1
|
Aaron JS, Jacobs CA, Malacrida L, Keppler A, French P, Fletcher DA, Wood C, Brown CM, Wright GD, Ogawa S, Maina M, Chew TL. Challenges of microscopy technology dissemination to resource-constrained communities. Nat Methods 2025:10.1038/s41592-025-02690-7. [PMID: 40329103 DOI: 10.1038/s41592-025-02690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Affiliation(s)
- Jesse S Aaron
- Advanced Imaging Center and Integrative Imaging, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA
| | - Caron A Jacobs
- Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Leonel Malacrida
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo and Universidad de la República, Montevideo, Uruguay
- Unidad Académica de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Antje Keppler
- Euro-BioImaging Bio-Hub, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paul French
- Physics Department, Imperial College London, London, UK
| | - Daniel A Fletcher
- Bioengineering Department, University of California, Berkeley, Berkeley, CA, USA
| | - Christopher Wood
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claire M Brown
- Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Graham D Wright
- Research Support Centre, Agency for Science, Technology & Research (A*STAR), Singapore, Singapore
| | - Satoshi Ogawa
- Optical Imaging Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Mahmoud Maina
- Biomedical Science Research and Training Centre, Yobe State University, Damaturu, Nigeria
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Teng-Leong Chew
- Advanced Imaging Center and Integrative Imaging, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
2
|
Cimini BA, Bankhead P, D'Antuono R, Fazeli E, Fernandez-Rodriguez J, Fuster-Barceló C, Haase R, Jambor HK, Jones ML, Jug F, Klemm AH, Kreshuk A, Marcotti S, Martins GG, McArdle S, Miura K, Muñoz-Barrutia A, Murphy LC, Nelson MS, Nørrelykke SF, Paul-Gilloteaux P, Pengo T, Pylvänäinen JW, Pytowski L, Ravera A, Reinke A, Rekik Y, Strambio-De-Castillia C, Thédié D, Uhlmann V, Umney O, Wiggins L, Eliceiri KW. The crucial role of bioimage analysts in scientific research and publication. J Cell Sci 2024; 137:jcs262322. [PMID: 39475207 PMCID: PMC11698046 DOI: 10.1242/jcs.262322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Bioimage analysis (BIA), a crucial discipline in biological research, overcomes the limitations of subjective analysis in microscopy through the creation and application of quantitative and reproducible methods. The establishment of dedicated BIA support within academic institutions is vital to improving research quality and efficiency and can significantly advance scientific discovery. However, a lack of training resources, limited career paths and insufficient recognition of the contributions made by bioimage analysts prevent the full realization of this potential. This Perspective - the result of the recent The Company of Biologists Workshop 'Effectively Communicating Bioimage Analysis', which aimed to summarize the global BIA landscape, categorize obstacles and offer possible solutions - proposes strategies to bring about a cultural shift towards recognizing the value of BIA by standardizing tools, improving training and encouraging formal credit for contributions. We also advocate for increased funding, standardized practices and enhanced collaboration, and we conclude with a call to action for all stakeholders to join efforts in advancing BIA.
