1
|
Hu H, Liu Y, Qiu C, Zhang L, Cui H, Gu J. LINC00894 inhibited neuron cellular apoptosis and regulated activating transcription factor 3 expression. Gene 2024; 927:148670. [PMID: 38857714 DOI: 10.1016/j.gene.2024.148670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
LINC00894 may be associated with synaptic function, but its biology function in neural cells is still unknown. In this study, LINC00894 knockdown decreased the EdU incorporated into newly synthesized DNA and cell viability in MTT or CCK-8 assay in HEK-293T and BE(2)-M17 (M17) neuroblastoma cells. And LINC00894 knockdown increased cellular apoptosis in Annexin V-FITC staining, the expression of activated Caspase3 and the level of reactive oxygen species (ROS) both in HEK-293T and M17 cells. Moreover, LINC00894 also protected cells from hydrogen peroxide induced apoptosis in in vitro models. Utilizing RNA sequencing (RNA-seq) integrated with quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunoblot, we identified that LINC00894 affected activating transcription factor 3 (ATF3) expression in HEK-293T, M17, and SH-SY5Y neuroblastoma cells. Finally, we found that ectopic expression of ATF3 restored cell proliferation and inhibited cell apoptosis in LINC00894 downregulated M17 cells. While knockdown of ATF3 also significantly increased the cell viability inhibition and apoptosis promotion induced by LINC00894 knockdown in M17 cells. Our results from in vitro models revealed that LINC00894 could promote neuronal cell proliferation and inhibit cellular apoptosis by affecting ATF3 expression.
Collapse
Affiliation(s)
- Hanjing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yuxiao Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Cheng Qiu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Liti Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianlan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
2
|
Hu Y, Lauffer P, Jongejan A, Falize K, Bruinstroop E, van Trotsenburg P, Fliers E, Hennekam RC, Boelen A. Analysis of genes differentially expressed in the cortex of mice with the Tbl1xr1 Y446C/Y446C variant. Gene 2024; 927:148707. [PMID: 38885822 DOI: 10.1016/j.gene.2024.148707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Transducin β-like 1 X-linked receptor 1 (mouse Tbl1xr1) or TBL1X/Y related 1 (human TBL1XR1), part of the NCoR/SMRT corepressor complex, is involved in nuclear receptor signaling. Variants in TBL1XR1 cause a variety of neurodevelopmental disorders including Pierpont syndrome caused by the p.Tyr446Cys variant. We recently reported a mouse model carrying the Tbl1xr1Y446C/Y446C variant as a model for Pierpont syndrome. To obtain insight into mechanisms involved in altered brain development we studied gene expression patterns in the cortex of mutant and wild type (WT) mice, using RNA-sequencing, differentially expressed gene (DEG) analysis, gene set enrichment analysis (GSEA), weighted gene correlation network analysis (WGCNA) and hub gene analysis. We validated results in mutated mouse cortex, as well as in BV2 and SK-N-AS cell lines, in both of which Tbl1xr1 was knocked down by siRNA. Two DEGs (adj.P. Val < 0.05) were found in the cortex, Mpeg1 (downregulated in mutant mice) and 2900052N01Rik (upregulated in mutant mice). GSEA, WGCNA and hub gene analysis demonstrated changes in genes involved in ion channel function and neuroinflammation in the cortex of the Tbl1xr1Y446C/Y446C mice. The lowered expression of ion channel genes Kcnh3 and Kcnj4 mRNA was validated in the mutant mouse cortex, and increased expression of TRIM9, associated with neuroinflammation, was confirmed in the SK-N-AS cell line. Conclusively, our results show altered expression of genes involved in ion channel function and neuroinflammation in the cortex of the Tbl1xr1Y446C/Y446C mice. These may partly explain the impaired neurodevelopment observed in individuals with Pierpont syndrome and related TBL1XR1-related disorders.
