1
|
Dubianok Y, Kumar A, Rak A. Structural Biology for Target Identification and Validation. Methods Mol Biol 2025; 2905:17-49. [PMID: 40163296 DOI: 10.1007/978-1-0716-4418-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Structural biology is catalyzing a paradigm shift in drug discovery towards rational approaches in target identification and validation. Leveraging structural insights obtained through cryo-EM or X-ray crystallography not only enhances the efficiency of drug discovery projects in terms of time and cost, but also significantly improves the likelihood of achieving market approval.Initiating a successful project necessitates more than just a robust package for target credentialing; it demands a comprehensive strategy for the identification and optimization of potential drugs. The critical evaluation of target druggability is markedly enhanced when supported by experimentally derived structural information. This nuanced approach ensures a more thorough understanding of the technical feasibility of drug development from the project's inception.
Collapse
Affiliation(s)
- Yuliya Dubianok
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Anand Kumar
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Alexey Rak
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France.
| |
Collapse
|
2
|
Henderikx RJM, Schotman MJG, Shahzad S, Fromm SA, Mann D, Hennies J, Heidler TV, Ashtiani D, Hagen WJH, Jeurissen RJM, Mattei S, Peters PJ, Sachse C, Beulen BWAMM. Ice thickness control and measurement in the VitroJet for time-efficient single particle structure determination. J Struct Biol 2024; 216:108139. [PMID: 39433138 DOI: 10.1016/j.jsb.2024.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Embedding biomolecules in vitreous ice of optimal thickness is critical for structure determination by cryo-electron microscopy. Ice thickness assessment and selection of suitable holes for data collection are currently part of time-consuming preparatory routines performed on expensive electron microscopes. To address this challenge, a routine has been developed to measure ice thickness during sample preparation using an optical camera integrated in the VitroJet. This method allows to estimate the ice thickness with an error below ±20 nm for ice layers in the range of 0-70 nm. Additionally, we characterized the influence of pin printing parameters and found that the median ice thickness can be reproduced with a standard deviation below ±11 nm for thicknesses up to 75 nm. Therefore, the ice thickness of buffer-suspended holes on an EM grid can be tuned and measured within the working range relevant for single particle cryo-EM. Single particle structures of apoferritin were determined at two distinct thicknesses of 30 nm and 70 nm. These reconstructions demonstrate the importance of ice thickness for time-efficient cryo-EM structure determination.
Collapse
Affiliation(s)
- Rene J M Henderikx
- CryoSol-World, Weert, the Netherlands; Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands.
| | | | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Simon A Fromm
- European Molecular Biology Laboratory, EMBL Imaging Centre, Heidelberg, Germany
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Julian Hennies
- European Molecular Biology Laboratory, EMBL Imaging Centre, Heidelberg, Germany
| | - Thomas V Heidler
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - Wim J H Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Roger J M Jeurissen
- ACFD Consultancy, Heel, the Netherlands; Physics of Fluids group, University of Twente, Enschede, the Netherlands
| | - Simone Mattei
- European Molecular Biology Laboratory, EMBL Imaging Centre, Heidelberg, Germany; European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peter J Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Carsten Sachse
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany; Department of Biology, Heinrich-Heine-University, Düsseldorf
| | | |
Collapse
|
3
|
Remis J, Petrov PN, Zhang JT, Axelrod JJ, Cheng H, Sandhaus S, Mueller H, Glaeser RM. Cryo-EM phase-plate images reveal unexpected levels of apparent specimen damage. J Struct Biol 2024; 216:108150. [PMID: 39536845 DOI: 10.1016/j.jsb.2024.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Apoferritin (apoF) is commonly used as a test specimen in single-particle electron cryo-microscopy (cryo-EM), since it consistently produces density maps that go to 3 Å resolution or higher. When we imaged apoF with a laser phase plate (LPP), however, we observed more severe particle-to-particle variation in the images than we had previously thought to exist. Similarly, we found that images of ribulose bisphosphate carboxylase/oxygenase (rubisco) also exhibited a much greater amount of heterogeneity than expected. By comparison to simulations of images, we verified that the heterogeneity is not explained by the known features of the LPP, shot noise, or differences in particle orientation. We also demonstrate that our specimens are comparable to those previously used in the literature, based on using the final-reconstruction resolution as the metric for evaluation. All of this leads us to the hypothesis that the heterogeneity is due to damage that has occurred either during purification of the specimen or during preparation of the grids. It is not, however, our goal to explain the causes of heterogeneity; rather, we report that using the LPP has made the apparent damage too obvious to be ignored. In hindsight, similar heterogeneity can be seen in images of apoF and the 20S proteasome which others had recorded with a Volta phase plate. We therefore conclude that the increased contrast of phase-plate images (at low spatial frequencies) should also make it possible to visualize, on a single-particle basis, various forms of biologically functional heterogeneity in structure that had previously gone unnoticed.
Collapse
Affiliation(s)
- Jonathan Remis
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Petar N Petrov
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jessie T Zhang
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jeremy J Axelrod
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Hang Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Shahar Sandhaus
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Holger Mueller
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Robert M Glaeser
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Chan LM, Courteau BJ, Maker A, Wu M, Basanta B, Mehmood H, Bulkley D, Joyce D, Lee BC, Mick S, Czarnik C, Gulati S, Lander GC, Verba KA. High-resolution single-particle imaging at 100-200 keV with the Gatan Alpine direct electron detector. J Struct Biol 2024; 216:108108. [PMID: 38944401 PMCID: PMC11542591 DOI: 10.1016/j.jsb.2024.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these energies, specifically a ∼ 4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope fitted with a non-standard SP-Twin lens. We also achieved a ∼ 3.2 Å resolution reconstruction of a 115 kDa asymmetric protein complex, proving Alpine's effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining ∼ 3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, bringing smaller sized particles within the scope of cryo-EM.