Collapse
Affiliation(s)
- Beth A. Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter Bankhead
- Edinburgh Pathology, Centre for Genomic & Experimental Medicine and CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rocco D'Antuono
- Crick Advanced Light Microscopy STP, The Francis Crick Institute, London NW1 1AT, UK
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AY, UK
| | - Elnaz Fazeli
- Biomedicum Imaging Unit, Faculty of Medicine and HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | | | - Robert Haase
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, Universität Leipzig, 04105 Leipzig, Germany
| | - Helena Klara Jambor
- DAViS, University of Applied Sciences of the Grisons, 7000 Chur, Switzerland
| | - Martin L. Jones
- Electron Microscopy STP, The Francis Crick Institute, London NW1 1AT, UK
| | - Florian Jug
- Fondazione Human Technopole, 20157 Milan, Italy
| | - Anna H. Klemm
- Science for Life Laboratory BioImage Informatics Facility and Department of Information Technology, Uppsala University, SE-75105 Uppsala, Sweden
| | - Anna Kreshuk
- Cell Biology and Biophysics, European Molecular Biology Laboratory, 69115 Heidelberg, Germany
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics and Research Management & Innovation Directorate, King's College London, London SE1 1UL, UK
| | - Gabriel G. Martins
- GIMM - Gulbenkian Institute for Molecular Medicine, R. Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Sara McArdle
- La Jolla Institute for Immunology,Microscopy Core Facility, San Diego, CA 92037, USA
| | - Kota Miura
- Bioimage Analysis & Research, BIO-Plaza 1062, Nishi-Furumatsu 2-26-22 Kita-ku, Okayama, 700-0927, Japan
| | | | - Laura C. Murphy
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael S. Nelson
- University of Wisconsin-Madison,Biomedical Engineering, Madison, WI 53706, USA
| | | | | | - Thomas Pengo
- Minnesota Supercomputing Institute,University of Minnesota Twin Cities, Minneapolis, MN 55005, USA
| | - Joanna W. Pylvänäinen
- Åbo Akademi University, Faculty of Science and Engineering, Biosciences, 20520 Turku, Finland
| | - Lior Pytowski
- Pixel Biology Ltd, 9 South Park Court, East Avenue, Oxford OX4 1YZ, UK
| | - Arianna Ravera
- Scientific Computing and Research Support Unit, University of Lausanne, 1005 Lausanne, Switzerland
| | - Annika Reinke
- Division of Intelligent Medical Systems and Helmholtz Imaging, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yousr Rekik
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de chimie et de biologie des métaux, F-38000 Grenoble, France
- Université Grenoble Alpes, CEA, IRIG, Laboratoire Modélisation et Exploration des Matériaux, F-38000 Grenoble, France
| | | | - Daniel Thédié
- Institute of Cell Biology, The University of Edinburgh, Edinburgh EH9 3FF, UK
| | | | - Oliver Umney
- School of Computing, University of Leeds, Leeds LS2 9JT, UK
| | - Laura Wiggins
- University of Sheffield, Department of Materials Science and Engineering, Sheffield S10 2TN, UK
| | - Kevin W. Eliceiri
- University of Wisconsin-Madison,Biomedical Engineering, Madison, WI 53706, USA
| |
Collapse
|
3
|
Renaud O, Aulner N, Salles A, Halidi N, Brunstein M, Mallet A, Aumayr K, Terjung S, Levy D, Lippens S, Verbavatz JM, Heuser T, Santarella-Mellwig R, Tinevez JY, Woller T, Botzki A, Cawthorne C, Munck S. Staying on track - Keeping things running in a high-end scientific imaging core facility. J Microsc 2024; 294:276-294. [PMID: 38656474 DOI: 10.1111/jmi.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.
Collapse
Affiliation(s)
- Oliver Renaud
- Cell and Tissue Imaging Platform (PICT-IBiSA, France-BioImaging), Institut Curie, Université PSL, Sorbonne Université, CNRS, Inserm, Paris, France
| | - Nathalie Aulner
- Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Paris, France
| | - Audrey Salles
- Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Paris, France
| | - Nadia Halidi
- Advanced Light Microscopy Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maia Brunstein
- Bioimaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, Paris, France
| | - Adeline Mallet
- Centre de Ressources et Recherches Technologiques (UBI, C2RT), Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging, Paris, France
| | - Karin Aumayr
- BioOptics Facility, Research Institute of Molecular Pathology (IMP) Campus-Vienna-Biocenter 1, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences (GMI), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Stefan Terjung
- Advanced Light Microscopy Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Daniel Levy
- Cell and Tissue Imaging Platform (PICT-IBiSA, France-BioImaging), Institut Curie, Université PSL, Sorbonne Université, CNRS, Inserm, Paris, France
| | | | - Jean-Marc Verbavatz
- Institut Jacques Monod (Imagoseine), Université Paris Cité, CNRS, Paris, France
| | - Thomas Heuser
- Vienna Biocenter Core Facilities GmbH (VBCF), Wien, Austria
| | | | - Jean-Yves Tinevez
- Image Analysis Hub, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Tatiana Woller
