1
|
Tennant KS, Less EH, Raghanti MA, Amendolagine LA, Lukas KE, Willis MA, Dennis PM. Using an Oral Sugar Test to Biologically Validate the Use of a Commercial Enzyme Immunoassay to Measure Salivary Insulin in Western Lowland Gorillas (Gorilla gorilla gorilla). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:493-501. [PMID: 39868589 DOI: 10.1002/jez.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
Noninvasive evaluations of hormones can contribute to the assessment of health and welfare of animals. Variations in insulin levels and sensitivity, for example, have been linked to health concerns in non-human and human primates including insulin resistance, diabetes, and heart disease, the leading cause of death in zoo-housed gorillas. Few published studies have assessed insulin concentrations in western lowland gorillas (Gorilla gorilla gorilla), and all did so using serum. Anesthesia is typically required to collect blood samples from zoo-housed gorillas, limiting sampling frequency and restricting samples to the fasted state. The ability to measure insulin levels in saliva would eliminate these constraints and provide a minimally invasive means for monitoring this hormone. The purpose of this study was to analytically and biologically validate the measurement of insulin in saliva of western lowland gorillas using a commercially available enzyme immunoassay. For validation, an oral sugar test was conducted on five adult gorillas residing at Cleveland Metroparks Zoo. Such assessments are common practice in both human and equine medicine to evaluate the body's insulin response to ingestion of sugars. The test involved measuring salivary insulin at timed intervals before and after gorillas consumed doses of sugar. Salivary insulin levels increased from 15 min post-sugar ingestion and peaked after 90 to 120 min. One female had a high response and peaked at 990.21 mU/L. The other four gorillas had peaks between 49.82 and 167.04 mU/L. The assessment provided a biological validation for the measurement of salivary insulin in western lowland gorillas.
Collapse
Affiliation(s)
- Kaylin S Tennant
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elena H Less
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
| | | | | | - Kristen E Lukas
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Willis
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Patricia M Dennis
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Granat FA, Trumel C, Braun JPD, Bourgès-Abella NH. Quality of hematology and clinical chemistry results in laboratory and zoo nonhuman primates: Effects of the preanalytical phase. A review. J Med Primatol 2023; 52:414-427. [PMID: 37612808 DOI: 10.1111/jmp.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Most errors in clinical pathology originate in the preanalytical phase, which includes all steps from the preparation of animals and equipment to the collection of the specimen and its management until analyzed. Blood is the most common specimen collected in nonhuman primates. Other specimens collected include urine, saliva, feces, and hair. The primary concern is the variability of blood hematology and biochemistry results due to sampling conditions with the effects of capture, restraint, and/or anesthesia. Housing and diet have fewer effects, with the exception of food restriction to reduce obesity. There has been less investigation regarding the impact of sampling conditions of nonblood specimens.
Collapse
Affiliation(s)
- Fanny A Granat
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm U1037, CNRS U5077, Toulouse, France
- Laboratoire central de biologie médicale, ENVT, Toulouse, France
| | - Catherine Trumel
- Laboratoire central de biologie médicale, ENVT, Toulouse, France
- CREFRE, Université de Toulouse, Inserm, ENVT, UPS, Toulouse, France
| | | | | |
Collapse
|
3
|
Wu CC, Hung CJ, Wang YY, Lin SY, Chen WY, Kuan YH, Liao SL, Yang CP, Chen CJ. Propofol Improved Glucose Tolerance Associated with Increased FGF-21 and GLP-1 Production in Male Sprague-Dawley Rats. Molecules 2020; 25:3229. [PMID: 32679813 PMCID: PMC7397023 DOI: 10.3390/molecules25143229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Anesthetics, particularly volatile anesthetics, have been shown to impair glucose metabolism and cause hyperglycemia, closely linking them with mortality and morbidity as related to surgery. Beyond being an anesthetic used for general anesthesia and sedation, intravenous hypnotic propofol displays an effect on glucose metabolism. To extend the scope of propofol studies, its effects on glucose metabolism were evaluated in male Sprague-Dawley rats of various ages. Unlike chloral hydrate and isoflurane, propofol had little effect on basal glucose levels in rats at 2 months of age, although it did reduce chloral hydrate- and isoflurane-induced hyperglycemia. Propofol reduced postload glucose levels after either intraperitoneal or oral administration of glucose in both 7- and 12-month-old rats, but not those at 2 months of age. These improved effects regarding propofol on glucose metabolism were accompanied by an increase in insulin, fibroblast growth factor-21 (FGF-21), and glucagon-like peptide-1 (GLP-1) secretion. Additionally, an increase in hepatic FGF-21 expression, GLP-1 signaling, and FGF-21 signaling, along with a decrease in endoplasmic reticulum (ER) stress, were noted in propofol-treated rats at 7 months of age. Current findings imply that propofol may turn into insulin-sensitizing molecules during situations of existing insulin resistance, which involve FGF-21, GLP-1, and ER stress.
Collapse
Affiliation(s)
- Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Chih-Jen Hung
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (S.-L.L.); (C.-P.Y.)
| | - Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (S.-L.L.); (C.-P.Y.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (S.-L.L.); (C.-P.Y.)