Collapse
Affiliation(s)
- Lieza M Chan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - Brandon J Courteau
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - Allison Maker
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92024, United States
| | - Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92024, United States
| | - Hev Mehmood
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - David Bulkley
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, United States
| | | | | | | | | | | | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92024, United States.
| | - Kliment A Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
5
|
Zheng L, Xu J, Wang W, Gao X, Zhao C, Guo W, Sun L, Cheng H, Meng F, Chen B, Sun W, Jia X, Zhou X, Wu K, Liu Z, Ding F, Liu N, Wang HW, Peng H. Self-assembled superstructure alleviates air-water interface effect in cryo-EM. Nat Commun 2024; 15:7300. [PMID: 39181869 PMCID: PMC11344764 DOI: 10.1038/s41467-024-51696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Cryo-electron microscopy (cryo-EM) has been widely used to reveal the structures of proteins at atomic resolution. One key challenge is that almost all proteins are predominantly adsorbed to the air-water interface during standard cryo-EM specimen preparation. The interaction of proteins with air-water interface will significantly impede the success of reconstruction and achievable resolution. Here, we highlight the critical role of impenetrable surfactant monolayers in passivating the air-water interface problems, and develop a robust effective method for high-resolution cryo-EM analysis, by using the superstructure GSAMs which comprises surfactant self-assembled monolayers (SAMs) and graphene membrane. The GSAMs works well in enriching the orientations and improving particle utilization ratio of multiple proteins, facilitating the 3.3-Å resolution reconstruction of a 100-kDa protein complex (ACE2-RBD), which shows strong preferential orientation using traditional specimen preparation protocol. Additionally, we demonstrate that GSAMs enables the successful determinations of small proteins (<100 kDa) at near-atomic resolution. This study expands the understanding of SAMs and provides a key to better control the interaction of protein with air-water interface.
Collapse
Affiliation(s)
- Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihua Wang
- China Academy of Aerospace Science and Innovation, Beijing, 100088, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chao Zhao
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Weijun Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luzhao Sun
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Hang Cheng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Fanhao Meng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Buhang Chen
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Weiyu Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiong Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kai Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhongfan Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Feng Ding
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Graphene Institute (BGI), Beijing, 100095, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Remis J, Petrov PN, Zhang JT, Axelrod JJ, Cheng H, Sandhaus S, Mueller H, Glaeser RM. Cryo-EM phase-plate images reveal unexpected levels of apparent specimen damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.04.606536. [PMID: 39149370 PMCID: PMC11326166 DOI: 10.1101/2024.08.04.606536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Apoferritin (apoF) is commonly used as a test specimen in single-particle electron cryo-microscopy (cryo-EM), since it consistently produces density maps that go to 3 Å resolution or higher. When we imaged apoF with a laser phase plate (LPP), however, we observed more severe particle-to-particle variation in the images than we had previously thought to exist. Similarly, we found that images of ribulose bisphosphate carboxylase/oxygenase (rubisco) also exhibited a much greater amount of heterogeneity than expected. By comparison to simulations of images, we verified that the heterogeneity is not explained by the known features of the LPP, shot noise, or differences in particle orientation. We also demonstrate that our specimens are comparable to those previously used in the literature, based on using the final-reconstruction resolution as the metric for evaluation. All of this leads us to the hypothesis that the heterogeneity is due to damage that has occurred either during purification of the specimen or during preparation of the grids. It is not, however, our goal to explain the causes of heterogeneity; rather, we report that using the LPP has made the apparent damage too obvious to be ignored. In hindsight, similar heterogeneity can be seen in images of apoF and the 20S proteasome which others had recorded with a Volta phase plate. We therefore conclude that the increased contrast of phase-plate images (at low spatial frequencies) should also make it possible to visualize, on a single-particle basis, various forms of biologically functional heterogeneity in structure that had previously gone unnoticed.
Collapse
Affiliation(s)
- Jonathan Remis
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Petar N. Petrov
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jessie T, Zhang
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jeremy J. Axelrod
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Hang Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Shahar Sandhaus
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Holger Mueller
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Robert M. Glaeser
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Zhao Q, Hong X, Wang Y, Zhang S, Ding Z, Meng X, Song Q, Hong Q, Jiang W, Shi X, Cai T, Cong Y. An immobilized antibody-based affinity grid strategy for on-grid purification of target proteins enables high-resolution cryo-EM. Commun Biol 2024; 7:715. [PMID: 38858498 PMCID: PMC11164986 DOI: 10.1038/s42003-024-06406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
In cryo-electron microscopy (cryo-EM), sample preparation poses a critical bottleneck, particularly for rare or fragile macromolecular assemblies and those suffering from denaturation and particle orientation distribution issues related to air-water interface. In this study, we develop and characterize an immobilized antibody-based affinity grid (IAAG) strategy based on the high-affinity PA tag/NZ-1 antibody epitope tag system. We employ Pyr-NHS as a linker to immobilize NZ-1 Fab on the graphene oxide or carbon-covered grid surface. Our results demonstrate that the IAAG grid effectively enriches PA-tagged target proteins and overcomes preferred orientation issues. Furthermore, we demonstrate the utility of our IAAG strategy for on-grid purification of low-abundance target complexes from cell lysates, enabling atomic resolution cryo-EM. This approach greatly streamlines the purification process, reduces the need for large quantities of biological samples, and addresses common challenges encountered in cryo-EM sample preparation. Collectively, our IAAG strategy provides an efficient and robust means for combined sample purification and vitrification, feasible for high-resolution cryo-EM. This approach holds potential for broader applicability in both cryo-EM and cryo-electron tomography (cryo-ET).
Collapse
Affiliation(s)
- Qiaoyu Zhao
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoyu Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shaoning Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Zhanyu Ding
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xueming Meng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qianqian Song
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wanying Jiang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermo Fisher Scientific, Shanghai, China
| | - Tianxun Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Yang Z, Fan J, Wang J, Fan X, Ouyang Z, Wang HW, Zhou X. Electrospray-assisted cryo-EM sample preparation to mitigate interfacial effects. Nat Methods 2024; 21:1023-1032. [PMID: 38664529 PMCID: PMC11166575 DOI: 10.1038/s41592-024-02247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/17/2024] [Indexed: 06/13/2024]
Abstract
Addressing interfacial effects during specimen preparation in cryogenic electron microscopy remains challenging. Here we introduce ESI-cryoPrep, a specimen preparation method based on electrospray ionization in native mass spectrometry, designed to alleviate issues associated with protein denaturation or preferred orientation induced by macromolecule adsorption at interfaces. Through fine-tuning spraying parameters, we optimized protein integrity preservation and achieved the desired ice thickness for analyzing target macromolecules. With ESI-cryoPrep, we prepared high-quality cryo-specimens of five proteins and obtained three-dimensional reconstructions at near-atomic resolution. Our findings demonstrate that ESI-cryoPrep effectively confines macromolecules within the middle of the thin layer of amorphous ice, facilitating the preparation of blotting-free vitreous samples. The protective mechanism, characterized by the uneven distribution of charged biomolecules of varying sizes within charged droplets, prevents the adsorption of target biomolecules at air-water or graphene-water interfaces, thereby avoiding structural damage to the protein particles or the introduction of dominant orientation issues.
