1
|
Song W, Cai H, Guo Y, Chen S, Yao Y, Wang J, Guo T, Zhang J, Chen C. OsSDG715, a Histone H3K9 Methyltransferase, Integrates Auxin and Cytokinin Signaling to Regulate Callus Formation in Rice. RICE (NEW YORK, N.Y.) 2025; 18:42. [PMID: 40419845 DOI: 10.1186/s12284-025-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025]
Abstract
Efficient callus induction is essential for the genetic transformation of rice (Oryza sativa), yet its regulatory mechanisms remain elusive. Previously, through a genome-wide association study (GWAS), we identified a significant associated locus on chromosome 8. In this study, we characterized this locus and demonstrated that OsSDG715, encoding a histone H3K9 methyltransferase, is the causal gene that positively regulates callus formation in rice. Results revealed that OsSDG715 is highly expressed during callus induction and exhibits natural variations associated with callus induction rate (CIR). Knockout of OsSDG715 via CRISPR/Cas9 led to a significant decrease in CIR and impaired callus morphology, indicating its positive regulation of callus formation. RNA-seq analyses revealed that 326 and 705 differentially expressed genes (DEGs) were upregulated and downregulated in sdg715 mutants, including auxin-responsive genes (OsIAA14, OsYUCCA6), cytokinin-related genes (OsCKX4, ARR10), and stress-responsive factors. Further analysis showed reduced endogenous indole-3-acetic acid (IAA) levels and increased zeatin levels in sdg715 mutants. These findings advance our understanding of the molecular mechanisms underlying rice callus formation, and offering valuable insights for optimizing tissue culture in molecular breeding.
Collapse
Affiliation(s)
- Wenjing Song
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hairong Cai
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shiyi Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingyun Yao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China.
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Tresas T, Isaioglou I, Roussis A, Haralampidis K. A Brief Overview of the Epigenetic Regulatory Mechanisms in Plants. Int J Mol Sci 2025; 26:4700. [PMID: 40429841 PMCID: PMC12112303 DOI: 10.3390/ijms26104700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Plants continuously adapt to their environments by responding to various intrinsic and extrinsic signals. They face numerous biotic and abiotic stresses such as extreme temperatures, drought, or pathogens, requiring complex regulatory mechanisms to control gene activity and adapt their proteome for survival. Epigenetic regulation plays a crucial role in these adaptations, potentially leading to both heritable and non-heritable changes across generations. This process enables plants to adjust their gene expression profiles and acclimate effectively. It is also vital for plant development and productivity, affecting growth, yield, and seed quality, and enabling plants to "remember" environmental stimuli and adapt accordingly. Key epigenetic mechanisms that play significant roles include DNA methylation, histone modification, and ubiquitin ligase complex activity. These processes, which have been extensively studied in the last two decades, have led to a better understanding of the underlying mechanisms and expanded the potential for improving agriculturally and economically important plant traits. DNA methylation is a fundamental process that regulates gene expression by altering chromatin structure. The addition of methyl groups to cytosines by DNA methylases leads to gene suppression, whereas DNA demethylases reverse this effect. Histone modifications, on the other hand, collectively referred to as the "histone code", influence chromatin structure and gene activity by promoting either gene transcription or gene silencing. These modifications are either recognized, added, or removed by a variety of enzymes that act practically as an environmental memory, having a significant impact on plant development and the responses of plants to environmental stimuli. Finally, ubiquitin ligase complexes, which tag specific histones or regulatory proteins with ubiquitin, are also crucial in plant epigenetic regulation. These complexes are involved in protein degradation and play important roles in regulating various cellular activities. The intricate interplay between DNA methylation, histone modifications, and ubiquitin ligases adds complexity to our understanding of epigenetic regulation. These mechanisms collectively control gene expression, generating a complex and branching network of interdependent regulatory pathways. A deeper understanding of this complex network that helps plants adapt to environmental changes and stressful conditions will provide valuable insights into the regulatory mechanisms involved. This knowledge could pave the way for new biotechnological approaches and plant breeding strategies aimed at enhancing crop resilience, productivity, and sustainable agriculture.
Collapse
Affiliation(s)
- Theodoros Tresas
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.T.); (A.R.)
| | - Ioannis Isaioglou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Andreas Roussis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.T.); (A.R.)
| | - Kosmas Haralampidis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (T.T.); (A.R.)