Collapse
Affiliation(s)
- Yalan Hu
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Lauffer
- Department of Pediatric Endocrinology, Emma Children's Hospital, University of Amsterdam, Amsterdam, the Netherlands; Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Research Institute Amsterdam Public Health, Methodology, Amsterdam, the Netherlands
| | - Kim Falize
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eveline Bruinstroop
- Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, University of Amsterdam, Amsterdam, the Netherlands; Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eric Fliers
- Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Raoul C Hennekam
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Research Institute Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Chen Y, Cui H, Han Z, Xu L, Wang L, Zhang Y, Liu L. LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression. Neurochem Res 2024; 49:2910-2925. [PMID: 39060766 PMCID: PMC11365926 DOI: 10.1007/s11064-024-04213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Hengxiang Cui
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, National Center for Mental Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhuanzhuan Han
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lei Xu
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Lin Wang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yuefei Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lijun Liu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
4
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
5
|
Tworig JM, Morrie RD, Bistrong K, Somaiya RD, Hsu S, Liang J, Cornejo KG, Feller MB. Differential Expression Analysis Identifies Candidate Synaptogenic Molecules for Wiring Direction-Selective Circuits in the Retina. J Neurosci 2024; 44:e1461232024. [PMID: 38514178 PMCID: PMC11063823 DOI: 10.1523/jneurosci.1461-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
An organizational feature of neural circuits is the specificity of synaptic connections. A striking example is the direction-selective (DS) circuit of the retina. There are multiple subtypes of DS retinal ganglion cells (DSGCs) that prefer motion along one of four preferred directions. This computation is mediated by selective wiring of a single inhibitory interneuron, the starburst amacrine cell (SAC), with each DSGC subtype preferentially receiving input from a subset of SAC processes. We hypothesize that the molecular basis of this wiring is mediated in part by unique expression profiles of DSGC subtypes. To test this, we first performed paired recordings from isolated mouse retinas of both sexes to determine that postnatal day 10 (P10) represents the age at which asymmetric synapses form. Second, we performed RNA sequencing and differential expression analysis on isolated P10 ON-OFF DSGCs tuned for either nasal or ventral motion and identified candidates which may promote direction-specific wiring. We then used a conditional knock-out strategy to test the role of one candidate, the secreted synaptic organizer cerebellin-4 (Cbln4), in the development of DS tuning. Using two-photon calcium imaging, we observed a small deficit in directional tuning among ventral-preferring DSGCs lacking Cbln4, though whole-cell voltage-clamp recordings did not identify a significant change in inhibitory inputs. This suggests that Cbln4 does not function primarily via a cell-autonomous mechanism to instruct wiring of DS circuits. Nevertheless, our transcriptomic analysis identified unique candidate factors for gaining insights into the molecular mechanisms that instruct wiring specificity in the DS circuit.
Collapse
Affiliation(s)
- Joshua M Tworig
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Ryan D Morrie
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Karina Bistrong
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Rachana D Somaiya
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Shaw Hsu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Jocelyn Liang
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Karen G Cornejo
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
6
|
Esaki H, Deyama S, Izumi S, Katsura A, Nishikawa K, Nishitani N, Kaneda K. Varenicline enhances recognition memory via α7 nicotinic acetylcholine receptors in the medial prefrontal cortex in male mice. Neuropharmacology 2023; 239:109672. [PMID: 37506875 DOI: 10.1016/j.neuropharm.2023.109672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4β2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4β2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ayano Katsura
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
8
|
Graur A, Sinclair P, Schneeweis AK, Pak DT, Kabbani N. The human acetylcholinesterase C-terminal T30 peptide activates neuronal growth through alpha 7 nicotinic acetylcholine receptors and the mTOR pathway. Sci Rep 2023; 13:11434. [PMID: 37454238 PMCID: PMC10349870 DOI: 10.1038/s41598-023-38637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Acetylcholinesterase (AChE) is a highly conserved enzyme responsible for the regulation of acetylcholine signaling within the brain and periphery. AChE has also been shown to participate in non-enzymatic activity and contribute to cellular development and aging. In particular, enzymatic cleavage of the synaptic AChE isoform, AChE-T, is shown to generate a bioactive T30 peptide that binds to the ⍺7 nicotinic acetylcholine receptor (nAChR) at synapses. Here, we explore intracellular mechanisms of T30 signaling within the human cholinergic neural cell line SH-SY5Y using high performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS). Proteomic analysis of cells exposed to (100 nM) T30 for 3-days reveals significant changes within proteins important for cell growth. Specifically, bioinformatic analysis identifies proteins that converge onto the mammalian target of rapamycin (mTOR) pathway signaling. Functional experiments confirm that T30 regulates neural cell growth via mTOR signaling and ⍺7 nAChR activation. T30 was found promote mTORC1 pro-growth signaling through an increase in phosphorylated elF4E and S6K1, and a decrease in the autophagy LC3B-II protein. These findings are corroborated in hippocampal neurons and show that T30 promotes dendritic arborization. Taken together, our findings define mTOR as a novel pathway activated by T30 interaction with the nAChR and suggest a role for this process in human disease.