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Kusunoki M, Hayashi M, Shoji T, Uba T, Tanaka H, Sumi C, Matsuo Y, Hirota K. Propofol inhibits stromatoxin-1-sensitive voltage-dependent K + channels in pancreatic β-cells and enhances insulin secretion. PeerJ 2019; 7:e8157. [PMID: 31824770 PMCID: PMC6894434 DOI: 10.7717/peerj.8157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Proper glycemic control is an important goal of critical care medicine, including perioperative patient care that can influence patients’ prognosis. Insulin secretion from pancreatic β-cells is generally assumed to play a critical role in glycemic control in response to an elevated blood glucose concentration. Many animal and human studies have demonstrated that perioperative drugs, including volatile anesthetics, have an impact on glucose-stimulated insulin secretion (GSIS). However, the effects of the intravenous anesthetic propofol on glucose metabolism and insulin sensitivity are largely unknown at present. Methods The effect of propofol on insulin secretion under low glucose or high glucose was examined in mouse MIN6 cells, rat INS-1 cells, and mouse pancreatic β-cells/islets. Cellular oxygen or energy metabolism was measured by Extracellular Flux Analyzer. Expression of glucose transporter 2 (GLUT2), potassium channels, and insulin mRNA was assessed by qRT-PCR. Protein expression of voltage-dependent potassium channels (Kv2) was also assessed by immunoblot. Propofol’s effects on potassium channels including stromatoxin-1-sensitive Kv channels and cellular oxygen and energy metabolisms were also examined. Results We showed that propofol, at clinically relevant doses, facilitates insulin secretion under low glucose conditions and GSIS in MIN6, INS-1 cells, and pancreatic β-cells/islets. Propofol did not affect intracellular ATP or ADP concentrations and cellular oxygen or energy metabolism. The mRNA expression of GLUT2 and channels including the voltage-dependent calcium channels Cav1.2, Kir6.2, and SUR1 subunit of KATP, and Kv2 were not affected by glucose or propofol. Finally, we demonstrated that propofol specifically blocks Kv currents in β-cells, resulting in insulin secretion in the presence of glucose. Conclusions Our data support the hypothesis that glucose induces membrane depolarization at the distal site, leading to KATP channel closure, and that the closure of Kv channels by propofol depolarization in β-cells enhances Ca2+ entry, leading to insulin secretion. Because its activity is dependent on GSIS, propofol and its derivatives are potential compounds that enhance and initiate β-cell electrical activity.
Collapse
Affiliation(s)
- Munenori Kusunoki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Mikio Hayashi
- Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tomohiro Shoji
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Takeo Uba
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Hiromasa Tanaka
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Chisato Sumi
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
5
|
Söbbeler FJ, Carrera I, Pasloske K, Ranasinghe MG, Kircher P, Kästner SBR. Effects of isoflurane, sevoflurane, propofol and alfaxalone on brain metabolism in dogs assessed by proton magnetic resonance spectroscopy ( 1H MRS). BMC Vet Res 2018; 14:69. [PMID: 29506576 PMCID: PMC5839062 DOI: 10.1186/s12917-018-1396-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 02/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background The purpose of this study was to determine the effects of isoflurane, sevoflurane, propofol and alfaxalone on the canine brain metabolite bioprofile, measured with single voxel short echo time proton magnetic resonance spectroscopy at 3 Tesla. Ten adult healthy Beagle dogs were assigned to receive isoflurane, sevoflurane, propofol and alfaxalone at 3 different dose rates each in a randomized cross-over study design. Doses for isoflurane, sevoflurane, propofol and alfaxalone were FE’Iso 1.7 vol%, 2.1 vol%, 2.8 vol%, FE’Sevo 2.8 vol%, 3.5 vol% and 4.7 vol%, 30, 45 and 60 mg kg− 1 h− 1 and 10, 15 and 20 mg kg− 1 h− 1 respectively. A single voxel Point Resolved Spectroscopy Sequence was performed on a 3 T MRI scanner in three brain regions (basal ganglia, parietal and occipital lobes). Spectral data were analyzed with LCModel. Concentration of total N-acetylaspartate (tNAA), choline, creatine, inositol and glutamine and glutamate complex (Glx) relative to water content was obtained. Plasma concentration of lactate, glucose, triglycerides, propofol and alfaxalone were determined. Statistics were performed using repeated measures ANOVA or Wilcoxon Sign Rank test with alpha = 5%. Results Plasma glucose increased with isoflurane, sevoflurane and alfaxalone but decreased with propofol. Plasma lactate increased with all anesthetics (isoflurane > sevoflurane > propofol > alfaxalone). Cerebral lactate could not be detected. Only minor changes in cerebral metabolite concentrations of tNAA, choline, inositol, creatine and Glx occurred with anesthetic dose changes. Conclusion The metabolomic profile detected with proton magnetic resonance spectroscopy at 3 Tesla of canine brain showed only minor differences between doses and anesthetics related to tNAA, choline, creatine, inositol and Glx.
Collapse
Affiliation(s)
- Franz Josef Söbbeler
- Small Animal Clinic (Söbbeler, Kästner), University of Veterinary Medicine Hanover Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Inés Carrera
- Clinic of Diagnostic Imaging (Carrera, Kircher), Vetsuisse Faculty, University of Zurich, Winterthurestrasse 258c, 8057, Zurich, Switzerland
| | - Kirby Pasloske
- Jurox Pty Ltd. (Pasloske, Ranasinghe), 85 Gardiner St, Rutherford, NSW, 2320, Australia
| | | | - Patrick Kircher
- Clinic of Diagnostic Imaging (Carrera, Kircher), Vetsuisse Faculty, University of Zurich, Winterthurestrasse 258c, 8057, Zurich, Switzerland
| | - Sabine Beate Rita Kästner
- Small Animal Clinic (Söbbeler, Kästner), University of Veterinary Medicine Hanover Foundation, Bünteweg 9, 30559, Hannover, Germany
| |
Collapse
|