1
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
2
|
Boehm AN, Bialas J, Catone N, Sacristan-Reviriego A, van der Spuy J, Groettrup M, Aichem A. The ubiquitin-like modifier FAT10 inhibits retinal PDE6 activity and mediates its proteasomal degradation. J Biol Chem 2020; 295:14402-14418. [PMID: 32817338 DOI: 10.1074/jbc.ra120.013873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
The retina-specific chaperone aryl hydrocarbon interacting protein-like 1 (AIPL1) is essential for the correct assembly of phosphodiesterase 6 (PDE6), which is a pivotal effector enzyme for phototransduction and vision because it hydrolyzes cGMP. AIPL1 interacts with the cytokine-inducible ubiquitin-like modifier FAT10, which gets covalently conjugated to hundreds of proteins and targets its conjugation substrates for proteasomal degradation, but whether FAT10 affects PDE6 function or turnover is unknown. Here, we show that FAT10 mRNA is expressed in human retina and identify rod PDE6 as a retina-specific substrate of FAT10 conjugation. We found that AIPL1 stabilizes the FAT10 monomer and the PDE6-FAT10 conjugate. Additionally, we elucidated the functional consequences of PDE6 FAT10ylation. On the one hand, we demonstrate that FAT10 targets PDE6 for proteasomal degradation by formation of a covalent isopeptide linkage. On the other hand, FAT10 inhibits PDE6 cGMP hydrolyzing activity by noncovalently interacting with the PDE6 GAFa and catalytic domains. Therefore, FAT10 may contribute to loss of PDE6 and, as a consequence, degeneration of retinal cells in eye diseases linked to inflammation and inherited blindness-causing mutations in AIPL1.
Collapse
Affiliation(s)
- Annika N Boehm
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Johanna Bialas
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | | | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Annette Aichem
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany .,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
3
|
Frederick JM, Hanke-Gogokhia C, Ying G, Baehr W. Diffuse or hitch a ride: how photoreceptor lipidated proteins get from here to there. Biol Chem 2019; 401:573-584. [DOI: 10.1515/hsz-2019-0375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Abstract
Photoreceptors are polarized neurons, with specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment (OS) where vision begins, an inner segment (IS) where protein synthesis occurs and a synaptic terminal for signal transmission to second-order neurons. The OS is a large, modified primary cilium attached to the IS by a slender connecting cilium (CC), the equivalent of the transition zone (TZ). Daily renewal of ~10% of the OS requires massive protein biosynthesis in the IS with reliable transport and targeting pathways. Transport of lipidated (‘sticky’) proteins depends on solubilization factors, phosphodiesterase δ (PDEδ) and uncoordinated protein-119 (UNC119), and the cargo dispensation factor (CDF), Arf-like protein 3-guanosine triphosphate (ARL3-GTP). As PDE6 and transducin still reside prominently in the OS of PDEδ and UNC119 germline knockout mice, respectively, we propose the existence of an alternate trafficking pathway, whereby lipidated proteins migrate in rhodopsin-containing vesicles of the secretory pathway.
Collapse
Affiliation(s)
- Jeanne M. Frederick
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences , University of Utah Health Science Center , 65 Mario Capecchi Drive , Salt Lake City , UT 84132 , USA
- Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT 84112 , USA
- Department of Biology , University of Utah , Salt Lake City , UT 84132 , USA
| |
Collapse
|
4
|
PDE10A mutations help to unwrap the neurobiology of hyperkinetic disorders. Cell Signal 2019; 60:31-38. [PMID: 30951862 DOI: 10.1016/j.cellsig.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The dual-specific cAMP/cGMP phosphodiesterase PDE10A is exclusively localised to regions of the brain and specific cell types that control crucial brain circuits and behaviours. The downside to this expression pattern is that PDE10A is also positioned to be a key player in pathology when its function is perturbed. The last decade of research has seen a clear role emerge for PDE10A inhibition in modifying behaviours in animal models of psychosis and Huntington's disease. Unfortunately, this has not translated to the human diseases as expected. More recently, a series of families with hyperkinetic movement disorders have been identified with mutations altering the PDE10A protein sequence. As these mutations have been analysed and characterised in other model systems, we are beginning to learn more about PDE10A function and perhaps catch a glimpse into how PDE10A activity could be modified for therapeutic benefit.