Collapse
Affiliation(s)
- Alexandru Graur
- School of Systems Biology, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
| | - Patricia Sinclair
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA
| | - Amanda K Schneeweis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel T Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA.
| |
Collapse
|
9
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
10
|
Zhong C, Akmentin W, Role LW, Talmage DA. Axonal α7* nicotinic acetylcholine receptors modulate glutamatergic signaling and synaptic vesicle organization in ventral hippocampal projections. Front Neural Circuits 2022; 16:978837. [PMID: 36213206 PMCID: PMC9537472 DOI: 10.3389/fncir.2022.978837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Modulation of the release of glutamate by activation of presynaptic nicotinic acetylcholine receptors (nAChRs) is one of the most prevalent mechanism of nicotinic facilitation of glutamatergic transmission in cortico-limbic circuits. By imaging gene chimeric co-cultures from mouse, we examined the role of α7* nAChRs mediated cholinergic modulation of glutamate release and synaptic vesicle organization in ventral hippocampal projections. We directly visualized exogenous and endogenous cholinergic facilitation of glutamate release in this specialized preparation of circuits in vitro. Disrupting α7* nAChRs mediated cholinergic signaling genetically or pharmacologically diminished cholinergic facilitation of glutamate release at presynaptic terminals. Alteration of α7* nAChRs mediated cholinergic signaling along glutamatergic axons also decreased functional synaptic vesicle clustering to presynaptic terminals. These findings suggest that presynaptic α7* nAChRs contribute to cholinergic modulation of glutamate release and synaptic vesicle organization.
Collapse
Affiliation(s)
- Chongbo Zhong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wendy Akmentin
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, United States
| | - Lorna W. Role
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David A. Talmage
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
11
|
Developmental nicotine exposure impairs memory and reduces acetylcholine levels in the hippocampus of mice. Brain Res Bull 2021; 176:1-7. [PMID: 34358612 DOI: 10.1016/j.brainresbull.2021.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022]
Abstract
Nicotine is a strong psychoactive and addictive compound found in tobacco. Use of nicotine in the form of smoking, vaping or other less common methods during pregnancy has been shown to be related to poor health conditions, including cognitive problems, in babies and children. However, mechanisms of such cognitive deficits are not fully understood. In this study we analyzed hippocampus dependent cognitive deficits using a mouse model of developmental nicotine exposure. Pregnant dams were exposed to nicotine and experiments were performed in one month old offspring. Our results show that nicotine exposure did not affect locomotor behavior in mice. Hippocampus dependent working memory and object location memory were diminished in nicotine exposed mice. Furthermore, acetylcholine levels in the hippocampus of nicotine exposed mice were reduced along with reduced activity of acetylcholinesterase enzyme. Analysis of transcripts for proteins that are known to regulate acetylcholine levels revealed a decline in mRNA levels of high affinity choline transporters in the hippocampus of nicotine exposed mice but those of vesicular acetylcholine transporter, choline acetyltransferase, and α7-nicotinic acetylcholine receptors were not altered. These results suggest that developmental nicotine exposure impairs hippocampus dependent memory forms and this effect is likely mediated by altered cholinergic function.
