1
|
Factor SA, Weinshenker D, McKay JL. A possible pathway to freezing of gait in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:282-290. [PMID: 39973500 DOI: 10.1177/1877718x241308487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Freezing of gait (FOG), a common, perplexing gait disorder observed in Parkinson's disease (PD), is a leading cause of injurious falls and contributes significantly to social isolation. Unlike other PD cardinal features, FOG appears to develop independently, and its heterogeneity presents challenges for both definition and measurement. The pathophysiological mechanisms underlying FOG remain poorly understood, limiting the development of effective treatments. Although the roles of specific, targetable biomarkers in FOG development remain unidentified, evidence suggests that it is likely multimodal, potentially involving extranigral transmitter circuits. The diversity of FOG phenotypes may also reflect underlying differences in pathophysiology. In this paper, we first present evidence that FOG may occur independently of dopaminergic influence. We then review an expanding body of research supporting the hypothesis that FOG arises from a dysfunctional pathophysiological feedback loop, involving norepinephrine (NE) depletion, neuroinflammation, and amyloid-β (Aβ) accumulation. This biological disruption occurs concurrently with, but distinct from, the primary dopaminergic pathology of PD. When they occur on the background of dopamine loss, the interactions between NE, Aβ, and inflammation, as observed in Alzheimer's disease models, may similarly play a critical role in the development of FOG in PD and could serve as pathobiological markers. The proposed changes in the pathophysiological loop might even precede its onset, highlighting the need for further investigation. A deeper understanding of the involvement of Aβ, NE, and inflammatory markers in FOG could pave the way for rapid clinical trials to test existing amyloid-clearing therapies and noradrenergic drugs in appropriate patient populations.
Collapse
Affiliation(s)
- Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University, Atlanta, GA, USA
| | | | - J Lucas McKay
- Jean and Paul Amos Parkinson's Disease and Movement Disorder Program, Emory University, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Laurencin C, Lancelot S, Brosse S, Mérida I, Redouté J, Greusard E, Lamberet L, Liotier V, Le Bars D, Costes N, Thobois S, Boulinguez P, Ballanger B. Noradrenergic alterations in Parkinson's disease: a combined 11C-yohimbine PET/neuromelanin MRI study. Brain 2024; 147:1377-1388. [PMID: 37787503 PMCID: PMC10994534 DOI: 10.1093/brain/awad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chloé Laurencin
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Sarah Brosse
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Inés Mérida
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Jérôme Redouté
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Elise Greusard
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Ludovic Lamberet
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Nicolas Costes
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Stéphane Thobois
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 69500 Bron, France
| | - Philippe Boulinguez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Bénédicte Ballanger
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| |
Collapse
|
3
|
Pérez-Santos I, García-Cabezas MÁ, Cavada C. Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Struct Funct 2023:10.1007/s00429-023-02619-w. [PMID: 36890350 DOI: 10.1007/s00429-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuable.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain. .,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| |
Collapse
|
4
|
Liu Q, Mao Z, Tan C, Cai S, Shen Q, Wang M, Li J, Zhang L, Zhou F, Song C, Yuan J, Liu Y, Liu J, Liao H. Resting-state brain network in Parkinson’s disease with different degrees of depression. Front Neurosci 2022; 16:931365. [PMID: 36213745 PMCID: PMC9533063 DOI: 10.3389/fnins.2022.931365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe aim of this study is to explore the neural network mechanism of Parkinson’s disease (PD) with different degrees of depression using independent component analysis (ICA) of the functional connectivity changes in the forehead, limbic system, and basal ganglia regions.MethodsA total of 106 patients with PD were divided into three groups: PD with moderate-severe depression (PDMSD, n = 42), PD with mild depression (PDMD, n = 29), and PD without depression (PDND, n = 35). Fifty gender- and age-matched healthy subjects were recruited as a control group (HC). Three-dimensional T1-weighted image and resting-state functional magnetic resonance imaging (RS-fMRI) data were collected.ResultsDifferent functional connectivity was observed in the left precentral gyrus, right precuneus, right inferior frontal gyrus, right medial and paracingulate gyrus, left supplementary motor area, right brain insula, and the inferior frontal gyrus of the left orbit among the four groups (ANOVA, P < 0.05, Voxel size > 5). Both PDMD and PDMSD exhibited increased functional connectivity in the superior-posterior default-mode network (spDMN) and left frontoparietal network (LFPN); they also exhibited a decreased functional connectivity in the interior Salience Network (inSN) when compared with the PDND group. The functional connectivity within the inSN network was decreased in the PDMSD group when compared with the PDMD group (Alphasim correction, P < 0.05, voxel size > 5).ConclusionPD with different degrees of depression has abnormal functional connectivity in multiple networks, which is an important neurobiological basis for the occurrence and development of depression in PD. The degree of decreased functional connectivity in the inSN network is related to the degree of depression in patients with PD-D, which can be an imaging marker for PD to judge the severity of depression.
