575 DOI: 10.3389/fpls.2023.1119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
HOX32, a member of the HD-ZIP III family, functions in the leaf morphogenesis and plant photosynthesis. However, the regulatory mechanism of HOX32 in maize has not been studied and the regulatory relationship in photosynthesis is unclear. We conducted a comprehensive study, including phylogenetic analysis, expression profiling at both transcriptome and translatome levels, subcellular localization, tsCUT&Tag, co-expression analysis, and association analysis with agronomic traits on HOX32 for the dissection of the functional roles of HOX32. ZmHOX32 shows conservation in plants. As expected, maize HOX32 protein is specifically expressed in the nucleus. ZmHOX32 showed constitutively expression at both transcriptome and translatome levels. We uncovered the downstream target genes of ZmHOX32 by tsCUT&Tag and constructed a cascaded regulatory network combining the co-expression networks. Both direct and indirect targets of ZmHOX32 showed significant gene ontology enrichment in terms of photosynthesis in maize. The association study suggested that ZmHOX32 plays an important role in regulation of plant architecture. Our results illustrate a complex regulatory network of HOX32 involving in photosynthesis and plant architecture, which deepens our understanding of the phenotypic variation in plants.
Collapse
Affiliation(s)
- Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hongshan Laboratory, Wuhan, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hongshan Laboratory, Wuhan, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hongshan Laboratory, Wuhan, China
| | - Zemeng Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hongshan Laboratory, Wuhan, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hongshan Laboratory, Wuhan, China
| |
Collapse
|