1
|
Gurauskis D, Marinkovic D, Mažeika D, Kilikevičius A. Self-Calibratable Absolute Modular Rotary Encoder: Development and Experimental Research. MICROMACHINES 2024; 15:1130. [PMID: 39337790 PMCID: PMC11434417 DOI: 10.3390/mi15091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Advanced microfabrication technologies have revolutionized the field of reflective encoders by integrating all necessary optical components and electronics into a miniature single-chip solution. Contemporary semiconductor sensors could operate at wide tolerance ranges that make them ideal for integration into compact and lightweight modular encoder kit systems. However, in order to achieve the high accuracy of the operating encoder, precise mechanical installation is still needed. To overcome this issue and exploit the full potential of modern sensors, the self-calibratable absolute modular rotary encoder is developed. The equal division average (EDA) method by combining the angular position readings from multiple optical sensors is used to simplify the installation process and ensure the high accuracy of the system. The produced prototype encoder is experimentally tested vs. the reference encoder and the measurement deviations of using different numbers and arrangements of optical sensors are determined. The obtained results show encoder ability to handle the mounting errors and minimize the initial system deviation by more than 90%.
Collapse
Affiliation(s)
- Donatas Gurauskis
- Department of Information Systems, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania
| | - Dragan Marinkovic
- Department of Structural Analysis, TU Berlin, 10623 Berlin, Germany
- Institute of Mechanical Science, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania
| | - Dalius Mažeika
- Department of Information Systems, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania
| | - Artūras Kilikevičius
- Institute of Mechanical Science, Vilnius Gediminas Technical University, LT-10105 Vilnius, Lithuania
| |
Collapse
|
2
|
Liu Y, Nan P, Lin Y, Liang Z, Song D, Wang Y, Ge B. Dynamic evolution mechanism of scanning moiré fringes. Ultramicroscopy 2023; 249:113731. [PMID: 37043992 DOI: 10.1016/j.ultramic.2023.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Scanning moiré fringes (SMFs) in scanning transmission electron microscopy (STEM) have a broad application prospect owing to the low-magnification imaging and hereto the low electron irritation damage, especially in defects localization, strain analysis etc. However, the dynamic evolution mechanism of SMFs is still not clear. In this paper, we carry out in-depth study of SMFs with ferroelectric material GeSe as an example. With the help of combination of aberration-corrected STEM imaging and geometrical model, we discuss the evolution of SMFs with variation of scanning step (magnification), and explain its quasiperiodic behavior in the experiments. Our results will deepen the understanding of SMFs, and may widen their applications under the guidance of the new formation mechanism.
Collapse
Affiliation(s)
- Yangrui Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Pengfei Nan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Yangjian Lin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Zhiyao Liang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Dongsheng Song
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yumei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
3
|
Ke X, Zhang M, Zhao K, Su D. Moiré Fringe Method via Scanning Transmission Electron Microscopy. SMALL METHODS 2022; 6:e2101040. [PMID: 35041281 DOI: 10.1002/smtd.202101040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Moiré fringe, originated from the beating of two sets of lattices, is a commonly observed phenomenon in physics, optics, and materials science. Recently, a new method of creating moiré fringe via scanning transmission electron microscopy (STEM) has been developed to image materials' structures at a large field of view. Moreover, this method shows great advantages in studying atomic structures of beam sensitive materials by significantly reduced electron dose. Here, the development of the STEM moiré fringe (STEM-MF) method is reviewed. The authors first introduce the theory of STEM-MF and then discuss the advances of this technique in combination with geometric phase analysis, annular bright field imaging, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy. Applications of STEM-MF on strain, defects, 2D materials, and beam-sensitive materials are further summarized. Finally, the authors' perspectives on the future directions of STEM-MF are presented.