| |
Collapse
|
3
|
Jiang LC, Men M, Cui XJ, Zeng RJ, Gu SY, Feng T, Zeng C, Ye T, Xiong J, Yuan BF, Feng YQ. Comprehensive Analysis of Small RNA Modifications in Arabidopsis thaliana and Their Dynamics During Seed Germination. Metabolites 2025; 15:319. [PMID: 40422895 DOI: 10.3390/metabo15050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Small RNA, defined as RNA molecules of less than 200 nucleotides in length, play pivotal regulatory roles in plant growth, development, and environmental stress responses. However, research on modifications in plant small RNA remains limited. Methods: In this study, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection of 41 RNA modifications, facilitating the systematic qualification and quantification of modifications in plant small RNA. Results: We identified a total of nine modifications, among which N6,N6-dimethyladenosine (m6,6A) is a newly identified modification in plant small RNA. Furthermore, we conducted a quantitative analysis of these modifications in Arabidopsis thaliana during the germination process and observed significant dynamic changes in their abundance from 1 to 5 days post-germination. Notably, the trends in the contents of these modifications exhibited a strong correlation with the reported gene expression levels of the relevant modifying enzymes and demodifying enzymes, suggesting that these modifications may play essential roles during seed germination and are tightly regulated by the genes of the corresponding enzymes. Conclusions: The discovery of these modifications in plant small RNA, coupled with the dynamic changes in their levels during germination, holds great promise for a further understanding of the physiological functions of small RNA modifications and their associated regulatory mechanisms in plant seed germination.
Collapse
Affiliation(s)
- Liu-Cheng Jiang
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Meng Men
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Xuan-Jun Cui
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Ren-Jie Zeng
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Shu-Yi Gu
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Tian Feng
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Chen Zeng
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Tiantian Ye
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Jun Xiong
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Bi-Feng Yuan
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- School of Public Health, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Miryeganeh M. Epigenetic Mechanisms Driving Adaptation in Tropical and Subtropical Plants: Insights and Future Directions. PLANT, CELL & ENVIRONMENT 2025; 48:3487-3499. [PMID: 39776407 PMCID: PMC11963486 DOI: 10.1111/pce.15370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, and Noncoding RNAs, play a critical role in enabling plants to adapt to environmental changes without altering their DNA sequence. These processes dynamically regulate gene expression in response to diverse stressors, making them essential for plant resilience under changing global conditions. This review synthesises research on tropical and subtropical plants-species naturally exposed to extreme temperatures, salinity, drought, and other stressors-while drawing parallels with similar mechanisms observed in arid and temperate ecosystems. By integrating molecular biology with plant ecology, this synthesis highlights how tropical plants provide valuable models for understanding resilience strategies applicable across broader plant taxa. This review underscores the potential of epigenetic mechanisms to inform conservation strategies and agricultural innovations aimed at bolstering plant resilience in the face of climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
5
|
Zhang D, Li J, Zhang Y, Zhang Y, Wang W, Li Z, Zhu P, Huang Y, Han L, Wang M, Zhang Z, Shen Z, Han W, Mou L, Zhuang X, Pang Q, Wang J, Li L. Transcriptomic Analysis Identifies Molecular Response of the Tolerant Alfalfa ( Medicago sativa) Cultivar Nongjing 1 to Saline-Alkali Stress. BIOLOGY 2025; 14:439. [PMID: 40282304 PMCID: PMC12024754 DOI: 10.3390/biology14040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Alfalfa (Medicago sativa) is a perennial forage crop with significant economic and ecological significance. If alfalfa can be planted in saline-alkali land, it will not only improve the utilization rate of marginal land and alleviate the competition between forage and cereal crops for arable land but will also increase the yield of high-quality domestic forage. In this study, we conducted transcriptomic analysis on the saline-alkali-tolerant alfalfa cultivar NQ-1 and compared its metabolite accumulation levels with saline-alkali-sensitive cultivars. The results showed that under saline-alkali stress, the photosynthesis and some secondary metabolic pathways in NQ-1 were activated, such as α-Linolenic acid metabolism, Phenylpropanoid and Flavonoid biosynthesis, and Photosynthesis-related pathways, providing substances and energy for enhancing NQ-1 stress tolerance. Furthermore, some specific flavonoids were detected that may contribute to the saline-alkali tolerance of NQ-1. In addition, transcription factors that may regulate flavonoid biosynthesis in NQ-1 under saline-alkali stress were also identified. This study deepens the understanding of the resistance mechanism of saline-alkali-tolerant cultivars of alfalfa and provides valuable information for molecular design breeding strategies for stress-resistant alfalfa.
Collapse
Affiliation(s)
- Dongmei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (Z.S.); (W.H.); (L.M.); (X.Z.)
| | - Jinxia Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Yuanhao Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Wenhui Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Zhaohui Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Peng Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Long Han
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Zijian Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (Z.S.); (W.H.); (L.M.); (X.Z.)
| | - Weibo Han
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (Z.S.); (W.H.); (L.M.); (X.Z.)
| | - Linlin Mou
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (Z.S.); (W.H.); (L.M.); (X.Z.)
| | - Xu Zhuang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (Z.S.); (W.H.); (L.M.); (X.Z.)
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (D.Z.); (Z.S.); (W.H.); (L.M.); (X.Z.)