Collapse
Affiliation(s)
- Qinru Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Third Hospital of Changsha, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yujing Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- *Correspondence: Haiyan Liao,
| |
Collapse
|
5
|
Wang Y, Zhao M, Xu B, Bahriz SMF, Zhu C, Jovanovic A, Ni H, Jacobi A, Kaludercic N, Di Lisa F, Hell JW, Shih JC, Paolocci N, Xiang YK. Monoamine oxidase A and organic cation transporter 3 coordinate intracellular β 1AR signaling to calibrate cardiac contractile function. Basic Res Cardiol 2022; 117:37. [PMID: 35842861 PMCID: PMC9288959 DOI: 10.1007/s00395-022-00944-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
We have recently identified a pool of intracellular β1 adrenergic receptors (β1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular β1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized β1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local β1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-β1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-β1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, 110122, China
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Sherif M F Bahriz
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Haibo Ni
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Ariel Jacobi
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Institute for Pediatric Research Città Della Speranza, Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA.
- VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
6
|
Cerebral metabolic pattern associated with progressive parkinsonism in non-human primates reveals early cortical hypometabolism. Neurobiol Dis 2022; 167:105669. [DOI: 10.1016/j.nbd.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
|
7
|
Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb Cortex 2021; 31:4115-4139. [PMID: 34003210 PMCID: PMC8328208 DOI: 10.1093/cercor/bhab073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
8
|
Minaei A, Sarookhani MR, Haghdoost-Yazdi H, Rajaei F. Hydrogen sulfide attenuates induction and prevents progress of the 6-hydroxydopamine-induced Parkinsonism in rat through activation of ATP-sensitive potassium channels and suppression of ER stress. Toxicol Appl Pharmacol 2021; 423:115558. [PMID: 33961902 DOI: 10.1016/j.taap.2021.115558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Studies argue in favor of hydrogen sulfide (H2S) as the next potent therapeutic agent for neurodegenerative diseases. In present study, we investigated the effect of long term treatment with NaHS (as donor of H2S) on induction and progress of the 6-hydroxydopamine (6-OHDA) -induced Parkinsonism in rat. METHODS The 6-OHDA was injected into medial forebrain bundle of right hemisphere by stereotaxic surgery. Behavioral tests and treatments were carried out to eight weeks after the toxin. Immunohistochemistry and western blotting were carried out to evaluate the survival of tyrosine hydroxylase (TH) -positive neurons in substantia nigra (SN) and also expression of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP), the markers of endoplasmic reticulum (ER) stress, in striatum and SN. RESULTS Eight weeks assessment of the behavioral symptoms showed that NaHS especially at dose of 100 μmol/kg attenuates remarkably induction of the Parkinsonism and prevents its progress. NaHS also increased the survival of TH- positive neurons and suppressed 6-OHDA- induced overexpression of GRP78 and CHOP. Blockade of ATP-sensitive potassium (K-ATP) channels with glibenclamide (Glib) prevented markedly the effect of NaHS on both the induction phase and survival of TH- positive neurons. But Glib did not affect the preventing effect of NaHS on the progress phase and its suppressing effect on the overexpression of ER stress markers. CONCLUSION H2S attenuates induction of the 6-OHDA- induced Parkinsonism and also increases the survival of dopaminergic neurons through activation of K-ATP channels. H2S also prevents progress of the Parkinsonism probably through suppression of ER stress.