Collapse
|
12
|
Uversky VN, Elrashdy F, Aljadawi A, Ali SM, Khan RH, Redwan EM. Severe acute respiratory syndrome coronavirus 2 infection reaches the human nervous system: How? J Neurosci Res 2021; 99:750-777. [PMID: 33217763 PMCID: PMC7753416 DOI: 10.1002/jnr.24752] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Without protective and/or therapeutic agents the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection known as coronavirus disease 2019 is quickly spreading worldwide. It has surprising transmissibility potential, since it could infect all ages, gender, and human sectors. It attacks respiratory, gastrointestinal, urinary, hepatic, and endovascular systems and can reach the peripheral nervous system (PNS) and central nervous system (CNS) through known and unknown mechanisms. The reports on the neurological manifestations and complications of the SARS-CoV-2 infection are increasing exponentially. Herein, we enumerate seven candidate routes, which the mature or immature SARS-CoV-2 components could use to reach the CNS and PNS, utilizing the within-body cross talk between organs. The majority of SARS-CoV-2-infected patients suffer from some neurological manifestations (e.g., confusion, anosmia, and ageusia). It seems that although the mature virus did not reach the CNS or PNS of the majority of patients, its unassembled components and/or the accompanying immune-mediated responses may be responsible for the observed neurological symptoms. The viral particles and/or its components have been specifically documented in endothelial cells of lung, kidney, skin, and CNS. This means that the blood-endothelial barrier may be considered as the main route for SARS-CoV-2 entry into the nervous system, with the barrier disruption being more logical than barrier permeability, as evidenced by postmortem analyses.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFLUSA
- Institute for Biological Instrumentation of the Russian Academy of SciencesFederal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”PushchinoRussia
| | - Fatma Elrashdy
- Department of Endemic Medicine and HepatogastroenterologyKasr Alainy School of MedicineCairo UniversityCairoEgypt
| | - Abdullah Aljadawi
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
| | - Elrashdy M. Redwan
- Biological Science DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
13
|
Xu ZQ, Zhang WJ, Su DF, Zhang GQ, Miao CY. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:509. [PMID: 33850906 PMCID: PMC8039675 DOI: 10.21037/atm-21-273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) has been studied for many years since its discovery. Although many functions and characteristics of brain α7nAChR are widely understood, much remains to be elucidated. The α7nAChR is widely expressed in the central nervous system, not only in neurons but also in astrocytes, microglia, and endothelial cells. α7nAChR can be activated by endogenous agonist like acetylcholine or exogenous agonists like nicotine and PNU282987. Its agonists can be divided into selective agonists and non-selective agonists. The activation of α7nAChR results in a series of physiological processes which have both short-term and long-term effects on cells, for example, calcium influx, neurotransmitter release, synaptic plasticity, and excitatory transmission. It also induces other downstream events, such as inflammation, autophagy, necrosis, transcription, and apoptosis. The cellular responses to α7nAChR activation vary according to cell types and conditions. For example, α7nAChR activation in pyramidal neurons leads to long-term potentiation, while α7nAChR activation in GABAergic interneurons leads to long-term depression. Studies have also shown some contradictory phenomena, which requires further study for clarification. Herein, the cellular responses of α7nAChR activation are summarized, and the functions of α7nAChR in neurons and non-neuronal cells are discussed. We also summarized contradictory conclusions to show where we stand and where to go for future studies.