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (J.L.); (Y.Z.); (Y.Z.); (W.W.); (Z.L.); (P.Z.); (Y.H.); (L.H.); (M.W.); (Z.Z.); (Q.P.)
| |
Collapse
|
6
|
Dev W, Sultana F, Li H, Hu D, Peng Z, He S, Zhang H, Waqas M, Geng X, Du X. Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112390. [PMID: 39827949 DOI: 10.1016/j.plantsci.2025.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Cold stress has a huge impact on the growth and development of cotton, presenting a significant challenge to its productivity. Comprehending the complex molecular mechanisms that control the reaction to CS is necessary for developing tactics to improve cold tolerance in cotton. This review paper explores how cotton responds to cold stress by regulating gene expression, focusing on both activating and repressing specific genes. We investigate the essential roles that transcription factors and regulatory elements have in responding to cold stress and controlling gene expression to counteract the negative impacts of low temperatures. Through a comprehensive examination of new publications, we clarify the intricacies of transcriptional reprogramming induced by cold stress, emphasizing the connections between different regulatory elements and signaling pathways. Additionally, we investigate the consecutive effects of cold stress on cotton yield, highlighting the physiological and developmental disturbances resulting from extended periods of low temperatures. The knowledge obtained from this assessment allows for a more profound comprehension of the molecular mechanisms that regulate cold stress responses, suggesting potential paths for future research to enhance cold tolerance in cotton by utilizing targeted genetic modifications and biotechnological interventions.
Collapse
Affiliation(s)
- Washu Dev
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fahmida Sultana
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongge Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haobo Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Waqas
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoli Geng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 57202, China.
| |
Collapse
|
7
|
Cimmino L, Staiti A, Carputo D, Docimo T, D’Amelia V, Aversano R. Adaptable Alchemy: Exploring the Flexibility of Specialized Metabolites to Environmental Perturbations Through Post-Translational Modifications (PTMs). PLANTS (BASEL, SWITZERLAND) 2025; 14:489. [PMID: 39943051 PMCID: PMC11821190 DOI: 10.3390/plants14030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Plants are subjected to various stresses during the growth process, including biotic stresses, as well as abiotic stresses such as temperature, drought, salt, and heavy metals. To cope with these biotic and abiotic adversities, plants have evolved complex regulatory mechanisms during their long-term environmental adaptations. In a suddenly changing environment, protein modifiers target other proteins to induce post-translational modification (PTM) in order to maintain cell homeostasis and protein biological activity in plants. PTMs modulate the activity of enzymes and transcription factors in their respective metabolic pathways, enabling plants to produce essential compounds for their survival under stress conditions. Examples of post-translational mechanisms include phosphorylation, ubiquitination, glycosylation, acetylation, protein-protein interactions, and targeted protein degradation. Furthermore, the role of histone modifications in regulating secondary metabolism deserves attention due to its potential impact on heritability and its contribution to stress tolerance. Understanding the epigenetic aspect of these modifications can provide valuable insights into the mechanisms underlying stress response. In this context, also examining PTMs that impact the biosynthesis of secondary metabolites is meaningful. Secondary metabolites encompass a wide range of compounds such as flavonoids, alkaloids, and terpenoids. These secondary metabolites play a crucial role in plant defense against herbivores, pathogens, and oxidative stress. In this context, it is imperative to understand the contribution of secondary metabolism to plant tolerance to abiotic stresses and how this understanding can be leveraged to improve long-term survival. While many studies have focused on the transcriptional regulation of these metabolites, there is a growing interest in understanding various changes in PTMs, such as acetylation, glycosylation, and phosphorylation, that are able to modulate plants' response to environmental conditions. In conclusion, a comprehensive exploration of post-translational mechanisms in secondary metabolism can enhance our understanding of plant responses to abiotic stress. This knowledge holds promise for future applications in genetic improvement and breeding strategies aimed at increasing plant resilience to environmental challenges.
Collapse
Affiliation(s)
- Luca Cimmino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Annalisa Staiti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Teresa Docimo
- Institute of Biosciences and Bioresources (CNR-IBBR), National Research Council of Italy, Via Università 133, 80055 Portici, Italy
| | - Vincenzo D’Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, 80055 Portici, Italy (R.A.)
| |
Collapse
|
8
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
9
|
Sena S, Prakash A, Van Staden J, Kumar V. Epigenetic control of plant regeneration: Unraveling the role of histone methylation. CURRENT PLANT BIOLOGY 2024; 40:100408. [DOI: 10.1016/j.cpb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
10
|
Wan H, Cao L, Wang P, Hu H, Guo R, Chen J, Zhao H, Zeng C, Liu X. Genome-wide mapping of main histone modifications and coordination regulation of metabolic genes under salt stress in pea ( Pisum sativum L). HORTICULTURE RESEARCH 2024; 11:uhae259. [PMID: 39664693 PMCID: PMC11630261 DOI: 10.1093/hr/uhae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/05/2024] [Indexed: 12/13/2024]
Abstract
Pea occupy a key position in modern biogenetics, playing multifaceted roles as food, vegetable, fodder, and green manure. However, due to the complex nature of its genome and the prolonged unveiling of high-quality genetic maps, research into the molecular mechanisms underlying pea development and stress responses has been significantly delayed. Furthermore, the exploration of its epigenetic modification profiles and associated regulatory mechanisms remains uncharted. This research conducted a comprehensive investigation of four specific histone marks, namely H3K4me3, H3K27me3, H3K9ac, and H3K9me2, and the transcriptome in pea under normal conditions, and established a global map of genome-wide regulatory elements, chromatin states, and dynamics based on these major modifications. Our analysis identified epigenomic signals across ~82.6% of the genome. Each modification exhibits distinct enrichment patterns: H3K4me3 is predominantly associated with the gibberellin response pathway, H3K27me3 is primarily associated with auxin and ethylene responses, and H3K9ac is primarily associated with negative regulatory stimulus responses. We also identified a novel bivalent chromatin state (H3K9ac-H3K27me3) in pea, which is related to their development and stress response. Additionally, we unveil that these histone modifications synergistically regulate metabolic-related genes, influencing metabolite production under salt stress conditions. Our findings offer a panoramic view of the major histone modifications in pea, elucidate their interplay, and highlight their transcriptional regulatory roles during salt stress.