Collapse
Affiliation(s)
- Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Reza Sarookhani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
9
|
Monje MHG, Blesa J, García-Cabezas MÁ, Obeso JA, Cavada C. Changes in thalamic dopamine innervation in a progressive Parkinson's disease model in monkeys. Mov Disord 2019; 35:419-430. [PMID: 31800134 PMCID: PMC7154739 DOI: 10.1002/mds.27921] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dopamine loss beyond the mesostriatal system might be relevant in pathogenic mechanisms and some clinical manifestations in PD. The primate thalamus is densely and heterogeneously innervated with dopaminergic axons, most of which express the dopamine transporter, as does the nigrostriatal system. We hypothesized that dopamine depletion may be present in the thalamus of the parkinsonian brain and set out to ascertain possible regional differences. METHODS The toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was administered to adult macaque monkeys using a slow intoxication protocol. The treated macaques were classified into 2 groups according to their motor status: nonsymptomatic and parkinsonian. Dopamine innervation was studied with immunohistochemistry for the dopamine transporter. Topographic maps of the dopamine transporter-immunoreactive axon distribution were generated and the total length and length density of these axons stereologically estimated using a 3-dimensional fractionator. RESULTS Parkinsonian macaques exhibited lower dopamine transporter-immunoreactive axon length density than controls in mediodorsal and centromedian-parafascicular nuclei. Dopamine denervation in the mediodorsal nucleus was already noticeable in nonsymptomatic macaques and was even greater in parkinsonian macaques. Reticular nucleus dopamine transporter-immunoreactive axon length density presented an inverse pattern, increasing progressively to the maximum density seen in parkinsonian macaques. No changes were observed in ventral thalamic nuclei. Dopamine transporter-immunoreactive axon maps supported the quantitative findings. CONCLUSIONS Changes in the dopamine innervation of various thalamic nuclei are heterogeneous and start in the premotor parkinsonian stage. These changes may be involved in some poorly understood nonmotor manifestations of PD. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mariana H G Monje
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain
| | - Javier Blesa
- HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - José A Obeso
- HM-CINAC, HM Puerta del Sur University Hospital, Móstoles, and CEU-San Pablo University, Madrid, Spain.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Dexmedetomidine attenuates the induction and reverses the progress of 6-hydroxydopamine- induced parkinsonism; involvement of KATP channels, alpha 2 adrenoceptors and anti-inflammatory mechanisms. Toxicol Appl Pharmacol 2019; 382:114743. [DOI: 10.1016/j.taap.2019.114743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/20/2019] [Accepted: 08/30/2019] [Indexed: 01/18/2023]
|
11
|
Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov Disord 2019; 34:1130-1143. [PMID: 31216379 DOI: 10.1002/mds.27741] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Studies of the pathophysiology of parkinsonism (specifically akinesia and bradykinesia) have a long history and primarily model the consequences of dopamine loss in the basal ganglia on the function of the basal ganglia/thalamocortical circuit(s). Changes of firing rates of individual nodes within these circuits were originally considered central to parkinsonism. However, this view has now given way to the belief that changes in firing patterns within the basal ganglia and related nuclei are more important, including the emergence of burst discharges, greater synchrony of firing between neighboring neurons, oscillatory activity patterns, and the excessive coupling of oscillatory activities at different frequencies. Primarily focusing on studies obtained in nonhuman primates and human patients with Parkinson's disease, this review summarizes the current state of this field and highlights several emerging areas of research, including studies of the impact of the heterogeneity of external pallidal neurons on parkinsonism, the importance of extrastriatal dopamine loss, parkinsonism-associated synaptic and morphologic plasticity, and the potential role(s) of the cerebellum and brainstem in the motor dysfunction of Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology/School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Sabbar M, Delaville C, De Deurwaerdère P, Lakhdar-Ghazal N, Benazzouz A. Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion. Front Neurosci 2018; 12:173. [PMID: 29615861 PMCID: PMC5868125 DOI: 10.3389/fnins.2018.00173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/05/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead. Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p.) or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN), globus pallidus (GP), and substantia nigra pars reticulata (SNr). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin) and their metabolites has been determined using HPLC. Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and bursty discharge patterns of STN neurons. Neither lead nor DSP-4 treatments changed the firing rate and the pattern of GP and SNr neurons. Conclusions: Our findings provide evidence that lead represents a risk factor for inducing parkinsonism-like deficits. As the motor deficits induced by lead were not improved by L-DOPA, we suggest that the deficits may be due to the depletion of noradrenaline and the parallel disorganization of STN neuronal activity.
Collapse
Affiliation(s)
- Mariam Sabbar
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeau, Bordeaux, France.,Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Faculté des Sciences, Equipe Rythmes Biologiques et Environnement, Université Mohammed V, Rabat, Morocco
| | - Claire Delaville
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeau, Bordeaux, France.,Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Philippe De Deurwaerdère
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeau, Bordeaux, France.,Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nouria Lakhdar-Ghazal
- Faculté des Sciences, Equipe Rythmes Biologiques et Environnement, Université Mohammed V, Rabat, Morocco
| | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeau, Bordeaux, France.,Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
13
|
Giorgi FS, Ryskalin L, Ruffoli R, Biagioni F, Limanaqi F, Ferrucci M, Busceti CL, Bonuccelli U, Fornai F. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer's Disease. Front Neuroanat 2017; 11:80. [PMID: 28974926 PMCID: PMC5610679 DOI: 10.3389/fnana.2017.00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.