Collapse
Affiliation(s)
- Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.,Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Wen-Jun Zhang
- Department of Neurology, Dongying People's Hospital, Dongying, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Ouyang L, Chen Y, Wang Y, Chen Y, Fu AKY, Fu WY, Ip NY. p39-associated Cdk5 activity regulates dendritic morphogenesis. Sci Rep 2020; 10:18746. [PMID: 33127972 PMCID: PMC7603351 DOI: 10.1038/s41598-020-75264-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Dendrites, branched structures extending from neuronal cell soma, are specialized for processing information from other neurons. The morphogenesis of dendritic structures is spatiotemporally regulated by well-orchestrated signaling cascades. Dysregulation of these processes impacts the wiring of neuronal circuit and efficacy of neurotransmission, which contribute to the pathogeneses of neurological disorders. While Cdk5 (cyclin-dependent kinase 5) plays a critical role in neuronal dendritic development, its underlying molecular control is not fully understood. In this study, we show that p39, one of the two neuronal Cdk5 activators, is a key regulator of dendritic morphogenesis. Pyramidal neurons deficient in p39 exhibit aberrant dendritic morphology characterized by shorter length and reduced arborization, which is comparable to dendrites in Cdk5-deficient neurons. RNA sequencing analysis shows that the adaptor protein, WDFY1 (WD repeat and FYVE domain-containing 1), acts downstream of Cdk5/p39 to regulate dendritic morphogenesis. While WDFY1 is elevated in p39-deficient neurons, suppressing its expression rescues the impaired dendritic arborization. Further phosphoproteomic analysis suggests that Cdk5/p39 mediates dendritic morphogenesis by modulating various downstream signaling pathways, including PI3K/Akt-, cAMP-, or small GTPase-mediated signaling transduction pathways, thereby regulating cytoskeletal organization, protein synthesis, and protein trafficking.
Collapse
Affiliation(s)
- Li Ouyang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Ye Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China. .,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
15
|
Pujol CN, Dupuy V, Séveno M, Runtz L, Bockaert J, Marin P, Chaumont-Dubel S. Dynamic interactions of the 5-HT 6 receptor with protein partners control dendritic tree morphogenesis. Sci Signal 2020; 13:13/618/eaax9520. [PMID: 32047117 DOI: 10.1126/scisignal.aax9520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serotonin (5-hydroxytrypatmine) receptor 5-HT6 (5-HT6R) has emerged as a promising target to alleviate the cognitive symptoms of neurodevelopmental diseases. We previously demonstrated that 5-HT6R finely controls key neurodevelopmental steps, including neuronal migration and the initiation of neurite growth, through its interaction with cyclin-dependent kinase 5 (Cdk5). Here, we showed that 5-HT6R recruited G protein-regulated inducer of neurite outgrowth 1 (GPRIN1) through a Gs-dependent mechanism. Interactions between the receptor and either Cdk5 or GPRIN1 occurred sequentially during neuronal differentiation. The 5-HT6R-GPRIN1 interaction enhanced agonist-independent, receptor-stimulated cAMP production without altering the agonist-dependent response in NG108-15 neuroblastoma cells. This interaction also promoted neurite extension and branching in NG108-15 cells and primary mouse striatal neurons through a cAMP-dependent protein kinase A (PKA)-dependent mechanism. This study highlights the complex allosteric modulation of GPCRs by protein partners and demonstrates how dynamic interactions between GPCRs and their protein partners can control the different steps of highly coordinated cellular processes, such as dendritic tree morphogenesis.
Collapse
Affiliation(s)
- Camille N Pujol
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martial Séveno
- BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Leonie Runtz
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,Department of Psychiatry, McGill University, Douglas Hospital Research Center, Montreal, Canada
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
16
|
Liu W, Su K. A Review on the Receptor-ligand Molecular Interactions in the Nicotinic Receptor Signaling Systems. Pak J Biol Sci 2019; 21:51-66. [PMID: 30221881 DOI: 10.3923/pjbs.2018.51.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nicotine is regarded as the main active addictive ingredient in tobacco products driving continued tobacco abuse behavior (smoking) to the addiction behavior, whereas nicotinic acetylcholine receptors (nAChR) is the crucial effective apparatus or molecular effector of nicotine and acetylcholine and other similar ligands. Many nAChR subunits have been revealed to bind to either neurotransmitters or exogenous ligands, such as nicotine and acetylcholine, being involved in the nicotinic receptor signal transduction. Therefore, the nicotinic receptor signalling molecules and the receptor-ligand molecular interactions between nAChRs and their ligands are universally regarded as crucial mediators of cellular functions and drug targets in medical treatment and clinical diagnosis. Given numerous endeavours have been made in defining the roles of nAChRs in response to nicotine and other addictive drugs, this review focuses on studies and reports in recent years on the receptor-ligand interactions between nAChR receptors and ligands, including lipid-nAChR and protein-nAChR molecular interactions, relevant signal transduction pathways and their molecular mechanisms in the nicotinic receptor signalling systems. All the references were carefully retrieved from the PubMed database by searching key words "nicotine", "acetylcholine", "nicotinic acetylcholine receptor(s)", "nAChR*", "protein and nAChR", "lipid and nAChR", "smok*" and "tobacco". All the relevant referred papers and reports retrieved were fully reviewed for manual inspection. This effort intend to get a quick insight and understanding of the nicotinic receptor signalling and their molecular interactions mechanisms. Understanding the cellular receptor-ligand interactions and molecular mechanisms between nAChRs and ligands will lead to a better translational and therapeutic operations and outcomes for the prevention and treatment of nicotine addiction and other chronic drug addictions in the brain's reward circuitry.