Collapse
Affiliation(s)
- Zi Yang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Fan
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Henderikx RJM, Mann D, Domanska A, Dong J, Shahzad S, Lak B, Filopoulou A, Ludig D, Grininger M, Momoh J, Laanto E, Oksanen HM, Bisikalo K, Williams PA, Butcher SJ, Peters PJ, Beulen BWAMM. VitroJet: new features and case studies. Acta Crystallogr D Struct Biol 2024; 80:232-246. [PMID: 38488730 PMCID: PMC10994172 DOI: 10.1107/s2059798324001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.
Collapse
Affiliation(s)
- Rene J. M. Henderikx
- CryoSol-World, Weert, The Netherlands
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Daniel Mann
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Aušra Domanska
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Dong
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Behnam Lak
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Aikaterini Filopoulou
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Damian Ludig
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jeffrey Momoh
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Elina Laanto
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kyrylo Bisikalo
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Pamela A. Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Sarah J. Butcher
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Life Science Institute–Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
10
|
Masse M, Hutchinson RB, Morgan CE, Allaman HJ, Guan H, Yu EW, Cavagnero S. Mapping Protein-Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome-Nascent Globin Complex. ACS CENTRAL SCIENCE 2024; 10:385-401. [PMID: 38435509 PMCID: PMC10906257 DOI: 10.1021/acscentsci.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024]
Abstract
Interactions between ribosome-bound nascent chains (RNCs) and ribosomal components are critical to elucidate the mechanism of cotranslational protein folding. Nascent protein-ribosome contacts within the ribosomal exit tunnel were previously assessed mostly in the presence of C-terminal stalling sequences, yet little is known about contacts taking place in the absence of these strongly interacting motifs. Further, there is nearly no information about ribosomal proteins (r-proteins) interacting with nascent chains within the outer surface of the ribosome. Here, we combine chemical cross-linking, single-particle cryo-EM, and fluorescence anisotropy decays to determine the structural features of ribosome-bound apomyoglobin (apoMb). Within the ribosomal exit tunnel core, interactions are similar to those identified in previous reports. However, once the RNC enters the tunnel vestibule, it becomes more dynamic and interacts with ribosomal RNA (rRNA) and the L23 r-protein. Remarkably, on the outer surface of the ribosome, RNCs interact mainly with a highly conserved nonpolar patch of the L23 r-protein. RNCs also comprise a compact and dynamic N-terminal region lacking contact with the ribosome. In all, apoMb traverses the ribosome and interacts with it via its C-terminal region, while N-terminal residues sample conformational space and form a compact subdomain before the entire nascent protein sequence departs from the ribosome.
Collapse
Affiliation(s)
- Meranda
M. Masse
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Rachel B. Hutchinson
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Christopher E. Morgan
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather J. Allaman
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hongqing Guan
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Edward W. Yu
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Chan LM, Courteau BJ, Maker A, Wu M, Basanta B, Mehmood H, Bulkley D, Joyce D, Lee BC, Mick S, Gulati S, Lander GC, Verba KA. High-resolution single-particle imaging at 100-200 keV with the Gatan Alpine direct electron detector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580363. [PMID: 38405886 PMCID: PMC10888765 DOI: 10.1101/2024.02.14.580363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these voltages, specifically a ~4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope. We also achieved a ~3.2 Å resolution reconstruction for a 115 kDa asymmetric protein complex, proving its effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining ~3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, possibly bringing smaller sized particles within the scope of cryo-EM.
Collapse
Affiliation(s)
- Lieza M Chan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - Brandon J Courteau
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - Allison Maker
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92024, United States
| | - Benjamin Basanta
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92024, United States
| | - Hevatib Mehmood
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| | - David Bulkley
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, United States
| | | | | | | | | | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92024, United States
| | - Kliment A Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
| |
Collapse
|
12
|
Aiyer S, Baldwin PR, Tan SM, Shan Z, Oh J, Mehrani A, Bowman ME, Louie G, Passos DO, Đorđević-Marquardt S, Mietzsch M, Hull JA, Hoshika S, Barad BA, Grotjahn DA, McKenna R, Agbandje-McKenna M, Benner SA, Noel JAP, Wang D, Tan YZ, Lyumkis D. Overcoming resolution attenuation during tilted cryo-EM data collection. Nat Commun 2024; 15:389. [PMID: 38195598 PMCID: PMC10776679 DOI: 10.1038/s41467-023-44555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.
Collapse
Affiliation(s)
- Sriram Aiyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Philip R Baldwin
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shi Min Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- College of Pharmacy, Kyung Hee University, Seoul, 02247, Republic of Korea
| | - Atousa Mehrani
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gordon Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joshua A Hull
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Benjamin A Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Joseph A P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
- Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, 138648, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Ignatiou A, Macé K, Redzej A, Costa TRD, Waksman G, Orlova EV. Structural Analysis of Protein Complexes by Cryo-Electron Microscopy. Methods Mol Biol 2024; 2715:431-470. [PMID: 37930544 DOI: 10.1007/978-1-0716-3445-5_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Structural studies of bio-complexes using single particle cryo-Electron Microscopy (cryo-EM) is nowadays a well-established technique in structural biology and has become competitive with X-ray crystallography. Development of digital registration systems for electron microscopy images and algorithms for the fast and efficient processing of the recorded images and their following analysis has facilitated the determination of structures at near-atomic resolution. The latest advances in EM have enabled the determination of protein complex structures at 1.4-3 Å resolution for an extremely broad range of sizes (from ~100 kDa up to hundreds of MDa (Bartesaghi et al., Science 348(6239):1147-1151, 2015; Herzik et al., Nat Commun 10:1032, 2019; Wu et al., J Struct Biol X 4:100020, 2020; Zhang et al., Nat Commun 10:5511, 2019; Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020; https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year )). In 2022, nearly 1200 structures deposited to the EMDB database were at a resolution of better than 3 Å ( https://www.ebi.ac.uk/emdb/statistics/emdb_resolution_year ).To date, the highest resolutions have been achieved for apoferritin, which comprises a homo-oligomer of high point group symmetry (O432) and has rigid organization together with high stability (Zhang et al., Cell Res 30(12):1136-1139, 2020; Yip et al., Nature 587(7832):157-161, 2020). It has been used as a test object for the assessments of modern cryo-microscopes and processing methods during the last 5 years. In contrast to apoferritin bacterial secretion systems are typical examples of multi protein complexes exhibiting high flexibility owing to their functions relating to the transportation of small molecules, proteins, and DNA into the extracellular space or target cells. This makes their structural characterization extremely challenging (Barlow, Methods Mol Biol 532:397-411, 2009; Costa et al., Nat Rev Microbiol 13:343-359, 2015). The most feasible approach to reveal their spatial organization and functional modification is cryo-electron microscopy (EM). During the last decade, structural cryo-EM has become broadly used for the analysis of the bio-complexes that comprise multiple components and are not amenable to crystallization (Lyumkis, J Biol Chem 294:5181-5197, 2019; Orlova and Saibil, Methods Enzymol 482:321-341, 2010; Orlova and Saibil, Chem Rev 111(12):7710-7748, 2011).In this review, we will describe the basics of sample preparation for cryo-EM, the principles of digital data collection, and the logistics of image analysis focusing on the common steps required for reconstructions of both small and large biological complexes together with refinement of their structures to nearly atomic resolution. The workflow of processing will be illustrated by examples of EM analysis of Type IV Secretion System.