Collapse
Affiliation(s)
- Filippo S Giorgi
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Riccardo Ruffoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Ubaldo Bonuccelli
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy.,I.R.C.C.S. I.N.M. NeuromedPozzilli, Italy
| |
Collapse
|
14
|
Wichmann T, Bergman H, DeLong MR. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm (Vienna) 2017; 125:419-430. [PMID: 28601961 DOI: 10.1007/s00702-017-1736-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Abstract
Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson's disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, USA. .,Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research Israel-Canada (IMRIC), Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University, Jerusalem, Israel.,Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | | |
Collapse
|
15
|
Wang Z, Liang S, Yu S, Xie T, Wang B, Wang J, Li Y, Shan B, Cui C. Distinct Roles of Dopamine Receptors in the Lateral Thalamus in a Rat Model of Decisional Impulsivity. Neurosci Bull 2017; 33:413-422. [PMID: 28585114 DOI: 10.1007/s12264-017-0146-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 01/02/2023] Open
Abstract
The thalamus and central dopamine signaling have been shown to play important roles in high-level cognitive processes including impulsivity. However, little is known about the role of dopamine receptors in the thalamus in decisional impulsivity. In the present study, rats were tested using a delay discounting task and divided into three groups: high impulsivity (HI), medium impulsivity (MI), and low impulsivity (LI). Subsequent in vivo voxel-based magnetic resonance imaging revealed that the HI rats displayed a markedly reduced density of gray matter in the lateral thalamus compared with the LI rats. In the MI rats, the dopamine D1 receptor antagonist SCH23390 or the D2 receptor antagonist eticlopride was microinjected into the lateral thalamus. SCH23390 significantly decreased their choice of a large, delayed reward and increased their omission of lever presses. In contrast, eticlopride increased the choice of a large, delayed reward but had no effect on the omissions. Together, our results indicate that the lateral thalamus is involved in decisional impulsivity, and dopamine D1 and D2 receptors in the lateral thalamus have distinct effects on decisional impulsive behaviors in rats. These results provide a new insight into the dopamine signaling in the lateral thalamus in decisional impulsivity.
Collapse
Affiliation(s)
- Zhiyan Wang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Shengxiang Liang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangshuang Yu
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Tong Xie
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Baicheng Wang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Junkai Wang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Yijing Li
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cailian Cui
- Neuroscience Research Institute, Peking University, Beijing, 100191, China. .,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China.
| |
Collapse
|
16
|
Pifl C, Reither H, Del Rey NLG, Cavada C, Obeso JA, Blesa J. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys. Front Neuroanat 2017; 11:46. [PMID: 28611598 PMCID: PMC5447291 DOI: 10.3389/fnana.2017.00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of ViennaVienna, Austria
| | - Harald Reither
- Center for Brain Research, Medical University of ViennaVienna, Austria
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del SurMostoles, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e InnovacionMadrid, Spain
| | - Carmen Cavada
- Departamento de Anatomia, Histologia y Neurociencia, Facultad de Medicina, Universidad Autonoma de MadridMadrid, Spain
| | - Jose A Obeso
- HM CINAC, Hospital Universitario HM Puerta del SurMostoles, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e InnovacionMadrid, Spain
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del SurMostoles, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Ciencia e InnovacionMadrid, Spain
| |
Collapse
|
17
|
Li J, Chen H, Wu S, Cheng Y, Li Q, Wang J, Zhu G. MPP + inhibits mGluR1/5-mediated long-term depression in mouse hippocampus by calpain activation. Eur J Pharmacol 2016; 795:22-27. [PMID: 27908790 DOI: 10.1016/j.ejphar.2016.11.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022]
Abstract
Neurotoxins are harmful to nervous system and cause either neuronal cell death or impairment of synaptic activity, which contributes to Parkinson's disease or other neuronal disorders. Hippocampal synaptic plasticity was proposed as a cellular model for memory processing. In this study, we reported a novel effect of neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), on metabotropic glutamate receptor 1/5 agonist, 3,5-dihydroxyphenylglycine (DHPG)-induced hippocampal synaptic plasticity, and MPP+ incubation blocked DHPG-induced hippocampal long-term depression (LTD) in Schaffer collateral-CA1 synapses. Our further findings indicated that, this blockage was reversed by pre-application of calpain inhibitor III, but not by cathepsin inhibitors. Biochemical analysis showed that MPP+ treatment stimulated calpain activation, displayed by spectrin breakdown. Interestingly, the level and activity of protein tyrosine phosphatase 1B (PTP1B) were reduced after MPP+ incubation and the decrease of PTP1B was prohibited by calpain inhibitor III. In addition, PTP1B inhibitor also blocked DHPG-induced LTD, mimicking the effect of MPP+. In summary, our data implicated that MPP+ activated calpain-dependent PTP1B degradation, which subsequently impaired hippocampal LTD. This novel effect of MPP+ might partially explain the impairment of memory processing in the pathogenesis of PD.