Collapse
|
17
|
King JR, Kabbani N. Alpha 7 nicotinic receptors attenuate neurite development through calcium activation of calpain at the growth cone. PLoS One 2018; 13:e0197247. [PMID: 29768467 PMCID: PMC5955587 DOI: 10.1371/journal.pone.0197247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that plays an important role in cellular calcium signaling contributing to synaptic development and plasticity, and is a key drug target for the treatment of neurodegenerative conditions such as Alzheimer's disease. Here we show that α7 nAChR mediated calcium signals in differentiating PC12 cells activate the proteolytic enzyme calpain leading to spectrin breakdown, microtubule retraction, and attenuation in neurite growth. Imaging in growth cones confirms that α7 activation decreases EB3 comet motility in a calcium dependent manner as demonstrated by the ability of α7 nAChR, ryanodine, or IP3 receptor antagonists to block the effect of α7 nAChR on growth. α7 nAChR mediated EB3 comet motility, spectrin breakdown, and neurite growth was also inhibited by the addition of the selective calpain blocker calpeptin and attenuated by the expression of an α7 subunit unable to bind Gαq and activate calcium store release. The findings indicate that α7 nAChRs regulate cytoskeletal dynamics through local calcium signals for calpain protease activity.
Collapse
Affiliation(s)
- Justin R. King
- School of Systems Biology, George Mason University, Fairfax, Virginia, United States of America
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kabbani N, Nichols RA. Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors. Trends Pharmacol Sci 2018; 39:354-366. [PMID: 29428175 DOI: 10.1016/j.tips.2018.01.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7i) and metabotropic (α7m) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP3)-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Robert A Nichols
- Department of Cell and Molecular Biology, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
19
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
20
|
King JR, Gillevet TC, Kabbani N. A G protein-coupled α7 nicotinic receptor regulates signaling and TNF-α release in microglia. FEBS Open Bio 2017; 7:1350-1361. [PMID: 28904864 PMCID: PMC5586346 DOI: 10.1002/2211-5463.12270] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine activation of α7 nicotinic acetylcholine receptors (α7 nAChRs) in microglia attenuates neuroinflammation and regulates TNF‐α release. We used lipopolysaccharide to model inflammation in the microglial cell line EOC20 and examined signaling by the α7 nAChR. Co‐immunoprecipitation experiments confirm that α7 nAChRs bind heterotrimeric G proteins in EOC20 cells. Interaction with Gαi mediates α7 nAChR signaling via enhanced intracellular calcium release and a decrease in cAMP, p38 phosphorylation, and TNF‐α release. These α7 nAChR effects were blocked by the inhibition of Gαi signaling via pertussis toxin, PLC activity with U73122, and α7 nAChR channel activity with the selective antagonist α‐bungarotoxin. Moreover, α7 nAChR signaling in EOC20 cells was significantly diminished by the expression of a dominant‐negative α7 nAChR, α7345‐8A, shown to be impaired in G protein binding. These findings indicate an essential role for G protein coupling in α7 nAChR function in microglia leading to the regulation of inflammation in the nervous system.