Collapse
Affiliation(s)
- Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | | | | | - Hanbing Hu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Rui Guo
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Jingdong Chen
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Huixia Zhao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Hubei 430056, China
| |
Collapse
|
11
|
Yung WS, Wang Q, Chan LY, Wang Z, Huang M, Li MW, Wong FL, Lam HM. DNA Hypomethylation Is One of the Epigenetic Mechanisms Involved in Salt-Stress Priming in Soybean Seedlings. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39601237 DOI: 10.1111/pce.15297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Salt-stress priming enhances the tolerance of plants against subsequent exposure to a similar stress. Priming-induced transcriptomic reprogramming is mediated by multiple epigenetic mechanisms, the best known of which is histone modifications. However, not much is known about other epigenetic responses. In this study, salt-stress priming resulted in global DNA hypomethylation in the leaves of soybean seedlings. The DNA methyltransferase activities in primed seedlings were reduced, contributing to the overall DNA hypomethylation. Genes associated with the hypomethylated DNA regions in primed seedlings also showed a higher mean level of the active histone mark, histone 3 lysine 4 trimethylation (H3K4me3), and a lower mean level of the repressive histone mark, H3K4me2. Transcriptomic analyses supported that DNA hypomethylation played a role in fine-tuning the chromatin status in primed seedlings to potentiate gene expressions. Motif and transcriptional network analyses revealed that DNA hypomethylation may facilitate the responses mediated by key transcription factors in the abscisic acid (ABA)-dependent pathway. A pre-treatment using a DNA methyltransferase inhibitor, 5-azacytidine, could enhance salt tolerance in non-primed soybean seedlings, similar to the priming effect, suggesting the role of DNA hypomethylation in salt-stress priming. Overall, this research furthers our understanding of the epigenetic mechanisms involved in salt-stress priming in soybean.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Long-Yiu Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
12
|
Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z, Jin K, Xian W, Wang W, Ning W, Liu Z, Zhao X, Wang L, Sage RF, Lu T, Stata M, Cheng S. The genome of Eleocharis vivipara elucidates the genetics of C 3-C 4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2505-2527. [PMID: 39177373 PMCID: PMC11583847 DOI: 10.1111/jipb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.
Collapse
Affiliation(s)
- Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Yanwen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6708 WB, The Netherlands
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matt Stata
- Plant Resilience Institute, Michigan State University, East Lansing, 48824, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, MI, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
13
|
Zhang D, Zhang D, Zhang Y, Li G, Sun D, Zhou B, Li J. Insights into the Epigenetic Basis of Plant Salt Tolerance. Int J Mol Sci 2024; 25:11698. [PMID: 39519250 PMCID: PMC11547110 DOI: 10.3390/ijms252111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing salinity of agricultural lands highlights the urgent need to improve salt tolerance in crops, a critical factor for ensuring food security. Epigenetic mechanisms are pivotal in plant adaptation to salt stress. This review elucidates the complex roles of DNA methylation, histone modifications, histone variants, and non-coding RNAs in the fine-tuning of gene expression in response to salt stress. It emphasizes how heritable changes, which do not alter the DNA sequence but significantly impact plant phenotype, contribute to this adaptation. DNA methylation is notably prevalent under high-salinity conditions and is associated with changes in gene expression that enhance plant resilience to salt. Modifications in histones, including both methylation and acetylation, are directly linked to the regulation of salt-tolerance genes. The presence of histone variants, such as H2A.Z, is altered under salt stress, promoting plant adaptation to high-salinity environments. Additionally, non-coding RNAs, such as miRNAs and lncRNAs, contribute to the intricate gene regulatory network under salt stress. This review also underscores the importance of understanding these epigenetic changes in developing plant stress memory and enhancing stress tolerance.
Collapse
Affiliation(s)
- Dongyu Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Duoqian Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaobin Zhang
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guanlin Li
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dehao Sun
- College of Future Technology, China Agricultural University, Beijing 100193, China; (D.Z.); (D.Z.); (Y.Z.); (G.L.); (D.S.)