- VIB Technology Training, Data Core, VIB BioImaging Core, VIB, Ghent, Belgium
- Neuroscience Department, KU Leuven, Leuven, Belgium
| | | | - Christopher Cawthorne
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | - Sebastian Munck
- Neuroscience Department, KU Leuven, Leuven, Belgium
- VIB BioImaging Core, VIB, Leuven, Belgium
| |
Collapse
|
4
|
Tranfield EM, Lippens S. Future proofing core facilities with a seven-pillar model. J Microsc 2024; 294:411-419. [PMID: 38700841 DOI: 10.1111/jmi.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Centralised core facilities have evolved into vital components of life science research, transitioning from a primary focus on centralising equipment to ensuring access to technology experts across all facets of an experimental workflow. Herein, we put forward a seven-pillar model to define what a core facility needs to meet its overarching goal of facilitating research. The seven equally weighted pillars are Technology, Core Facility Team, Training, Career Tracks, Technical Support, Community and Transparency. These seven pillars stand on a solid foundation of cultural, operational and framework policies including the elements of transparent and stable funding strategies, modern human resources support, progressive facility leadership and management as well as clear institute strategies and policies. This foundation, among other things, ensures a tight alignment of the core facilities to the vision and mission of the institute. To future-proof core facilities, it is crucial to foster all seven of these pillars, particularly focusing on newly identified pillars such as career tracks, thus enabling core facilities to continue supporting research and catalysing scientific advancement. Lay abstract: In research, there is a growing trend to bring advanced, high-performance equipment together into a centralised location. This is done to streamline how the equipment purchase is financed, how the equipment is maintained, and to enable an easier approach for research scientists to access these tools in a location that is supported by a team of technology experts who can help scientists use the equipment. These centralised equipment centres are called Core Facilities. The core facility model is relatively new in science and it requires an adapted approach to how core facilities are built and managed. In this paper, we put forward a seven-pillar model of the important supporting elements of core facilities. These supporting elements are: Technology (the instruments themselves), Core Facility Team (the technology experts who operate the instruments), Training (of the staff and research community), Career Tracks (for the core facility staff), Technical Support (the process of providing help to apply the technology to a scientific question), Community (of research scientist, technology experts and developers) and Transparency (of how the core facility works and the costs associated with using the service). These pillars stand on the bigger foundation of clear policies, guidelines, and leadership approaches at the institutional level. With a focus on these elements, the authors feel core facilities will be well positioned to support scientific discovery in the future.
Collapse
Affiliation(s)
- Erin M Tranfield
- VIB Bioimaging Core Ghent, VIB, Zwijnaarde, Belgium
- VIB Center for Inflammation Research, Ghent University, Zwijnaarde, Belgium
| | | |
Collapse
|
5
|
Schmidt C, Boissonnet T, Dohle J, Bernhardt K, Ferrando-May E, Wernet T, Nitschke R, Kunis S, Weidtkamp-Peters S. A practical guide to bioimaging research data management in core facilities. J Microsc 2024; 294:350-371. [PMID: 38752662 DOI: 10.1111/jmi.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable. These FAIR principles for research data management are now widely accepted in the scientific community and have been adopted by funding agencies, policymakers and publishers. To remain competitive and at the forefront of research, implementing the FAIR principles into daily routines is an essential but challenging task for researchers and research infrastructures. Imaging core facilities, well-established providers of access to imaging equipment and expertise, are in an excellent position to lead this transformation in bioimaging research data management. They are positioned at the intersection of research groups, IT infrastructure providers, the institution´s administration, and microscope vendors. In the frame of German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB), cross-institutional working groups and third-party funded projects were initiated in recent years to advance the bioimaging community's capability and capacity for FAIR bioimage data management. Here, we provide an imaging-core-facility-centric perspective outlining the experience and current strategies in Germany to facilitate the practical adoption of the FAIR principles closely aligned with the international bioimaging community. We highlight which tools and services are ready to be implemented and what the future directions for FAIR bioimage data have to offer.