Collapse
Affiliation(s)
- Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Property of Advanced Solid Material, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Manchen Zhang
- Beijing Key Laboratory of Microstructure and Property of Advanced Solid Material, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Kangning Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Velazco A, Béché A, Jannis D, Verbeeck J. Reducing electron beam damage through alternative STEM scanning strategies, Part I: Experimental findings. Ultramicroscopy 2021; 232:113398. [PMID: 34655928 DOI: 10.1016/j.ultramic.2021.113398] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
The highly energetic electrons in a transmission electron microscope (TEM) can alter or even completely destroy the structure of samples before sufficient information can be obtained. This is especially problematic in the case of zeolites, organic and biological materials. As this effect depends on both the electron beam and the sample and can involve multiple damage pathways, its study remained difficult and is plagued with irreproducibility issues, circumstantial evidence, rumors, and a general lack of solid data. Here we take on the experimental challenge to investigate the role of the STEM scan pattern on the damage behavior of a commercially available zeolite sample with the clear aim to make our observations as reproducible as possible. We make use of a freely programmable scan engine that gives full control over the tempospatial distribution of the electron probe on the sample and we use its flexibility to obtain multiple repeated experiments under identical conditions comparing the difference in beam damage between a conventional raster scan pattern and a newly proposed interleaved scan pattern that provides exactly the same dose and dose rate and visits exactly the same scan points. We observe a significant difference in beam damage for both patterns with up to 11 % reduction in damage (measured from mass loss). These observations demonstrate without doubt that electron dose, dose rate and acceleration voltage are not the only parameters affecting beam damage in (S)TEM experiments and invite the community to rethink beam damage as an unavoidable consequence of applied electron dose.
Collapse
Affiliation(s)
- A Velazco
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - A Béché
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - D Jannis
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - J Verbeeck
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
5
|
Chen J. Advanced Electron Microscopy of Nanophased Synthetic Polymers and Soft Complexes for Energy and Medicine Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2405. [PMID: 34578720 PMCID: PMC8470047 DOI: 10.3390/nano11092405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
After decades of developments, electron microscopy has become a powerful and irreplaceable tool in understanding the ionic, electrical, mechanical, chemical, and other functional performances of next-generation polymers and soft complexes. The recent progress in electron microscopy of nanostructured polymers and soft assemblies is important for applications in many different fields, including, but not limited to, mesoporous and nanoporous materials, absorbents, membranes, solid electrolytes, battery electrodes, ion- and electron-transporting materials, organic semiconductors, soft robotics, optoelectronic devices, biomass, soft magnetic materials, and pharmaceutical drug design. For synthetic polymers and soft complexes, there are four main characteristics that differentiate them from their inorganic or biomacromolecular counterparts in electron microscopy studies: (1) lower contrast, (2) abundance of light elements, (3) polydispersity or nanomorphological variations, and (4) large changes induced by electron beams. Since 2011, the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory has been working with numerous facility users on nanostructured polymer composites, block copolymers, polymer brushes, conjugated molecules, organic-inorganic hybrid nanomaterials, organic-inorganic interfaces, organic crystals, and other soft complexes. This review crystalizes some of the essential challenges, successes, failures, and techniques during the process in the past ten years. It also presents some outlooks and future expectations on the basis of these works at the intersection of electron microscopy, soft matter, and artificial intelligence. Machine learning is expected to automate and facilitate image processing and information extraction of polymer and soft hybrid nanostructures in aspects such as dose-controlled imaging and structure analysis.