Collapse
|
5
|
Wang T, Reingruber J, Woodruff ML, Majumder A, Camarena A, Artemyev NO, Fain GL, Chen J. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. J Biol Chem 2018; 293:15332-15346. [PMID: 30126843 DOI: 10.1074/jbc.ra118.004459] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The retinal degeneration model rd10 contains a missense mutation of the catalytic PDE6 β subunit, which hydrolyzes cGMP in response to light. This model produces cell death more slowly than others caused by PDE6 loss of function, making it of particular interest for studying potential therapeutics. We used morphology, biochemistry, and single-cell physiology to examine the mechanism of rd10 degeneration. Our results show that the mutation produces no alteration of Pde6b RNA but does dramatically decrease maximal and basal PDE6 activity, apparently caused by a decrease in protein stability and transport. The enzymatic properties of the remaining mutant PDE6 appear to be nearly normal. We demonstrate that an increase in free cGMP, which would result from decreased PDE6 activity and serve to increase opening of the cGMP-gated channels and calcium influx, is an underlying cause of cell death: degeneration of rd10/Cngb1 -/- double mutants is slower than the parent rd10 line. Paradoxically, degeneration in rd10/Cngb1 -/- is also slower than in Cngb1 -/- This rescue is correlated with a lowering of cGMP content in Cngb1 -/- retinas and suggests that it may be caused by mislocalization of active PDE6. Single-cell recordings from rd10 rods show that the rates of rise and decay of the response are significantly slower; simulations indicate that these changes are primarily the result of the decrease in PDE6 concentration and rod collecting area. Together, these results provide insights into the complex mechanisms that underlie rd10-mediated retinal degeneration and a cautionary note for analysis of therapeutic interventions.
Collapse
Affiliation(s)
- Tian Wang
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Jürgen Reingruber
- the Institut de Biologie, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, 75005 Paris, France
| | - Michael L Woodruff
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606
| | - Anurima Majumder
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Andres Camarena
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Nikolai O Artemyev
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Gordon L Fain
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606.,the Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7000
| | - Jeannie Chen
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821,
| |
Collapse
|
6
|
Gopalakrishna KN, Boyd K, Artemyev NO. Mechanisms of mutant PDE6 proteins underlying retinal diseases. Cell Signal 2017; 37:74-80. [PMID: 28583373 DOI: 10.1016/j.cellsig.2017.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
Mutations in PDE6 genes encoding the effector enzymes in rods and cones underlie severe retinal diseases including retinitis pigmentosa (RP), autosomal dominant congenital stationary night blindness (adCSNB), and achromatopsia (ACHM). Here we examined a spectrum of pathogenic missense mutations in PDE6 using the system based on co-expression of cone PDE6C with its specialized chaperone AIPL1 and the regulatory Pγ subunit as a potent co-chaperone. We uncovered two mechanisms of PDE6C mutations underlying ACHM: (a) folding defects leading to expression of catalytically inactive proteins and (b) markedly diminished ability of Pγ to co-chaperone mutant PDE6C proteins thereby dramatically reducing the levels of functional enzyme. The mechanism of the Rambusch adCSNB associated with the H258N substitution in PDE6B was probed through the analysis of the model mutant PDE6C-H262N. We identified two interrelated deficits of PDE6C-H262N: disruption of the inhibitory interaction of Pγ with mutant PDE6C that markedly reduced the ability of Pγ to augment the enzyme folding. Thus, we conclude that the Rambusch adCSNB is triggered by low levels of the constitutively active PDE6. Finally, we examined PDE6C-L858V, which models PDE6B-L854V, an RP-linked mutation that alters the protein isoprenyl modification. This analysis suggests that the type of prenyl modifications does not impact the folding of PDE6, but it modulates the enzyme affinity for its trafficking partner PDE6D. Hence, the pathogenicity of PDE6B-L854V likely arises from its trafficking deficiency. Taken together, our results demonstrate the effectiveness of the PDE6C expression system to evaluate pathogenicity and elucidate the mechanisms of PDE6 mutations in retinal diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Color Vision Defects/genetics
- Color Vision Defects/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 6/analysis
- Cyclic Nucleotide Phosphodiesterases, Type 6/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Eye Proteins/analysis