Collapse
Affiliation(s)
- Christian Schmidt
- Enabling Technology Department, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tom Boissonnet
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Dohle
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | - Karen Bernhardt
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | - Elisa Ferrando-May
- Enabling Technology Department, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tobias Wernet
- Life Imaging Center, University of Freiburg, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, University of Freiburg, Freiburg, Germany
- CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Susanne Kunis
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility iBiOs, University of Osnabrück, Osnabrück, Germany
| | | |
Collapse
|
6
|
Munck S, De Bo C, Cawthorne C, Colombelli J. Innovating in a bioimaging core through instrument development. J Microsc 2024; 294:319-337. [PMID: 38683038 DOI: 10.1111/jmi.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Developing devices and instrumentation in a bioimaging core facility is an important part of the innovation mandate inherent in the core facility model but is a complex area due to the required skills and investments, and the impossibility of a universally applicable model. Here, we seek to define technological innovation in microscopy and situate it within the wider core facility innovation portfolio, highlighting how strategic development can accelerate access to innovative imaging modalities and increase service range, and thus maintain the cutting edge needed for sustainability. We consider technology development from the perspective of core facility staff and their stakeholders as well as their research environment and aim to present a practical guide to the 'Why, When, and How' of developing and integrating innovative technology in the core facility portfolio. Core facilities need to innovate to stay up to date. However, how to carry out the innovation is not very obvious. One area of innovation in imaging core facilities is the building of optical setups. However, the creation of optical setups requires specific skill sets, time, and investments. Consequently, the topic of whether a core facility should develop optical devices is discussed as controversial. Here, we provide resources that should help get into this topic, and we discuss different options when and how it makes sense to build optical devices in core facilities. We discuss various aspects, including consequences for staff and the relation of the core to the institute, and also broaden the scope toward other areas of innovation.
Collapse
Affiliation(s)
- Sebastian Munck
- Neuroscience Department, KU Leuven, Leuven, Belgium
- VIB BioImaging Core, VIB, Leuven, Belgium
| | | | - Christopher Cawthorne
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven, Belgium
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
7
|
Wright GD, Thompson KA, Reis Y, Bischof J, Hockberger PE, Itano MS, Yen L, Adelodun ST, Bialy N, Brown CM, Chaabane L, Chew TL, Chitty AI, Cordelières FP, De Niz M, Ellenberg J, Engelbrecht L, Fabian-Morales E, Fazeli E, Fernandez-Rodriguez J, Ferrando-May E, Fletcher G, Galloway GJ, Guerrero A, Guimarães JM, Jacobs CA, Jayasinghe S, Kable E, Kitten GT, Komoto S, Ma X, Marques JA, Millis BA, Miranda K, JohnO'Toole P, Olatunji SY, Paina F, Pollak CN, Prats C, Pylvänäinen JW, Rahmoon MA, Reiche MA, Riches JD, Rossi AH, Salamero J, Thiriet C, Terjung S, Vasconcelos ADS, Keppler A. Recognising the importance and impact of Imaging Scientists: Global guidelines for establishing career paths within core facilities. J Microsc 2024; 294:397-410. [PMID: 38691400 DOI: 10.1111/jmi.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.
Collapse
Affiliation(s)
- Graham D Wright
- Research Support Centre, Agency for Science, Technology & Research (A*STAR), Singapore, Singapore
| | - Kerry A Thompson
- Anatomy Imaging and Microscopy Facility, School of Medicine, College of Medicine, Nursing and Health Science, University of Galway, Galway, Ireland
| | - Yara Reis
- Global BioImaging, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Johanna Bischof
- Euro-BioImaging Bio-Hub, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Michelle S Itano
- Neuroscience Center, Department of Cell Biology & Physiology, Carolina Institute of Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Lisa Yen
- Microscopy Australia, The University of Sydney, Sydney, Australia
| | - Stephen Taiye Adelodun
- Department of Anatomy, Ben Carson College of Health and Medical Sciences, Babcock University, Ilisan Remo, Ogun State, Nigeria
| | - Nikki Bialy
- BioImaging North America, Morgridge Institute of Research, Madison, USA
| | - Claire M Brown
- Advanced BioImaging Facility, Department of Physiology, McGill University, Montreal, Canada
| | - Linda Chaabane
- Euro-BioImaging Med-Hub, IBB-CNR, Italian Council of Research (CNR), Turin, Italy
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, USA
| | - Andrew I Chitty
- OHSU University Shared Resources, Oregon Health and Science University, Portland, USA
| | - Fabrice P Cordelières