Collapse
Affiliation(s)
- Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
6
|
S'ari M, Blade H, Cosgrove S, Drummond-Brydson R, Hondow N, Hughes LP, Brown A. Characterization of Amorphous Solid Dispersions and Identification of Low Levels of Crystallinity by Transmission Electron Microscopy. Mol Pharm 2021; 18:1905-1919. [PMID: 33797925 DOI: 10.1021/acs.molpharmaceut.0c00918] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Amorphous solid dispersions (ASDs) are used to increase the solubility of oral medicines by kinetically stabilizing the more soluble amorphous phase of an active pharmaceutical ingredient with a suitable amorphous polymer. Low levels of a crystalline material in an ASD can negatively impact the desired dissolution properties of the drug. Characterization techniques such as powder X-ray diffraction (pXRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) are often used to detect and measure any crystallinity within ASDs. These techniques are unable to detect or quantify very low levels because they have limits of detection typically in the order of 1-5%. Herein, an ASD of felodipine (FEL) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) prepared via a hot melt extrusion (HME) in a mass ratio of 30:70 was characterized using a range of techniques. No signs of residual crystallinity were found by pXRD, DSC, or FTIR. However, transmission electron microscopy (TEM) did identify two areas containing crystals at the edges of milled particles from a total of 55 examined. Both crystalline areas contained Cl Kα X-ray peaks when measured by energy-dispersive X-ray spectroscopy, confirming the presence of FEL (due to the presence of Cl atoms in FEL and not in PVP/VA). Further analysis was carried out by TEM using conical dark field (DF) imaging of a HME ASD of 50:50 FEL-PVP/VA to provide insights into the recrystallization process that occurs at the edges of particles during accelerated ageing conditions in an atmosphere of 75% relative humidity. Multiple metastable polymorphs of recrystallized FEL could be identified by selected area electron diffraction (SAED), predominately form II and the more stable form I. Conical DF imaging was also successful in spatially resolving and sizing crystals. This work highlights the potential for TEM-based techniques to improve the limit of detection of crystallinity in ASDs, while also providing insights into transformation pathways by identifying the location, size, and form of any crystallization that might occur on storage. This opens up the possibility of providing an enhanced understanding of a drug product's stability and performance.
Collapse
Affiliation(s)
- Mark S'ari
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Blade
- Oral Product Development, Pharmaceutical Technology and Development Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Stephen Cosgrove
- New Modalities and Parenterals Development, Pharmaceutical Technology and Development Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Rik Drummond-Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Leslie P Hughes
- Oral Product Development, Pharmaceutical Technology and Development Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Andy Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
7
|
Haigh S, Clark N. Guest Editor's Foreword, Special Issue Introduction and Scientific Highlights. J Microsc 2021; 279:141-142. [PMID: 32812659 DOI: 10.1111/jmi.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ilett M, S'ari M, Freeman H, Aslam Z, Koniuch N, Afzali M, Cattle J, Hooley R, Roncal-Herrero T, Collins SM, Hondow N, Brown A, Brydson R. Analysis of complex, beam-sensitive materials by transmission electron microscopy and associated techniques. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190601. [PMID: 33100161 PMCID: PMC7661278 DOI: 10.1098/rsta.2019.0601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
We review the use of transmission electron microscopy (TEM) and associated techniques for the analysis of beam-sensitive materials and complex, multiphase systems in-situ or close to their native state. We focus on materials prone to damage by radiolysis and explain that this process cannot be eliminated or switched off, requiring TEM analysis to be done within a dose budget to achieve an optimum dose-limited resolution. We highlight the importance of determining the damage sensitivity of a particular system in terms of characteristic changes that occur on irradiation under both an electron fluence and flux by presenting results from a series of molecular crystals. We discuss the choice of electron beam accelerating voltage and detectors for optimizing resolution and outline the different strategies employed for low-dose microscopy in relation to the damage processes in operation. In particular, we discuss the use of scanning TEM (STEM) techniques for maximizing information content from high-resolution imaging and spectroscopy of minerals and molecular crystals. We suggest how this understanding can then be carried forward for in-situ analysis of samples interacting with liquids and gases, provided any electron beam-induced alteration of a specimen is controlled or used to drive a chosen reaction. Finally, we demonstrate that cryo-TEM of nanoparticle samples snap-frozen in vitreous ice can play a significant role in benchmarking dynamic processes at higher resolution. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rik Brydson
- Leeds Electron Microscopy and Spectroscopy (LEMAS) Centre, School of Chemical and Process Engineering, Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|