Collapse
Affiliation(s)
- Athanasios Ignatiou
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Kévin Macé
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Adam Redzej
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Gabriel Waksman
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK
| | - Elena V Orlova
- Institute for Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
14
|
Cookis T, Sauer P, Poepsel S, Han BG, Herbst DA, Glaeser R, Nogales E. Streptavidin-Affinity Grid Fabrication for Cryo-Electron Microscopy Sample Preparation. J Vis Exp 2023:10.3791/66197. [PMID: 38224121 PMCID: PMC11293040 DOI: 10.3791/66197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Streptavidin affinity grids provide strategies to overcome many commonly encountered cryo-electron microscopy (cryo-EM) sample preparation challenges, including sample denaturation and preferential orientations that can occur due to the air-water interface. Streptavidin affinity grids, however, are currently utilized by few cryo-EM labs because they are not commercially available and require a careful fabrication process. Two-dimensional streptavidin crystals are grown onto a biotinylated lipid monolayer that is applied directly to standard holey-carbon cryo-EM grids. The high-affinity interaction between streptavidin and biotin allows for the subsequent binding of biotinylated samples that are protected from the air-water interface during cryo-EM sample preparation. Additionally, these grids provide a strategy for concentrating samples available in limited quantities and purifying protein complexes of interest directly on the grids. Here, a step-by-step, optimized protocol is provided for the robust fabrication of streptavidin affinity grids for use in cryo-EM and negative-stain experiments. Additionally, a trouble-shooting guide is included for commonly experienced challenges to make the use of streptavidin affinity grids more accessible to the larger cryo-EM community.
Collapse
Affiliation(s)
- Trinity Cookis
- Department of Molecular and Cell Biology, University of California, Berkeley;
| | - Paul Sauer
- California Institute for Quantitative Biology (QB3), University of California, Berkeley; Howard Hughes Medical Institute, University of California, Berkeley
| | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne
| | - Bong-Gyoon Han
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| | - Dominik A Herbst
- Department of Molecular and Cell Biology, University of California, Berkeley; California Institute for Quantitative Biology (QB3), University of California, Berkeley; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| | - Robert Glaeser
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley; California Institute for Quantitative Biology (QB3), University of California, Berkeley; Howard Hughes Medical Institute, University of California, Berkeley; Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory
| |
Collapse
|
15
|
Sawh-Gopal A, Ishemgulova A, Chua EYD, Aragon MF, Mendez JH, Eng ET, Noble AJ. Cryo-Electron Microscopy Screening Automation across Multiple Grids using Smart Leginon. J Vis Exp 2023. [PMID: 38108412 PMCID: PMC11922482 DOI: 10.3791/66007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Advancements in cryo-electron microscopy (cryoEM) techniques over the past decade have allowed structural biologists to routinely resolve macromolecular protein complexes to near-atomic resolution. The general workflow of the entire cryoEM pipeline involves iterating between sample preparation, cryoEM grid preparation, and sample/grid screening before moving on to high-resolution data collection. Iterating between sample/grid preparation and screening is typically a major bottleneck for researchers, as every iterative experiment must optimize for sample concentration, buffer conditions, grid material, grid hole size, ice thickness, and protein particle behavior in the ice, amongst other variables. Furthermore, once these variables are satisfactorily determined, grids prepared under identical conditions vary widely in whether they are ready for data collection, so additional screening sessions prior to selecting optimal grids for high-resolution data collection are recommended. This sample/grid preparation and screening process often consumes several dozen grids and days of operator time at the microscope. Furthermore, the screening process is limited to operator/microscope availability and microscope accessibility. Here, we demonstrate how to use Leginon and Smart Leginon Autoscreen to automate the majority of cryoEM grid screening. Autoscreen combines machine learning, computer vision algorithms, and microscope-handling algorithms to remove the need for constant manual operator input. Autoscreen can autonomously load and image grids with multi-scale imaging using an automated specimen-exchange cassette system, resulting in unattended grid screening for an entire cassette. As a result, operator time for screening 12 grids may be reduced to ~10 min with Autoscreen compared to ~6 h using previous methods which are hampered by their inability to account for high variability between grids. This protocol first introduces basic Leginon setup and functionality, then demonstrates Autoscreen functionality step-by-step from the creation of a template session to the end of a 12-grid automated screening session.
Collapse
Affiliation(s)
- Anjelique Sawh-Gopal
- Simons Electron Microscopy Center, New York Structural Biology Center; Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology
| | - Aygul Ishemgulova
- Simons Electron Microscopy Center, New York Structural Biology Center
| | - Eugene Y D Chua
- Simons Electron Microscopy Center, New York Structural Biology Center
| | - Mahira F Aragon
- Simons Electron Microscopy Center, New York Structural Biology Center
| | - Joshua H Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center;
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center;
| | - Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center;
| |
Collapse
|
16
|
Han BG, Avila-Sakar A, Remis J, Glaeser RM. Challenges in making ideal cryo-EM samples. Curr Opin Struct Biol 2023; 81:102646. [PMID: 37392555 DOI: 10.1016/j.sbi.2023.102646] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
Recognizing that interaction with the air-water interface (AWI) is a major challenge for cryo-EM, we first review current approaches designed to avoid it. Of these, immobilizing particles on affinity grids is arguably the most promising. In addition, we review efforts to gain more reliable control of the sample thicknesses, not the least important reason being to prevent immobilized particles from coming in contact with the AWI of the remaining buffer. It is emphasized that avoiding such a contact is as important for cryo-ET as for single-particle cryo-EM. Finally, looking to the future, it is proposed that immobilized samples might be used to perform time-resolved biochemical experiments directly on EM grids rather than just in test tubes or cuvettes.