Collapse
Affiliation(s)
- Junyao Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hui Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuefa Cheng
- Jitang College of North China University of Science and Technology, Tangshan 063000, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jing Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
18
|
Adrenergic receptor-mediated modulation of striatal firing patterns. Neurosci Res 2016; 112:47-56. [DOI: 10.1016/j.neures.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022]
|
19
|
Van Schoors J, Viaene J, Van Wanseele Y, Smolders I, Dejaegher B, Vander Heyden Y, Van Eeckhaut A. An improved microbore UHPLC method with electrochemical detection for the simultaneous determination of low monoamine levels in in vivo brain microdialysis samples. J Pharm Biomed Anal 2016; 127:136-46. [DOI: 10.1016/j.jpba.2016.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
|
20
|
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016; 139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
This 'Past to Future' Review as part of the 60th anniversary year of the Journal of Neurochemistry focuses on synaptic transmission and associated signalling, and seeks to identify seminal progress in neurochemistry over the last 10 years which has advanced our understanding of neuronal communication in brain. The approach adopted analyses neurotransmitters on a case by case basis (i.e. amino acids, monoamines, acetylcholine, neuropeptides, ATP/purines and gasotransmitters) to highlight novel findings that have changed the way we view each type of transmitter, to explore commonalities and interactions, and to note how new insights have changed the way we view the biology of degenerative, psychiatric and behavioural conditions. Across all transmitter systems there was remarkable growth in the identification of targets likely to provide therapeutic benefit and which undoubtedly was driven by the elucidation of circuit function and new vistas of synaptic signalling. There has been an increasing trend to relate signalling to disease, notably for Alzheimer's and Parkinson's disease and related conditions, and which has occurred for each transmitter family. Forebrain circuitry and tonic excitatory control have been the centre of great attention yielding novel findings that will impact upon cognitive, emotional and addictive behaviours. Other impressive insights focus on gasotransmitters integrating activity as volume transmitters. Exciting developments in how serotonin, cholinergic, l-glutamate, galanin and adenosine receptors and their associated signalling can be beneficially targeted should underpin the development of new therapies. Clearly integrated, multifaceted neurochemistry has changed the way we view synaptic signalling and its relevance to pathobiology. Highlighted are important advances in synaptic signalling over the last decade in the Journal of Neurochemistry. Across all transmitter systems elucidation of circuit function, and notably molecular insights, have underpinned remarkable growth in the identification of targets likely to provide therapeutic benefit in neuropathologies. Another commonality was wide interest in forebrain circuitry and its tonic excitatory control. Increasingly observations relate to signalling in disease and behavioural conditions. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Franke SK, van Kesteren RE, Wubben JAM, Hofman S, Paliukhovich I, van der Schors RC, van Nierop P, Smit AB, Philippens IHCHM. Progression and recovery of Parkinsonism in a chronic progressive MPTP-induction model in the marmoset without persistent molecular and cellular damage. Neuroscience 2015; 312:247-59. [PMID: 26431624 DOI: 10.1016/j.neuroscience.2015.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
Chronic exposure to low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in marmoset monkeys was used to model the prodromal stage of Parkinson's disease (PD), and to investigate mechanisms underlying disease progression and recovery. Marmosets were subcutaneously injected with MPTP for a period of 12weeks, 0.5mg/kg once per week, and clinical signs of Parkinsonism, motor- and non-motor behaviors were recorded before, during and after exposure. In addition, postmortem immunohistochemistry and proteomics analysis were performed. MPTP-induced parkinsonian clinical symptoms increased in severity during exposure, and recovered after MPTP administration was ended. Postmortem analyses, after the recovery period, revealed no alteration of the number and sizes of tyrosine hydroxylase (TH)-positive dopamine (DA) neurons in the substantia nigra. Also levels of TH in putamen and caudate nucleus were unaltered, no differences were observed in DA, serotonin or nor-adrenalin levels in the caudate nucleus, and proteomics analysis revealed no global changes in protein expression in these brain areas between treatment groups. Our findings indicate that parkinsonian symptoms can occur without detectable damage at the cellular or molecular level. Moreover, we show that parkinsonian symptoms may be reversible when diagnosed and treated early.