- France BioImaging INBS, Bordeaux Imaging Center (UAR3420), Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Mariana De Niz
- Department of Cell and Developmental Biology, Center for Advanced Microscopy, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lize Engelbrecht
- Central Analytical Facilities Microscopy Unit, Stellenbosch University, Stellenbosch, South Africa
| | - Eunice Fabian-Morales
- Genetics Department, Harvard Medical School, Boston, USA
- Unidad de Aplicaciones Avanzadas en Microscopía (ADMiRA), Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elnaz Fazeli
- Biomedicum Imaging Unit, Faculty of Medicine and HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Elisa Ferrando-May
- Department of Enabling Technology, German Cancer Research Center, Heidelberg, Germany
| | | | - Graham John Galloway
- Herston Imaging Research Facility, The University of Queensland, Queensland, Australia
| | - Adan Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jander Matos Guimarães
- Multi-user Center for Analysis of Biomedical Phenomena, State University of Amazonas (CMABio-UEA), Manaus, Brazil
| | - Caron A Jacobs
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sachintha Jayasinghe
- Office of the Pro Vice-Chancellor (Research Infrastructure), The University of Queensland, Brisbane, Australia
- Office of the Pro Vice-Chancellor (Research Infrastructure), Queensland University of Technology, Brisbane, Australia
| | - Eleanor Kable
- Sydney Microscopy and Microanalysis, Microscopy Australia, University of Sydney, Sydney, Australia
| | - Gregory T Kitten
- Center of Microscopy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Shinya Komoto
- Imaging Core Facility, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- Optics and Imaging Facility, National Institute for Basic Biology (NIBB), Okazaki, Japan
| | - Xiaoxiao Ma
- Research Support Centre, Agency for Science, Technology & Research (A*STAR), Singapore, Singapore
| | - Jéssica Araújo Marques
- Multi-user Center for Analysis of Biomedical Phenomena, State University of Amazonas (CMABio-UEA), Manaus, Brazil
| | - Bryan A Millis
- Department of Biomedical Engineering, Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Kildare Miranda
- National Center for Structural Biology and Bioimaging and Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sunday Yinka Olatunji
- Department of Anatomy, Adventist School of Medicine of East Central Africa, Adventist University of Central Africa, Kigali, Rwanda
| | - Federica Paina
- Government Relations, LyondellBasell Industries N.V., Brussels, Belgium
| | - Cora Noemi Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Clara Prats
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mai Atef Rahmoon
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, USA
| | - Michael A Reiche
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - James Douglas Riches
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Andres Hugo Rossi
- Servicio de Microscopía y Bioimagenes, Fundación Instituto Leloir - CONICET, Buenos Aires, Argentina
| | - Jean Salamero
- CNRS-Institut Curie, France BioImaging INBS, Paris, France
| | - Caroline Thiriet
- France BioImaging INBS, Bordeaux Imaging Center (UAR3420), Centre National de la Recherche Scientifique (CNRS), Bordeaux, France
| | - Stefan Terjung
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Antje Keppler
- Global BioImaging, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Euro-BioImaging Bio-Hub, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
8
|
Lee RM, Eisenman LR, Khuon S, Aaron JS, Chew TL. Believing is seeing - the deceptive influence of bias in quantitative microscopy. J Cell Sci 2024; 137:jcs261567. [PMID: 38197776 DOI: 10.1242/jcs.261567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
The visual allure of microscopy makes it an intuitively powerful research tool. Intuition, however, can easily obscure or distort the reality of the information contained in an image. Common cognitive biases, combined with institutional pressures that reward positive research results, can quickly skew a microscopy project towards upholding, rather than rigorously challenging, a hypothesis. The impact of these biases on a variety of research topics is well known. What might be less appreciated are the many forms in which bias can permeate a microscopy experiment. Even well-intentioned researchers are susceptible to bias, which must therefore be actively recognized to be mitigated. Importantly, although image quantification has increasingly become an expectation, ostensibly to confront subtle biases, it is not a guarantee against bias and cannot alone shield an experiment from cognitive distortions. Here, we provide illustrative examples of the insidiously pervasive nature of bias in microscopy experiments - from initial experimental design to image acquisition, analysis and data interpretation. We then provide suggestions that can serve as guard rails against bias.
Collapse
Affiliation(s)
- Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Leanna R Eisenman
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| |
Collapse
|