Collapse
Affiliation(s)
- Justin R King
- Interdisciplinary Program in Neuroscience Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| | - Trudy C Gillevet
- Interdisciplinary Program in Neuroscience Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| | - Nadine Kabbani
- School of Systems Biology Krasnow Institute for Advanced Study George Mason University Fairfax VA USA
| |
Collapse
|
21
|
Tian Y, Qi M, Wang Z, Wu C, Sun Z, Li Y, Sha S, Du Y, Chen L, Chen L. Activation of Transient Receptor Potential Vanilloid 4 Impairs the Dendritic Arborization of Newborn Neurons in the Hippocampal Dentate Gyrus through the AMPK and Akt Signaling Pathways. Front Mol Neurosci 2017; 10:190. [PMID: 28663724 PMCID: PMC5471311 DOI: 10.3389/fnmol.2017.00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neurite growth is an important process for the adult hippocampal neurogenesis which is regulated by a specific range of the intracellular free Ca2+ concentration ([Ca2+]i). Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable channel and activation of it causes an increase in [Ca2+]i. We recently reported that TRPV4 activation promotes the proliferation of stem cells in the adult hippocampal dentate gyrus (DG). The present study aimed to examine the effect of TRPV4 activation on the dendrite morphology of newborn neurons in the adult hippocampal DG. Here, we report that intracerebroventricular injection of the TRPV4 agonist GSK1016790A for 5 days (GSK1016790A-injected mice) reduced the number of doublecortin immunopositive (DCX+) cells and DCX+ fibers in the hippocampal DG, showing the impaired dendritic arborization of newborn neurons. The phosphorylated AMP-activated protein kinase (p-AMPK) protein level increased from 30 min to 2 h, and then decreased from 1 to 5 days after GSK1016790A injection. The phosphorylated protein kinase B (p-Akt) protein level decreased from 30 min to 5 days after GSK1016790A injection; this decrease was markedly attenuated by the AMPK antagonist compound C (CC), but not by the AMPK agonist AICAR. Moreover, the phosphorylated mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase (p70S6k) protein levels were decreased by GSK1016790A; these changes were sensitive to 740 Y-P and CC. The phosphorylation of glycogen synthase kinase 3β (GSK3β) at Y216 was increased by GSK1016790A, and this change was accompanied by increased phosphorylation of microtubule-associated protein 2 (MAP2) and collapsin response mediator protein-2 (CRMP-2). These changes were markedly blocked by 740 Y-P and CC. Finally, GSK1016790A-induced decrease of DCX+ cells and DCX+ fibers was markedly attenuated by 740 Y-P and CC, but was unaffected by AICAR. We conclude that TRPV4 activation impairs the dendritic arborization of newborn neurons through increasing AMPK and inhibiting Akt to inhibit the mTOR-p70S6k pathway, activate GSK3β and thereby result in the inhibition of MAP2 and CRMP-2 function.
Collapse
Affiliation(s)
- Yujing Tian
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Mengwen Qi
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Zhouqing Wang
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical UniversityNanjing, China
| | - Zhen Sun
- Department of Tangshan Branch, Jinling Hospital, Nanjing UniversityNanjing, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical UniversityNanjing, China.,Neuroprotective Drug Discovery Center, Nanjing Medical UniversityNanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
22
|
Corsi-Zuelli FMDG, Brognara F, Quirino GFDS, Hiroki CH, Fais RS, Del-Ben CM, Ulloa L, Salgado HC, Kanashiro A, Loureiro CM. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:618. [PMID: 28620379 PMCID: PMC5449450 DOI: 10.3389/fimmu.2017.00618] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia.
Collapse
Affiliation(s)
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Hiroji Hiroki
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael Sobrano Fais
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cristina Marta Del-Ben
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Camila Marcelino Loureiro
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Deng C, Gu YJ, Zhang H, Zhang J. Estrogen affects neuropathic pain through upregulating N-methyl-D-aspartate acid receptor 1 expression in the dorsal root ganglion of rats. Neural Regen Res 2017; 12:464-469. [PMID: 28469663 PMCID: PMC5399726 DOI: 10.4103/1673-5374.202925] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Estrogen affects the generation and transmission of neuropathic pain, but the specific regulatory mechanism is still unclear. Activation of the N-methyl-D-aspartate acid receptor 1 (NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia. The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain. A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats. These rats were then subcutaneously injected with 17β-estradiol, the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP-5), or both once daily for 15 days. Compared with injured drug naïve rats, rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency, indicating increased sensitivity to mechanical and thermal pain. Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity (as assessed by immunohistochemistry) and protein (as determined by western blot assay) in spinal dorsal root ganglia. This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5, whereas AP-5 alone did not affect NMDAR1 expression. These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve, and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.