Collapse
Affiliation(s)
- Bong-Gyoon Han
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Agustin Avila-Sakar
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Jonathan Remis
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Robert M Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Kumar N, Gray E, Lyumkis D, Mehrani A. CryoFAST™: Automated Cryo-Electron Microscopy Data Acquisition Using Machine Learning. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1036. [PMID: 37613294 DOI: 10.1093/micmic/ozad067.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
|
18
|
Aiyer S, Baldwin PR, Tan SM, Shan Z, Oh J, Mehrani A, Bowman ME, Louie G, Passos DO, Đorđević-Marquardt S, Mietzsch M, Hull JA, Hoshika S, Barad BA, Grotjahn DA, McKenna R, Agbandje-McKenna M, Benner SA, Noel JAP, Wang D, Tan YZ, Lyumkis D. Overcoming Resolution Attenuation During Tilted Cryo-EM Data Collection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548955. [PMID: 37503021 PMCID: PMC10369999 DOI: 10.1101/2023.07.14.548955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle for dataset acquisition. These data reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.
Collapse
|
19
|
Dhakal A, Gyawali R, Wang L, Cheng J. A large expert-curated cryo-EM image dataset for machine learning protein particle picking. Sci Data 2023; 10:392. [PMID: 37349345 PMCID: PMC10287764 DOI: 10.1038/s41597-023-02280-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of biological macromolecular complexes. Picking single-protein particles from cryo-EM micrographs is a crucial step in reconstructing protein structures. However, the widely used template-based particle picking process is labor-intensive and time-consuming. Though machine learning and artificial intelligence (AI) based particle picking can potentially automate the process, its development is hindered by lack of large, high-quality labelled training data. To address this bottleneck, we present CryoPPP, a large, diverse, expert-curated cryo-EM image dataset for protein particle picking and analysis. It consists of labelled cryo-EM micrographs (images) of 34 representative protein datasets selected from the Electron Microscopy Public Image Archive (EMPIAR). The dataset is 2.6 terabytes and includes 9,893 high-resolution micrographs with labelled protein particle coordinates. The labelling process was rigorously validated through 2D particle class validation and 3D density map validation with the gold standard. The dataset is expected to greatly facilitate the development of both AI and classical methods for automated cryo-EM protein particle picking.
Collapse
Affiliation(s)
- Ashwin Dhakal
- Department of Electrical Engineering and Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO, 65211, USA
| | - Rajan Gyawali
- Department of Electrical Engineering and Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO, 65211, USA
| | - Liguo Wang
- Laboratory for BioMolecular Structure (LBMS), Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
20
|
Michon B, López-Sánchez U, Degrouard J, Nury H, Leforestier A, Rio E, Salonen A, Zoonens M. Role of surfactants in electron cryo-microscopy film preparation. Biophys J 2023; 122:1846-1857. [PMID: 37077048 PMCID: PMC10209149 DOI: 10.1016/j.bpj.2023.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/01/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Single-particle electron cryo-microscopy (cryo-EM) has become an effective and straightforward approach to determine the structure of membrane proteins. However, obtaining cryo-EM grids of sufficient quality for high-resolution structural analysis remains a major bottleneck. One of the difficulties arises from the presence of detergents, which often leads to a lack of control of the ice thickness. Amphipathic polymers such as amphipols (APols) are detergent substitutes, which have proven to be valuable tools for cryo-EM studies. In this work, we investigate the physico-chemical behavior of APol- and detergent-containing solutions and show a correlation with the properties of vitreous thin films in cryo-EM grids. This study provides new insight on the potential of APols, allowing a better control of ice thickness while limiting protein adsorption at the air-water interface, as shown with the full-length mouse serotonin 5-HT3A receptor whose structure has been solved in APol. These findings may speed up the process of grid optimization to obtain high-resolution structures of membrane proteins.
Collapse
Affiliation(s)
- Baptiste Michon
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Paris, France
| | | | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Hugues Nury
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France.
| | - Emmanuelle Rio
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Anniina Salonen
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, France
| | - Manuela Zoonens
- Université Paris Cité, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, Paris, France.
| |
Collapse
|
21
|
Dhakal A, Gyawali R, Wang L, Cheng J. CryoPPP: A Large Expert-Labelled Cryo-EM Image Dataset for Machine Learning Protein Particle Picking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529443. [PMID: 36865277 PMCID: PMC9980126 DOI: 10.1101/2023.02.21.529443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is currently the most powerful technique for determining the structures of large protein complexes and assemblies. Picking single-protein particles from cryo-EM micrographs (images) is a key step in reconstructing protein structures. However, the widely used template-based particle picking process is labor-intensive and time-consuming. Though the emerging machine learning-based particle picking can potentially automate the process, its development is severely hindered by lack of large, high-quality, manually labelled training data. Here, we present CryoPPP, a large, diverse, expert-curated cryo-EM image dataset for single protein particle picking and analysis to address this bottleneck. It consists of manually labelled cryo-EM micrographs of 32 non-redundant, representative protein datasets selected from the Electron Microscopy Public Image Archive (EMPIAR). It includes 9,089 diverse, high-resolution micrographs (∼300 cryo-EM images per EMPIAR dataset) in which the coordinates of protein particles were labelled by human experts. The protein particle labelling process was rigorously validated by both 2D particle class validation and 3D density map validation with the gold standard. The dataset is expected to greatly facilitate the development of machine learning and artificial intelligence methods for automated cryo-EM protein particle picking. The dataset and data processing scripts are available at https://github.com/BioinfoMachineLearning/cryoppp.
Collapse
Affiliation(s)
- Ashwin Dhakal
- Department of Electrical Engineering and Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA. Fax: 573-882-8318
| | - Rajan Gyawali
- Department of Electrical Engineering and Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA. Fax: 573-882-8318
| | - Liguo Wang
- Laboratory for BioMolecular Structure (LBMS), Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA. Fax: 573-882-8318
| |
Collapse
|
22
|
Huntington B, Zhao L, Bron P, Shahul Hameed UF, Arold ST, Qureshi BM. Thicker Ice Improves the Integrity and Angular Distribution of CDC48A Hexamers on Cryo-EM Grids. Front Mol Biosci 2022; 9:890390. [PMID: 35782862 PMCID: PMC9247313 DOI: 10.3389/fmolb.2022.890390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Many cryogenic electron microscopy (cryo-EM) single particle analyses are constrained by the sample preparation step upon which aggregation, dissociation, and/or preferential orientation of particles can be introduced. Here, we report how we solved these problems in the case of CDC48A, a hexameric AAA ATPase from Arabidopsis thaliana. CDC48A hexamers are well preserved under negative staining conditions but disassemble during grid freezing using the classical blotting method. Vitrification of grids using the blot-free Chameleon method preserved the integrity of particles but resulted in their strong preferential orientation. We then used a strategy where we improved in parallel the purification of CDC48A and the conditions for cryo-EM data acquisition. Indeed, we noted that images taken from thicker ice presented an even distribution of intact particles with random orientations, but resulted in a lower image resolution. Consequently, in our case, distribution, orientation, image resolution, and the integrity of particles were tightly correlated with ice thickness. By combining the more homogeneous and stable CDC48A hexamers resulting from our improved purification protocol with an iterative search across different ice thicknesses, we identified an intermediate thickness that retained sufficiently high-resolution structural information while maintaining a complete distribution of particle orientations. Our approach may provide a simple, fast, and generally applicable strategy to record data of sufficient quality under standard laboratory and microscope settings. This method may be of particular value when time and resources are limited.