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Hu J, Xu T, Kang H. Crosstalk between RNA m 6A modification and epigenetic factors in plant gene regulation. PLANT COMMUNICATIONS 2024; 5:101037. [PMID: 38971972 PMCID: PMC11573915 DOI: 10.1016/j.xplc.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Advances in transcriptome-wide m6A mapping and sequencing technologies have enabled the identification of several conserved motifs in plants, including the RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs. However, the mechanisms underlying deposition of m6A marks at specific positions in the conserved motifs of individual transcripts remain to be clarified. Evidence from plant and animal studies suggests that m6A writer or eraser components are recruited to specific genomic loci through interactions with particular transcription factors, 5-methylcytosine DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at specific sites in transcripts through a base-pairing mechanism. m6A also affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although we have less of an understanding of the link between m6A modification and epigenetic factors in plants than in animals, recent progress in identifying the proteins that interact with m6A writer or eraser components has provided insights into the crosstalk between m6A modification and epigenetic factors, which plays a crucial role in transcript-specific methylation and regulation of m6A in plants.
Collapse
Affiliation(s)
- Jianzhong Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tao Xu
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Hunseung Kang
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
15
|
Samsami H, Maali-Amiri R. Global insights into intermediate metabolites: Signaling, metabolic divergence and stress response modulation in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108862. [PMID: 38917735 DOI: 10.1016/j.plaphy.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Climate change-induced environmental stresses pose significant challenges to plant survival and agricultural productivity. In response, many plants undergo genetic reprogramming, resulting in profound alterations in metabolic pathways and the production of diverse secondary metabolites. As a critical molecular junction, intermediate metabolites by targeted intensification or suppression of subpathways channel cell resources into a multifaceted array of functions such as cell signals, photosynthesis, energy metabolism, ROS homeostasis, producing defensive and protective molecules, epigenetic regulation and stress memory, phytohormones biosynthesis and cell wall architecture under stress conditions. Unlike the well-established functions of end products, intermediate metabolites are context-dependent and produce enigmatic alternatives during stress. As key components of signal transduction pathways, intermediate metabolites with relay and integration of stress signals ensure responses to stress combinations. Investigating efficient metabolic network pathways and their role in regulating unpredictable paths from upstream to downstream levels can unlock their full potential to shape the future of agriculture and ensure global food security. Here, we summarized the activity of some intermediate metabolites, from the perception step to tolerance responses to stress factors.
Collapse
Affiliation(s)
- Hanna Samsami
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
16
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
17
|
Rao X, Yang S, Lü S, Yang P. DNA Methylation Dynamics in Response to Drought Stress in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1977. [PMID: 39065503 PMCID: PMC11280950 DOI: 10.3390/plants13141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Drought is one of the most hazardous environmental factors due to its severe damage on plant growth, development and productivity. Plants have evolved complex regulatory networks and resistance strategies for adaptation to drought stress. As a conserved epigenetic regulation, DNA methylation dynamically alters gene expression and chromosome interactions in plants' response to abiotic stresses. The development of omics technologies on genomics, epigenomics and transcriptomics has led to a rapid increase in research on epigenetic variation in non-model crop species. In this review, we summarize the most recent findings on the roles of DNA methylation under drought stress in crops, including methylating and demethylating enzymes, the global methylation dynamics, the dual regulation of DNA methylation on gene expression, the RNA-dependent DNA methylation (RdDM) pathway, alternative splicing (AS) events and long non-coding RNAs (lnc RNAs). We also discuss drought-induced stress memory. These epigenomic findings provide valuable potential for developing strategies to improve crop drought tolerance.
Collapse
Affiliation(s)
| | | | | | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.R.); (S.Y.); (S.L.)
| |
Collapse
|
18
|
Yu G, Zhang B, Chen Q, Huang Z, Zhang B, Wang K, Han J. Dynamic DNA methylation modifications in the cold stress response of cassava. Genomics 2024; 116:110871. [PMID: 38806102 DOI: 10.1016/j.ygeno.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Baowang Zhang
- Qingdao Smart Rural Development Service Center, Qingdao 266000, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Zequan Huang
- Xinglin College, Nantong University, Qidong 226236, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
19
|
Wang Z, Xia A, Wang Q, Cui Z, Lu M, Ye Y, Wang Y, He Y. Natural polymorphisms in ZMET2 encoding a DNA methyltransferase modulate the number of husk layers in maize. PLANT PHYSIOLOGY 2024; 195:2129-2142. [PMID: 38431291 PMCID: PMC11213254 DOI: 10.1093/plphys/kiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