Collapse
Affiliation(s)
- S K Franke
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - R E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - J A M Wubben
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - S Hofman
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - I Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - R C van der Schors
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - P van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - A B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Johnston TM, Fox SH. Symptomatic Models of Parkinson's Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Curr Top Behav Neurosci 2015; 22:221-35. [PMID: 25158623 DOI: 10.1007/7854_2014_352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Models of Parkinson's disease (PD) can be produced in several non-human primate (NHP) species by applying neurotoxic lesions to the nigrostriatal dopamine pathway. The most commonly used neurotoxin is MPTP, a compound accidentally discovered as a contaminant of street drugs. Compared to other neurotoxins, MPTP has the advantage of crossing the blood-brain barrier and can thus be administered systemically. MPTP-lesioned NHPs exhibit the main core clinical features of PD. When treated with L-DOPA, these NHP models develop involuntary movements resembling the phenomenology of human dyskinesias. In old-world NHP species (macaques, baboons), choreic and dystonic dyskinesias can be readily distinguished and quantified with specific rating scales. More recently, certain non-motor symptoms relevant to human PD have been described in L-DOPA-treated MPTP-NHPs, including a range of neuropsychiatric abnormalities and sleep disturbances. The main shortcomings of MPTP-NHP models consist in a lack of progression of the underlying neurodegenerative lesion, along with an inability to model the intracellular protein-inclusion pathology typical of PD. The strength of MPTP-NHP models lies in their face and predictive validity for symptomatic treatments of parkinsonian motor features. Indeed, these models have been instrumental to the development of several medical and surgical approaches that are currently applied to treat PD.
Collapse
Affiliation(s)
- Tom M Johnston
- Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, 399, Bathurst St, Toronto, ON, M5T 2S8, Canada
| | | |
Collapse
|
23
|
Van Schoors J, Lens C, Maes K, Michotte Y, Smolders I, Van Eeckhaut A. Reassessment of the antioxidative mixture for the challenging electrochemical determination of dopamine, noradrenaline and serotonin in microdialysis samples. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 998-999:63-71. [DOI: 10.1016/j.jchromb.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/18/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
24
|
Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats. Neurosci Lett 2015; 600:62-8. [PMID: 26054938 DOI: 10.1016/j.neulet.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/24/2015] [Accepted: 06/03/2015] [Indexed: 12/11/2022]
Abstract
The pedunculopontine nucleus (PPN) is connected to spinal, cerebellar and cerebral motor control structures and can be activated with external electrodes. Intrinsic cholinergic neuronal degeneration in the PPN is associated with postural instabilities and gait disturbances (PIGD) in advanced Parkinson's disease (PD). Clinical studies have demonstrated that PPN stimulation may improve PIGD. We investigated this claim and the underlying mechanisms using the 6-hydroxydopamine (6-OHDA) hemilesion model of PD. In this study, gait-related parameters, including the base of support (BOS), stride length, and maximum contact area, were analyzed via CatWalk gait analysis following PPN-low frequency stimulation (LFS) of rats with unilateral 6-OHDA lesions. Additionally, neurotransmitter concentrations in the ventrolateral thalamic nucleus (VL) were measured by microdialysis and liquid chromatography-mass spectrometry (LC-MS). Our data revealed that unilateral 6-OHDA lesions of the medial forebrain bundle (MFB) induced significant gait deficits. PPN-LFS significantly improved the BOS (hindlimb) and maximum contact area (impaired forelimb) scores, whereas no other gait parameters were significantly affected. Unilateral 6-OHDA MFB lesions significantly decreased acetylcholine (ACh) and moderately decreased noradrenaline (NA) concentrations in the VL. PPN-LFS mildly reversed the ACh loss in the VL in the lesioned rats but did not alter the NA levels. Taken together, our data indicate that PPN-LFS is useful for treating gait deficits of PD and that these effects are probably mediated by a rebalancing of ACh levels in the PPN-VL pathway. Thus, our findings provide possible insight into the mechanisms underlying PIGD in PD.