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HEK293 Cells
- Humans
- Mice
- Models, Molecular
- Mutation, Missense
- Myopia/genetics
- Myopia/metabolism
- Night Blindness/genetics
- Night Blindness/metabolism
- Protein Folding
- Protein Prenylation
- Retinal Diseases/genetics
- Retinal Diseases/metabolism
Collapse
Affiliation(s)
- Kota N Gopalakrishna
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|
7
|
Cheguru P, Majumder A, Artemyev NO. Distinct patterns of compartmentalization and proteolytic stability of PDE6C mutants linked to achromatopsia. Mol Cell Neurosci 2014; 64:1-8. [PMID: 25461672 DOI: 10.1016/j.mcn.2014.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
Phosphodiesterase-6 (PDE6) is an essential effector enzyme in vertebrate photoreceptor cells. Mutations in rod and cone PDE6 cause recessive retinitis pigmentosa and achromatopsia, respectively. The mechanisms of missense PDE6 mutations underlying severe visual disorders are poorly understood. To probe these mechanisms, we expressed seven known missense mutants of cone PDE6C in rods of transgenic Xenopus laevis and examined their stability and compartmentalization. PDE6C proteins with mutations in the catalytic domain, H602L and E790K, displayed modestly reduced proteolytic stability, but they were properly targeted to the outer segment of photoreceptor cells. Mutations in the regulatory GAF domains, R104W, Y323N, and P391L led to a proteolytic degradation of the proteins involving a cleavage in the GAFb domain. Lastly, the R29W and M455V mutations residing outside the conserved PDE6 domains produced a pattern of subcellular compartmentalization different from that of PDE6C. Thus, our results suggest a spectrum of mechanisms of missense PDE6C mutations in achromatopsia including catalytic defects, protein mislocalization, or a specific sequence of proteolytic degradation.
Collapse
Affiliation(s)
- Pallavi Cheguru
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, United States
| | - Anurima Majumder
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, United States; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
8
|
Manes G, Cheguru P, Majumder A, Bocquet B, Sénéchal A, Artemyev NO, Hamel CP, Brabet P. A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit. PLoS One 2014; 9:e95768. [PMID: 24760071 PMCID: PMC3997432 DOI: 10.1371/journal.pone.0095768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/31/2014] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant congenital stationary night blindness (adCSNB) is caused by mutations in three genes of the rod phototransduction cascade, rhodopsin (RHO), transducin α-subunit (GNAT1), and cGMP phosphodiesterase type 6 β-subunit (PDE6B). In most cases, the constitutive activation of the phototransduction cascade is a prerequisite to cause adCSNB. The unique adCSNB-associated PDE6B mutation found in the Rambusch pedigree, the substitution p.His258Asn, leads to rod photoreceptors desensitization. Here, we report a three-generation French family with adCSNB harboring a novel PDE6B mutation, the duplication, c.928-9_940dup resulting in a tyrosine to cysteine substitution at codon 314, a frameshift, and a premature termination (p.Tyr314Cysfs*50). To understand the mechanism of the PDE6β1-314fs*50 mutant, we examined the properties of its PDE6-specific portion, PDE6β1-313. We found that PDE6β1-313 maintains the ability to bind noncatalytic cGMP and the inhibitory γ-subunit (Pγ), and interferes with the inhibition of normal PDE6αβ catalytic subunits by Pγ. Moreover, both truncated forms of the PDE6β protein, PDE6β1-313 and PDE6β1-314fs*50 expressed in rods of transgenic X. laevis are targeted to the phototransduction compartment. We hypothesize that in affected family members the p.Tyr314Cysfs*50 change results in the production of the truncated protein, which binds Pγ and causes constitutive activation of the phototransduction thus leading to the absence of rod adaptation.
Collapse
Affiliation(s)
- Gaël Manes
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1, Montpellier, France; University of Montpellier 2, Montpellier, France
| | - Pallavi Cheguru
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
| | - Anurima Majumder
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
| | - Béatrice Bocquet
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1, Montpellier, France; University of Montpellier 2, Montpellier, France
| | - Audrey Sénéchal
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1, Montpellier, France; University of Montpellier 2, Montpellier, France
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1, Montpellier, France; University of Montpellier 2, Montpellier, France; CHRU, Genetics of Sensory Diseases, Montpellier, France
| | - Philippe Brabet
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1, Montpellier, France; University of Montpellier 2, Montpellier, France
| |
Collapse
|