DNA methylation affects agronomic traits and the environmental adaptability of crops, but the natural polymorphisms in DNA methylation-related genes and their contributions to phenotypic variation in maize (Zea mays) remain elusive. Here, we show that a polymorphic 10-bp insertion/deletion variant in the 3'UTR of Zea methyltransferase2 (ZMET2) alters its transcript level and accounts for variation in the number of maize husk layers. ZMET2 encodes a chromomethylase and is required for maintaining genome-wide DNA methylation in the CHG sequence context. Disruption of ZMET2 increased the number of husk layers and resulted in thousands of differentially methylated regions, a proportion of which were also distinguishable in natural ZMET2 alleles. Population genetic analyses indicated that ZMET2 was a target of selection and might play a role in the spread of maize from tropical to temperate regions. Our results provide important insights into the natural variation of ZMET2 that confers both global and locus-specific effects on DNA methylation, which contribute to phenotypic diversity in maize.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zhenhai Cui
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yusheng Ye
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110065, China
| | - Yan He
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
20
|
Liu L, Wang W, Lu X, Zhang T, Wu J, Fang Y, Ma L, Pu Y, Yang G, Wang W, Sun W. Methyl-Sensitive Amplification Polymorphism (MSAP) Analysis Provides Insights into the DNA Methylation Changes Underlying Adaptation to Low Temperature of Brassica rapa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1748. [PMID: 38999588 PMCID: PMC11244143 DOI: 10.3390/plants13131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND DNA methylation can change rapidly to regulate the expression of stress-responsive genes. Previous studies have shown that there are significant differences in the cold resistance of winter rapeseed (Brassica rapa L.) after being domesticated in different selection environments; however, little is known about the epigenetic regulatory mechanisms of its cold resistance formation. METHODS Four winter rapeseed materials ('CT-2360', 'MXW-1', '2018-FJT', and 'DT-7') domesticated in different environments were selected to analyze the DNA methylation level and pattern changes under low temperature using methylation-sensitive amplified polymorphism technology with 60 primer pairs. RESULTS A total of 18 pairs of primers with good polymorphism were screened, and 1426 clear bands were amplified, with 594 methylation sites, accounting for 41.65% of the total amplified bands. The total methylation ratios of the four materials were reduced after low-temperature treatment, in which the DNA methylation level of 'CT-2360' was higher than that of the other three materials; the analysis of methylation patterns revealed that the degree of demethylation was higher than that of methylation in 'MXW-1', '2018-FJT', and 'DT-7', which were 22.99%, 19.77%, and 24.35%, respectively, and that the methylation events in 'CT-2360' were predominantly dominant at 22.95%. Fifty-three polymorphic methylated DNA fragments were randomly selected and further analyzed, and twenty-nine of the cloned fragments were homologous to genes with known functions. The candidate genes VQ22 and LOC103871127 verified the existence of different expressive patterns before and after low-temperature treatment. CONCLUSIONS Our work implies the critical role of DNA methylation in the formation of cold resistance in winter rapeseed. These results provide a comprehensive insight into the adaptation epigenetic regulatory mechanism of Brassica rapa L. to low temperature, and the identified differentially methylated genes can also be used as important genetic resources for the multilateral breeding of winter-resistant varieties.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanpeng Wang
- Zhangye Academy of Agricultural Sciences, Zhangye 734000, China
| | - Xiaoming Lu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyu Zhang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
21
|
Yu S, Zhu J, Yin Y, Zhang X, Dai Y, Xing Y, Cheng X, Zhang A, Li C, Zhu Y, Ruan Y, Dong X, Fan J. Dynamic transcriptome profiling revealed a key gene ZmJMJ20 and pathways associated with cadmium stress in maize. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116352. [PMID: 38663195 DOI: 10.1016/j.ecoenv.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Cadmium (Cd) pollution in soil poses a global concern due to its serious impacts on human health and ecological security. In plants, tremendous efforts have been made to identify some key genes and pathways in Cd stress responses. However, studies on the roles of epigenetic factors in response to Cd stress were still limited. In the study, we first gain insight into the gene expression dynamics for maize seedlings under 0 h, 12 h, and 72 h Cd stress. As a result, six distinct groups of genes were identified by hierarchical clustering and principal component analysis. The key pathways associated with 12 h Cd stress were protein modifications including protein ubiquitination, signal transduction by protein phosphorylation, and histone modification. Whereas, under 72 h stress, main pathways were involved in biological processes including phenylalanine metabolism, response to oxygen-containing compounds and metal ions. Then to be noted, one of the most highly expressed genes at 12 h under Cd treatment is annotated as histone demethylases (ZmJMJ20). The evolutionary tree analysis and domain analysis showed that ZmJMJ20 belonged to the JmjC-only subfamily of the Jumonji-C (JmjC) family, and ZmJMJ20 was conserved in rice and Arabidopsis. After 72 h of Cd treatment, the zmjmj20 mutant created by EMS treatment manifested less severe chlorosis/leaf yellowing symptoms compared with wild-type plants, and there was no significant difference in Fv/Fm and φPSII value before and after Cd treatment. Moreover, the expression levels of several photosynthesis-related down-regulated genes in EMS mutant plants were dramatically increased compared with those in wild-type plants at 12 h under Cd treatment. Our results suggested that ZmJMJ20 plays an important role in the Cd tolerance response pathway and will facilitate the development of cultivars with improved Cd stress tolerance.
Collapse
Affiliation(s)
- Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yanzhe Yin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yupeng Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China.