Collapse
|
25
|
Straulino E, Scaravilli T, Castiello U. Social intentions in Parkinson's disease patients: A kinematic study. Cortex 2015; 70:179-88. [PMID: 25804938 DOI: 10.1016/j.cortex.2015.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/19/2015] [Accepted: 02/14/2015] [Indexed: 12/01/2022]
Abstract
Dysfunction of the dopaminergic system leads to motor, cognitive and motivational symptoms in brain disorders such as Parkinson's disease (PD). Moreover, the dopaminergic system plays an important role in social interactions. The dopaminergic input to the basal ganglia (BG) thought to integrate social cues during the planning and execution of voluntary movements remains, however, largely unexplored. Since PD provides a model to assess this function in humans, our study aimed to investigate the effects of social intentions on actions in non-demented PDpatients receiving dopamine replacement therapy (Levodopa = l-Dopa) and in neurologically healthy control participants. Patients' ability to modulate motor patterning depending on the intention motivating the action to be performed was evaluated both in "on" (with l-Dopa) and "off" (without l-Dopa) states. Participants were instructed to reach for and to grasp an object; they were then told to hand it to another person (social condition) or to place it on a concave frame (individual condition). A 'passive-observer' condition, which was similar to the 'individual' condition except for the presence of an onlooker who simply observed the scene, was also assessed to exclude the possibility that differences might be due to the presence of another person. Movement kinematics were recorded using a three-dimensional motion analysis system. Study results demonstrated that the controls and the PD patients in an 'on' state adopted different kinematic patterning for the 'social' and the 'individual' conditions; the PD patients in the 'off' state, instead, were unable to kinematically differentiate between the two conditions. These results suggest that l-Dopa treatment has positive effects on translating social intentions into specific motor patterns in PD patients.
Collapse
Affiliation(s)
- Elisa Straulino
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| | - Tomaso Scaravilli
- Unità Operativa di Neurologia Ospedale di Dolo USL13, Venezia, Italy
| | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy; Cognitive Neuroscience Center, University of Padova, Italy; Centro Linceo Interdisciplinare Beniamino Segre, Accademia dei Lincei, Roma, Italy.
| |
Collapse
|
26
|
Noradrenergic-Dopaminergic Interactions Due to DSP-4-MPTP Neurotoxin Treatments: Iron Connection. Curr Top Behav Neurosci 2015; 29:73-86. [PMID: 26718588 DOI: 10.1007/7854_2015_411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The investigations of noradrenergic lesions and dopaminergic lesions have established particular profiles of functional deficits and accompanying alterations of biomarkers in brain regions and circuits. In the present account, the focus of these lesions is directed toward the effects upon dopaminergic neurotransmission and expression that are associated with the movement disorders and psychosis-like behavior. In this context, it was established that noradrenergic denervation, through administration of the selective noradrenaline (NA) neurotoxin, DSP-4, should be performed prior to the depletion of dopamine (DA) with the selective neurotoxin, MPTP. Employing this regime, it was shown that (i) following DSP-4 (50 mg/kg) pretreatment of C57/Bl6 mice, both the functional and neurochemical (DA loss) effects of MPTP (2 × 20 and 2 × 40 mg/kg) were markedly exacerbated, and (ii) following postnatal iron (Fe(2+), 7.5 mg/kg, on postnatal days 19-12), pretreatment with DSP-4 followed by the lower 2 × 20 mg/kg MPTP dose induced even greater losses of motor behavior and striatal DA. As yet, the combination of NA-DA depletions, and even more so Fe(2+)-NA-DA depletion, has been considered to present a movement disorder aspect although studies exploring cognitive domains are lacking. With intrusion of iron overload into this formula, the likelihood of neuropsychiatric disorder, as well, unfolds.
Collapse
|
27
|
Vezoli J, Dzahini K, Costes N, Wilson CRE, Fifel K, Cooper HM, Kennedy H, Procyk E. Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey. Neuroimage 2014; 102 Pt 2:249-61. [PMID: 25108180 DOI: 10.1016/j.neuroimage.2014.07.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
The delayed appearance of motor symptoms in PD poses a crucial challenge for early detection of the disease. We measured the binding potential of the selective dopamine active transporter (DAT) radiotracer [(11)C]PE2I in MPTP-treated macaque monkeys, thus establishing a detailed profile of the nigrostriatal DA status following MPTP intoxication and its relation to induced motor and non-motor symptoms. Clinical score and cognitive performance were followed throughout the study. We measured longitudinally in vivo the non-displaceable binding potential to DAT in premotor, motor-recovered (i.e. both non-symptomatic) and symptomatic MPTP-treated monkeys. Results show an unexpected and pronounced dissociation between clinical scores and [(11)C]PE2I-BP(ND) during the premotor phase i.e. DAT binding in the striatum of premotor animals was increased around 20%. Importantly, this broad increase of DAT binding in the caudate, ventral striatum and anterior putamen was accompanied by i) deteriorated cognitive performance, showing a likely causal role of the observed hyperdopaminergic state (Cools, 2011; Cools and D'Esposito, 2011) and ii) an asymmetric decrease of DAT binding at a focal point of the posterior putamen, suggesting that increased DAT is one of the earliest, intrinsic compensatory mechanisms. Following spontaneous recovery from motor deficits, DAT binding was greatly reduced as recently shown in-vivo with other radiotracers (Blesa et al., 2010, 2012). Finally, high clinical scores were correlated to considerably low levels of DAT only after the induction of a stable parkinsonian state. We additionally show that the only striatal region which was significantly correlated to the degree of motor impairments is the ventral striatum. Further research on this period should allow better understanding of DA compensation at premature stages of PD and potentially identify new diagnosis and therapeutic index.