Collapse
Affiliation(s)
- Brandon Huntington
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lingyun Zhao
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Patrick Bron
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Umar F. Shahul Hameed
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Umar F. Shahul Hameed, ; Stefan T. Arold, ; Bilal M. Qureshi,
| | - Stefan T. Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
- *Correspondence: Umar F. Shahul Hameed, ; Stefan T. Arold, ; Bilal M. Qureshi,
| | - Bilal M. Qureshi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Structural Biology (Strubi), University of Oxford, Oxford, United Kingdom
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zurich, Zurich, Switzerland
- *Correspondence: Umar F. Shahul Hameed, ; Stefan T. Arold, ; Bilal M. Qureshi,
| |
Collapse
|
23
|
Automated vitrification of cryo-EM samples with controllable sample thickness using suction and real-time optical inspection. Nat Commun 2022; 13:2985. [PMID: 35624105 PMCID: PMC9142589 DOI: 10.1038/s41467-022-30562-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
The speed and efficiency of data collection and image processing in cryo-electron microscopy have increased over the last decade. However, cryo specimen preparation techniques have lagged and faster, more reproducible specimen preparation devices are needed. Here, we present a vitrification device with highly automated sample handling, requiring only limited user interaction. Moreover, the device allows inspection of thin films using light microscopy, since the excess liquid is removed through suction by tubes, not blotting paper. In combination with dew-point control, this enables thin film preparation in a controlled and reproducible manner. The advantage is that the quality of the prepared cryo specimen is characterized before electron microscopy data acquisition. The practicality and performance of the device are illustrated with experimental results obtained by vitrification of protein suspensions, lipid vesicles, bacterial and human cells, followed by imaged using single particle analysis, cryo-electron tomography, and cryo correlated light and electron microscopy. Faster cryo specimen preparation can advance cryo electron microscopy (cryoEM). Here, the authors present a vitrification device with automated sample handling for cryoEM of proteins, suspensions and cells, enabling blot-free sample thinning, dew-point control and characterization of cryo grids prior to data acquisition.
Collapse
|
24
|
Han BG, Armstrong M, Fletcher DA, Glaeser RM. Perspective: Biochemical and Physical Constraints Associated With Preparing Thin Specimens for Single-Particle Cryo-EM. Front Mol Biosci 2022; 9:864829. [PMID: 35573724 PMCID: PMC9100935 DOI: 10.3389/fmolb.2022.864829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
While many aspects of single-particle electron cryo-microscopy (cryo-EM) of biological macromolecules have reached a sophisticated level of development, this is not yet the case when it comes to preparing thin samples on specimen grids. As a result, there currently is considerable interest in achieving better control of both the sample thickness and the amount of area that is useful, but this is only one aspect in which improvement is needed. This Perspective addresses the further need to prevent the macromolecular particles from making contact with the air-water interface, something that can result in preferential orientation and even structural disruption of macromolecular particles. This unwanted contact can occur either as the result of free diffusion of particles during the interval between application, thinning and vitrification of the remaining buffer, or-when particles have been immobilized-by the film of buffer becoming too thin prior to vitrification. An opportunity now exists to apply theoretical and practical insights from the fields of thin-film physical chemistry and interfacial science, in an effort to bring cryo-EM sample preparation to a level of sophistication that is comparable to that of current data collection and analysis.
Collapse
Affiliation(s)
- Bong-Gyoon Han
- Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Max Armstrong
- Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Robert M. Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Robert M. Glaeser,
| |
Collapse
|
25
|
Huber ST, Sarajlic E, Huijink R, Weis F, Evers WH, Jakobi AJ. Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. eLife 2022; 11:72629. [PMID: 35060902 PMCID: PMC8786315 DOI: 10.7554/elife.72629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023] Open
Abstract
Cryogenic electron microscopy has become an essential tool for structure determination of biological macromolecules. In practice, the difficulty to reliably prepare samples with uniform ice thickness still represents a barrier for routine high-resolution imaging and limits the current throughput of the technique. We show that a nanofluidic sample support with well-defined geometry can be used to prepare cryo-EM specimens with reproducible ice thickness from picoliter sample volumes. The sample solution is contained in electron-transparent nanochannels that provide uniform thickness gradients without further optimisation and eliminate the potentially destructive air-water interface. We demonstrate the possibility to perform high-resolution structure determination with three standard protein specimens. Nanofabricated sample supports bear potential to automate the cryo-EM workflow, and to explore new frontiers for cryo-EM applications such as time-resolved imaging and high-throughput screening.
Collapse
Affiliation(s)
- Stefan T Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| | | | | | - Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| |
Collapse
|
26
|
Martynowycz MW, Clabbers MTB, Unge J, Hattne J, Gonen T. Benchmarking the ideal sample thickness in cryo-EM. Proc Natl Acad Sci U S A 2021; 118:e2108884118. [PMID: 34873060 PMCID: PMC8670461 DOI: 10.1073/pnas.2108884118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between sample thickness and quality of data obtained is investigated by microcrystal electron diffraction (MicroED). Several electron microscopy (EM) grids containing proteinase K microcrystals of similar sizes from the same crystallization batch were prepared. Each grid was transferred into a focused ion beam and a scanning electron microscope in which the crystals were then systematically thinned into lamellae between 95- and 1,650-nm thick. MicroED data were collected at either 120-, 200-, or 300-kV accelerating voltages. Lamellae thicknesses were expressed in multiples of the corresponding inelastic mean free path to allow the results from different acceleration voltages to be compared. The quality of the data and subsequently determined structures were assessed using standard crystallographic measures. Structures were reliably determined with similar quality from crystalline lamellae up to twice the inelastic mean free path. Lower resolution diffraction was observed at three times the mean free path for all three accelerating voltages, but the data quality was insufficient to yield structures. Finally, no coherent diffraction was observed from lamellae thicker than four times the calculated inelastic mean free path. This study benchmarks the ideal specimen thickness with implications for all cryo-EM methods.