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, Liaoning 110866, China.
| |
Collapse
|
22
|
Guo W, Li X, Yang T, Huang C, Zhao B, Wang P. Identification and expression of the Di19 gene family in response to abiotic stress in common bean ( Phaseolus vulgaris L.). Front Genet 2024; 15:1401011. [PMID: 38873116 PMCID: PMC11169598 DOI: 10.3389/fgene.2024.1401011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Drought-induced 19 (Di19) protein plays critical biological functions in response to adversity as well as in plant growth and development. Exploring the role and mechanism of Di19 in abiotic stress responses is of great significance for improving plant tolerance. In this study, six Di19 genes were identified in the common bean (Phaseolus vulgaris L.), which were mainly derived from segmental duplications. These genes share conserved exon/intron structures and were classified into three subfamilies based on their phylogenetic relationships. The composition and arrangement of conserved motifs were consistent with their phylogenetic relationships. Many hormone- and stress-responsive elements were distributed in the promoters region of PvDi19 genes. Variations in histidine residues in the Cys2/His2 (C2H2) zinc-finger domains resulted in an atypical tertiary structure of PvDi19-5. Gene expression analysis showed rapid induction of PvDi19-1 in roots by 10% PEG treatment, and PvDi19-2 in leaves by 20% PEG treatment, respectively. Most PvDi19s exhibited insensitivity to saline-alkali stress, except for PvDi19-6, which was notably induced during later stages of treatment. The most common bean Di19 genes were inhibited or not regulated by cadmium stress, but the expression of PvDi19-6 in roots was significantly upregulated when subjected to lower concentrations of cadmium (5 mmol). Moreover, Di19s exhibited greater sensitivity to severe cold stress (6°C). These findings enhance our understanding of the role of PvDi19s in common bean abiotic stress responses and provide a basis for future genetic enhancements in common bean stress tolerance.
Collapse
Affiliation(s)
- Wei Guo
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
| | - Xinhui Li
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Tao Yang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Chunguo Huang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Bo Zhao
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Peng Wang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
23
|
Liang Q, Jing J, He H, Huang X, Liu J, Wang M, Qi Z, Zhang L, Huang Z, Yan Y, Liu S, Gao M, Zou Y. Manganese induces podocyte injury through regulating MTDH/ALKBH5/NLRP10 axis: Combined analysis at epidemiology and molecular biology levels. ENVIRONMENT INTERNATIONAL 2024; 187:108672. [PMID: 38648691 DOI: 10.1016/j.envint.2024.108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Manganese (Mn) is an essential micronutrient required for various biological processes but excess exposure to Mn can cause neurotoxicity. However, there are few reports regarding the toxicity effect of Mn on the kidney as well as the underlying molecule mechanism. Herein, in vivo experiments were adopted to assess the toxicity effects associated with Mn, and found that chronic Mn treatment induced the injury of glomerular podocytes but not renal tubule in rats. Genome-wide CRISPR/Cas9 knockout screen was then employed to explore the biotargets of the toxic effect of Mn on podocytes. Through functional analyses of the enriched candidate genes, NLRP10 was found to be significantly up-regulated and mediated Mn-induced podocyte apoptosis. Further mechanism investigation revealed that NLRP10 expression was regulated by demethylase AlkB homolog 5 (ALKBH5) in an m6A-dependent fashion upon Mn treatment. Moreover, Mn could directly bind to Metadherin (MTDH) and promoted its combination with ALKBH5 to promote NLRP10 expression and cell apoptosis. Finally, logistic regressions, restricted cubic spline regressions and uniform cubic B-spline were used to investigate the association between Mn exposure and the risk of chronic kidney disease (CKD). A U-shaped nonlinear relationship between CKD risk and plasma Mn level, and a positive linear relationship between CKD risk and urinary Mn levels was found in our case-control study. To sum up, our findings illustrated that m6A-dependent NLRP10 regulation is indispensable for podocyte apoptosis and nephrotoxicity induced by Mn, providing fresh insight into understanding the health risk of Mn and a novel target for preventing renal injury in Mn-intoxicated patients.
Collapse
Affiliation(s)
- Qiuju Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiajun Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huiming He
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Institute of Parasitic Disease Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning 530021, China
| | - Xiaofeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jianing Liu
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Mingjun Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zijuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250014, Shandong, China
| | - Li'e Zhang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Ziang Huang
- Department of Mathematics, University of California at Davis, CA 95616, USA
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
24
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
25
|
Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:163. [PMID: 38256717 PMCID: PMC10820249 DOI: 10.3390/plants13020163] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Plant stress is a significant challenge that affects the development, growth, and productivity of plants and causes an adverse environmental condition that disrupts normal physiological processes and hampers plant survival. Epigenetic regulation is a crucial mechanism for plants to respond and adapt to stress. Several studies have investigated the role of DNA methylation (DM), non-coding RNAs, and histone modifications in plant stress responses. However, there are various limitations or challenges in translating the research findings into practical applications. Hence, this review delves into the recent recovery, implications, and applications of epigenetic regulation in response to plant stress. To better understand plant epigenetic regulation under stress, we reviewed recent studies published in the last 5-10 years that made significant contributions, and we analyzed the novel techniques and technologies that have advanced the field, such as next-generation sequencing and genome-wide profiling of epigenetic modifications. We emphasized the breakthrough findings that have uncovered specific genes or pathways and the potential implications of understanding plant epigenetic regulation in response to stress for agriculture, crop improvement, and environmental sustainability. Finally, we concluded that plant epigenetic regulation in response to stress holds immense significance in agriculture, and understanding its mechanisms in stress tolerance can revolutionize crop breeding and genetic engineering strategies, leading to the evolution of stress-tolerant crops and ensuring sustainable food production in the face of climate change and other environmental challenges. Future research in this field will continue to unveil the intricacies of epigenetic regulation and its potential applications in crop improvement.