Collapse
Affiliation(s)
- Julien Vezoli
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France.
| | - Kwamivi Dzahini
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France; Primastem (LifeStemCells), Bron, France
| | | | - Charles R E Wilson
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Karim Fifel
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Howard M Cooper
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Henry Kennedy
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Emmanuel Procyk
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| |
Collapse
|
28
|
Shin E, Rogers JT, Devoto P, Björklund A, Carta M. Noradrenaline neuron degeneration contributes to motor impairments and development of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Exp Neurol 2014; 257:25-38. [DOI: 10.1016/j.expneurol.2014.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
|
29
|
Varela C. Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 2014; 8:69. [PMID: 25009467 PMCID: PMC4068295 DOI: 10.3389/fncir.2014.00069] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/07/2014] [Indexed: 01/25/2023] Open
Abstract
The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function.
Collapse
Affiliation(s)
- Carmen Varela
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
30
|
Snider J, Lee D, Harrington DL, Poizner H. Scaling and coordination deficits during dynamic object manipulation in Parkinson's disease. J Neurophysiol 2014; 112:300-15. [PMID: 24760787 DOI: 10.1152/jn.00041.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to reach for and dynamically manipulate objects in a dexterous fashion requires scaling and coordination of arm, hand, and fingertip forces during reach and grasp components of this behavior. The neural substrates underlying dynamic object manipulation are not well understood. Insight into the role of basal ganglia-thalamocortical circuits in object manipulation can come from the study of patients with Parkinson's disease (PD). We hypothesized that scaling and coordination aspects of motor control are differentially affected by this disorder. We asked 20 PD patients and 23 age-matched control subjects to reach for, grasp, and lift virtual objects along prescribed paths. The movements were subdivided into two types, intensive (scaling) and coordinative, by detecting their underlying self-similarity. PD patients off medication were significantly impaired relative to control subjects for both aspects of movement. Intensive deficits, reduced peak speed and aperture, were seen during the reach. Coordinative deficits were observed during the reach, namely, the relative position along the trajectory at which peak speed and aperture were achieved, and during the lift, when objects tilted with respect to the gravitational axis. These results suggest that basal ganglia-thalamocortical circuits may play an important role in fine motor coordination. Dopaminergic therapy significantly improved intensive but not coordinative aspects of movements. These findings are consistent with a framework in which tonic levels of dopamine in the dorsal striatum encode the energetic cost of a movement, thereby improving intensive or scaling aspects of movement. However, repletion of brain dopamine levels does not restore finely coordinated movement.
Collapse
Affiliation(s)
- Joseph Snider
- Institute of Neural Computation, University of California San Diego, La Jolla, California
| | - Dongpyo Lee
- Institute of Neural Computation, University of California San Diego, La Jolla, California
| | - Deborah L Harrington
- Research Service, Department of Veterans Affairs San Diego Healthcare System, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; and
| | - Howard Poizner
- Institute of Neural Computation, University of California San Diego, La Jolla, California; Graduate Program in Neurosciences, University of California San Diego, La Jolla, California
| |
Collapse
|
31
|
Beaudoin-Gobert M, Sgambato-Faure V. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia. Neuropharmacology 2014; 81:15-30. [PMID: 24486710 DOI: 10.1016/j.neuropharm.2014.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
Abstract
Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders.
Collapse
Affiliation(s)
- Maude Beaudoin-Gobert
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France
| | - Véronique Sgambato-Faure
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France.
| |
Collapse
|
32
|
Ion-pair ultra-high performance liquid chromatographic analysis of monoamines: Peak-splitting at high flow rates. J Chromatogr A 2013; 1321:73-9. [DOI: 10.1016/j.chroma.2013.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 11/22/2022]
|
33
|
Eskow Jaunarajs KL, Standaert DG. Removing the blinkers: moving beyond striatal dopamine in Parkinson's disease. J Neurochem 2013; 125:639-41. [DOI: 10.1111/jnc.12167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Karen L. Eskow Jaunarajs
- Center for Neurodegeneration and Experimental Therapeutics; Department of Neurology; University of Alabama at Birmingham; Birmingham Alabama USA
| | - David G. Standaert
- Center for Neurodegeneration and Experimental Therapeutics; Department of Neurology; University of Alabama at Birmingham; Birmingham Alabama USA
| |
Collapse
|