Collapse
Affiliation(s)
- Michael W Martynowycz
- HHMI, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Max T B Clabbers
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Johan Unge
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Johan Hattne
- HHMI, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Tamir Gonen
- HHMI, University of California, Los Angeles, CA 90095;
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Department of Physiology, University of California, Los Angeles, CA 90095
| |
Collapse
|
27
|
Han BG, Glaeser RM. Simple assay for adsorption of proteins to the air-water interface. J Struct Biol 2021; 213:107798. [PMID: 34534654 DOI: 10.1016/j.jsb.2021.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
A rapid assay is described, based upon the Marangoni effect, which detects the formation of a denatured-protein film at the air-water interface (AWI) of aqueous samples. This assay requires no more than a 20 µL aliquot of sample, at a protein concentration of no more than1 mg/ml, and it can be performed with any buffer that is used to prepare grids for electron cryo-microscopy (cryo-EM). In addition, this assay provides an easy way to estimate the rate at which a given protein forms such a film at the AWI. Use of this assay is suggested as a way to pre-screen the effect of various additives and chemical modifications that one might use to optimize the preparation of grids, although the final proof of optimization still requires further screening of grids in the electron microscope. In those cases when the assay establishes that a given protein does form a sacrificial, denatured-protein monolayer, it is suggested that subsequent optimization strategies might focus on discovering how to improve the adsorption of native proteins onto that monolayer, rather than to prevent its formation. A second alternative might be to bind such proteins to the surface of rationally designed affinity grids, in order to prevent their diffusion to, and unwanted interaction with, the AWI.
Collapse
Affiliation(s)
- Bong-Gyoon Han
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, United States
| | - Robert M Glaeser
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, United States.
| |
Collapse
|
28
|
Martynowycz MW, Gonen T. Protocol for the use of focused ion-beam milling to prepare crystalline lamellae for microcrystal electron diffraction (MicroED). STAR Protoc 2021; 2:100686. [PMID: 34382014 PMCID: PMC8339237 DOI: 10.1016/j.xpro.2021.100686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We present an in-depth protocol to reproducibly prepare crystalline lamellae from protein crystals for subsequent microcrystal electron diffraction (MicroED) experiments. This protocol covers typical soluble proteins and membrane proteins embedded in dense media. Following these steps will allow the user to prepare crystalline lamellae for protein structure determination by MicroED. For complete details on the use and execution of this protocol, please refer to Martynowycz et al. (2019a, 2020a).
Collapse
Affiliation(s)
- Michael W. Martynowycz
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Obtaining Precise Molecular Information via DNA Nanotechnology. MEMBRANES 2021; 11:membranes11090683. [PMID: 34564500 PMCID: PMC8466356 DOI: 10.3390/membranes11090683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Precise characterization of biomolecular information such as molecular structures or intermolecular interactions provides essential mechanistic insights into the understanding of biochemical processes. As the resolution of imaging-based measurement techniques improves, so does the quantity of molecular information obtained using these methodologies. DNA (deoxyribonucleic acid) molecule have been used to build a variety of structures and dynamic devices on the nanoscale over the past 20 years, which has provided an accessible platform to manipulate molecules and resolve molecular information with unprecedented precision. In this review, we summarize recent progress related to obtaining precise molecular information using DNA nanotechnology. After a brief introduction to the development and features of structural and dynamic DNA nanotechnology, we outline some of the promising applications of DNA nanotechnology in structural biochemistry and in molecular biophysics. In particular, we highlight the use of DNA nanotechnology in determination of protein structures, protein-protein interactions, and molecular force.
Collapse
|
30
|
Gijsbers A, Zhang Y, Gao Y, Peters PJ, Ravelli RBG. Mycobacterium tuberculosis ferritin: a suitable workhorse protein for cryo-EM development. Acta Crystallogr D Struct Biol 2021; 77:1077-1083. [PMID: 34342280 PMCID: PMC8329864 DOI: 10.1107/s2059798321007233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022] Open
Abstract
The use of cryo-EM continues to expand worldwide and calls for good-quality standard proteins with simple protocols for their production. Here, a straightforward expression and purification protocol is presented that provides an apoferritin, bacterioferritin B (BfrB), from Mycobacterium tuberculosis with high yield and purity. A 2.12 Å resolution cryo-EM structure of BfrB is reported, showing the typical cage-like oligomer constituting of 24 monomers related by 432 symmetry. However, it also contains a unique C-terminal extension (164-181), which loops into the cage region of the shell and provides extra stability to the protein. Part of this region was ambiguous in previous crystal structures but could be built within the cryo-EM map. These findings and this protocol could serve the growing cryo-EM community in characterizing and pushing the limits of their electron microscopes and workflows.
Collapse
Affiliation(s)
- Abril Gijsbers
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Yue Zhang
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ye Gao
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Raimond B. G. Ravelli
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
31
|
Zhang Z, Shigematsu H, Shimizu T, Ohto U. Improving particle quality in cryo-EM analysis using a PEGylation method. Structure 2021; 29:1192-1199.e4. [PMID: 34048698 DOI: 10.1016/j.str.2021.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 01/30/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is widely used for structural biology studies and has been developed extensively in recent years. However, its sample vitrification process is a major limitation because it causes severe particle aggregation and/or denaturation. This effect is thought to occur because particles tend to stick to the "deadly" air-water interface during vitrification. Here, we report a method for PEGylation of proteins that can efficiently protect particles against such problems during vitrification. This method alleviates the laborious process of fine-tuning the vitrification conditions, allowing for analysis of samples that would otherwise be discarded.
Collapse
Affiliation(s)
- Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
32
|
Weissenberger G, Henderikx RJM, Peters PJ. Understanding the invisible hands of sample preparation for cryo-EM. Nat Methods 2021; 18:463-471. [PMID: 33963356 DOI: 10.1038/s41592-021-01130-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is rapidly becoming an attractive method in the field of structural biology. With the exploding popularity of cryo-EM, sample preparation must evolve to prevent congestion in the workflow. The dire need for improved microscopy samples has led to a diversification of methods. This Review aims to categorize and explain the principles behind various techniques in the preparation of vitrified samples for the electron microscope. Various aspects and challenges in the workflow are discussed, from sample optimization and carriers to deposition and vitrification. Reliable and versatile specimen preparation remains a challenge, and we hope to give guidelines and posit future directions for improvement.