Collapse
Affiliation(s)
- Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Yani Xiong
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Abiodun Yusuff Moshood
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Mexico;
| | - Hao Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| |
Collapse
|
26
|
Wang X, Tang H, Lu T, Shen P, Chen J, Dong W, Song Y. Novel underlying regulatory mechanism of the MsDAD2-mediated salt stress response in alfalfa. Biochem Biophys Res Commun 2024; 690:149252. [PMID: 37995452 DOI: 10.1016/j.bbrc.2023.149252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Alfalfa (Medicago sativa L.), a crucial and widely grown forage legume, faces yield and quality challenges due to salinity stress. The defender against apoptotic death (DAD) gene, recognized initially as an apoptosis suppressor in mammals, plays a pivotal role in catalyzing N-glycosylation, acting as a positive regulator for protein folding and endoplasmic reticulum (ER) export. Here, we found that the MsDAD2 gene was specially induced in the salt-tolerant alfalfa cultivar (DL) under salinity stress, but not in the salt-sensitive cultivar (SD). Overexpression of MsDAD2 enhanced the salinity resistance of transgenic alfalfa by promoting NAD(P)H-quinone oxidoreductase (NQO1) and cytochrome b6f complex subunit (Cyt b6/f) expression, thereby mitigating reactive oxygen species (ROS) production. ChIP-qPCR analysis suggested that the differential expression of MsDAD2 in DL and SD under salinity stress may be linked to dynamic histone modifications in its promoter. Therefore, our findings elucidate a novel regulatory mechanism of MsDAD2 in alfalfa's response to salinity stress, underscoring its significance as a target for alfalfa breeding to enhance salt tolerance.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Haoyan Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Tongchen Lu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Peihan Shen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Jifeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Wei Dong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Yuguang Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China.
| |
Collapse
|
27
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
28
|
Yin J, Ren W, Fry EL, Sun S, Han H, Guo F. DNA methylation mediates overgrazing-induced clonal transgenerational plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165338. [PMID: 37414175 DOI: 10.1016/j.scitotenv.2023.165338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Overgrazing generally induces dwarfism in grassland plants, and these phenotypic traits could be transmitted to clonal offspring even when overgrazing is excluded. However, the dwarfism-transmitted mechanism remains largely unknown, despite generally thought to be enabled by epigenetic modification. To clarify the potential role of DNA methylation on clonal transgenerational effects, we conducted a greenhouse experiment with Leymus chinensis clonal offspring from different cattle/sheep overgrazing histories via the demethylating agent 5-azacytidine. The results showed that clonal offspring from overgrazed (by cattle or sheep) parents were dwarfed and the auxin content of leaves significantly decreased compared to offspring from no-grazed parents'. The 5-azaC application generally increased the auxin content and promoted the growth of overgrazed offspring while inhibited no-grazed offspring growth. Meanwhile, there were similar trends in the expression level of genes related to auxin-responsive target genes (ARF7, ARF19), and signal transduction gene (AZF2). These results suggest that DNA methylation leads to overgrazing-induced plant transgenerational dwarfism via inhibiting auxin signal pathway.
Collapse
Affiliation(s)
- Jingjing Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China; Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot 010016, China.
| | - Ellen L Fry
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | - Siyuan Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Huijie Han
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fenghui Guo
- Industrial Crop Institute, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
29
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
30
|
Sun L, Huo J, Liu J, Yu J, Zhou J, Sun C, Wang Y, Leng F. Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chem 2023; 411:135540. [PMID: 36701918 DOI: 10.1016/j.foodchem.2023.135540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Anthocyanins have indispensable functions in plant resistance, human health, and fruit coloring, which arouse people's favorite. It has been reported that anthocyanins are widely found in fruits, and can be affected by numerous factors. In this review, we systematically summarize anthocyanin functions, classifications, distributions, biosynthesis, decoration, transportation, transcriptional regulation, DNA methylation, and post-translational regulation in fruits.
Collapse
Affiliation(s)
- Liping Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jingtian Huo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jieya Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jiayi Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Jialing Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Feng Leng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
31
|
Liang BW, Li C, Bai TH, Wang P. Editorial: Nutrient use efficiency of plants under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1179842. [PMID: 37304712 PMCID: PMC10250746 DOI: 10.3389/fpls.2023.1179842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Bo-Wen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, China
| | - Tuan-Hui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
32
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
33
|
Gong Z, Zhu JK. Celebrating the discovery of DNA demethylase. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2215-2216. [PMID: 36478150 DOI: 10.1111/jipb.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|