Collapse
Affiliation(s)
- Giulia Weissenberger
- CryoSol-World, Maastricht, the Netherlands.,Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Rene J M Henderikx
- CryoSol-World, Maastricht, the Netherlands.,Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Maastricht Multimodal Molecular Imaging Institute (M4i), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
33
|
Glaeser RM. Preparing Better Samples for Cryo-Electron Microscopy: Biochemical Challenges Do Not End with Isolation and Purification. Annu Rev Biochem 2021; 90:451-474. [PMID: 33556280 DOI: 10.1146/annurev-biochem-072020-020231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The preparation of extremely thin samples, which are required for high-resolution electron microscopy, poses extreme risk of damaging biological macromolecules due to interactions with the air-water interface. Although the rapid increase in the number of published structures initially gave little indication that this was a problem, the search for methods that substantially mitigate this hazard is now intensifying. The two main approaches under investigation are (a) immobilizing particles onto structure-friendly support films and (b) reducing the length of time during which such interactions may occur. While there is little possibility of outrunning diffusion to the interface, intentional passivation of the interface may slow the process of adsorption and denaturation. In addition, growing attention is being given to gaining more effective control of the thickness of the sample prior to vitrification.
Collapse
Affiliation(s)
- Robert M Glaeser
- Department of Molecular and Cell Biology and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
34
|
Suo Y, Lee SY. Sample preparation of the human TRPA1 ion channel for cryo-EM studies. Methods Enzymol 2021; 653:75-87. [PMID: 34099182 DOI: 10.1016/bs.mie.2020.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a member of the TRP channel family that is involved in sensing noxious stimuli that elicit pain and inflammation. Because of its critical physiological role and therapeutic importance, great efforts have been made to understand the structure and mechanism of TRPA1. Several human TRPA1 structures have been reported using single particle cryo-electron microscopy (cryo-EM) over the last 6 years. Here, we present a protocol for the heterologous expression, large-scale purification, and nanodisc reconstitution of the human TRPA1 channel for cryo-EM and biochemical studies.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
35
|
Abstract
Microcrystal Electron Diffraction (MicroED) enables structure determination of very small crystals that are much too small to be of use for other conventional diffraction techniques. MicroED has been used to determine the structures of many proteins and small organic molecules, and the technique can be performed on most standard cryo-TEM instruments equipped with high-speed detectors capable of collecting electron diffraction data. Here, we present protocols for MicroED sample preparation and data collection for protein microcrystals.
Collapse
Affiliation(s)
- Guanhong Bu
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
36
|
Leung MR, Zeev-Ben-Mordehai T. Cryo-electron microscopy of cholinesterases, present and future. J Neurochem 2020; 158:1236-1243. [PMID: 33222205 PMCID: PMC8518539 DOI: 10.1111/jnc.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo‐electron microscopy (cryo‐EM) single‐particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo‐EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane‐anchored ChE oligomers directly in their native environment—the cell.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Van Drie JH, Tong L. Cryo-EM as a powerful tool for drug discovery. Bioorg Med Chem Lett 2020; 30:127524. [PMID: 32890683 PMCID: PMC7467112 DOI: 10.1016/j.bmcl.2020.127524] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The recent revolution in cryo-EM has produced an explosion of structures at near-atomic or better resolution. This has allowed cryo-EM structures to provide visualization of bound small-molecule ligands in the macromolecules, and these new structures have provided unprecedented insights into the molecular mechanisms of complex biochemical processes. They have also had a profound impact on drug discovery, defining the binding modes and mechanisms of action of well-known drugs as well as driving the design and development of new compounds. This review will summarize and highlight some of these structures. Most excitingly, the latest cryo-EM technology has produced structures at 1.2 Å resolution, further solidifying cryo-EM as a powerful tool for drug discovery. Therefore, cryo-EM will play an ever-increasing role in drug discovery in the coming years.
Collapse
Affiliation(s)
- John H Van Drie
- Van Drie Research LLC, 109 Millpond, North Andover, MA 01845, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
38
|
Ahmed I, Akram Z, Sahar MSU, Iqbal HMN, Landsberg MJ, Munn AL. WITHDRAWN: Structural studies of vitrified biological proteins and macromolecules - A review on the microimaging aspects of cryo-electron microscopy. Int J Biol Macromol 2020:S0141-8130(20)33915-5. [PMID: 32710963 DOI: 10.1016/j.ijbiomac.2020.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - M Sana Ullah Sahar
- School of Engineering, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
39
|
Mäeots ME, Lee B, Nans A, Jeong SG, Esfahani MMN, Ding S, Smith DJ, Lee CS, Lee SS, Peter M, Enchev RI. Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nat Commun 2020; 11:3465. [PMID: 32651368 PMCID: PMC7351747 DOI: 10.1038/s41467-020-17230-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/18/2020] [Indexed: 11/09/2022] Open
Abstract
Mechanistic understanding of biochemical reactions requires structural and kinetic characterization of the underlying chemical processes. However, no single experimental technique can provide this information in a broadly applicable manner and thus structural studies of static macromolecules are often complemented by biophysical analysis. Moreover, the common strategy of utilizing mutants or crosslinking probes to stabilize intermediates is prone to trapping off-pathway artefacts and precludes determining the order of molecular events. Here we report a time-resolved sample preparation method for cryo-electron microscopy (trEM) using a modular microfluidic device, featuring a 3D-mixing unit and variable delay lines that enables automated, fast, and blot-free sample vitrification. This approach not only preserves high-resolution structural detail but also substantially improves sample integrity and protein distribution across the vitreous ice. We validate the method by visualising reaction intermediates of early RecA filament growth across three orders of magnitude on sub-second timescales. The trEM method reported here is versatile, reproducible, and readily adaptable to a broad spectrum of fundamental questions in biology.
Collapse
Affiliation(s)
- Märt-Erik Mäeots
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Byungjin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Andrea Nans
- Structural Biology Scientific Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Seung-Geun Jeong
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Mohammad M N Esfahani
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Shan Ding
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Daniel J Smith
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon, 305-764, Republic of Korea.
| | - Sung Sik Lee
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|
40
|
Akbar S, Mozumder S, Sengupta J. Retrospect and Prospect of Single Particle Cryo-Electron Microscopy: The Class of Integral Membrane Proteins as an Example. J Chem Inf Model 2020; 60:2448-2457. [DOI: 10.1021/acs.jcim.9b01015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shirin Akbar
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|