Collapse
Affiliation(s)
- Chao Deng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ya-Juan Gu
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Hong Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun Zhang
- Department of Genetics, School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
24
|
King JR, Kabbani N. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J Neurochem 2016; 138:532-45. [DOI: 10.1111/jnc.13660] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Justin R. King
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| | - Nadine Kabbani
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| |
Collapse
|
25
|
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016; 139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
This 'Past to Future' Review as part of the 60th anniversary year of the Journal of Neurochemistry focuses on synaptic transmission and associated signalling, and seeks to identify seminal progress in neurochemistry over the last 10 years which has advanced our understanding of neuronal communication in brain. The approach adopted analyses neurotransmitters on a case by case basis (i.e. amino acids, monoamines, acetylcholine, neuropeptides, ATP/purines and gasotransmitters) to highlight novel findings that have changed the way we view each type of transmitter, to explore commonalities and interactions, and to note how new insights have changed the way we view the biology of degenerative, psychiatric and behavioural conditions. Across all transmitter systems there was remarkable growth in the identification of targets likely to provide therapeutic benefit and which undoubtedly was driven by the elucidation of circuit function and new vistas of synaptic signalling. There has been an increasing trend to relate signalling to disease, notably for Alzheimer's and Parkinson's disease and related conditions, and which has occurred for each transmitter family. Forebrain circuitry and tonic excitatory control have been the centre of great attention yielding novel findings that will impact upon cognitive, emotional and addictive behaviours. Other impressive insights focus on gasotransmitters integrating activity as volume transmitters. Exciting developments in how serotonin, cholinergic, l-glutamate, galanin and adenosine receptors and their associated signalling can be beneficially targeted should underpin the development of new therapies. Clearly integrated, multifaceted neurochemistry has changed the way we view synaptic signalling and its relevance to pathobiology. Highlighted are important advances in synaptic signalling over the last decade in the Journal of Neurochemistry. Across all transmitter systems elucidation of circuit function, and notably molecular insights, have underpinned remarkable growth in the identification of targets likely to provide therapeutic benefit in neuropathologies. Another commonality was wide interest in forebrain circuitry and its tonic excitatory control. Increasingly observations relate to signalling in disease and behavioural conditions. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
26
|
The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons. Neural Plast 2015; 2016:4258171. [PMID: 26881110 PMCID: PMC4736189 DOI: 10.1155/2016/4258171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/26/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022] Open
Abstract
Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.
Collapse
|
27
|
Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol 2015; 97:463-472. [DOI: 10.1016/j.bcp.2015.07.032] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
|
28
|
Sun J, Pan C, Chew T, Liang F, Burmeister M, Low B. BNIP-H Recruits the Cholinergic Machinery to Neurite Terminals to Promote Acetylcholine Signaling and Neuritogenesis. Dev Cell 2015; 34:555-68. [DOI: 10.1016/j.devcel.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/13/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022]
|
29
|
Cheng Q, Yakel JL. The effect of α7 nicotinic receptor activation on glutamatergic transmission in the hippocampus. Biochem Pharmacol 2015. [PMID: 26212541 DOI: 10.1016/j.bcp.2015.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory, however the cellular mechanism of these actions remains elusive. With help from newly developed biosensors and optogenetic tools, recent studies provide new insights on signaling mechanisms involved in the activation of nAChRs. Here we will review α7 nAChR's action in the tri-synaptic pathway in the hippocampus. The effects of α7 nAChR activation via either exogenous compounds or endogenous cholinergic innervation are detailed for spontaneous and evoked glutamatergic synaptic transmission and synaptic plasticity, as well as the underlying signaling mechanisms. In summary, α7 nAChRs trigger intracellular calcium rise and calcium-dependent signaling pathways to enhance glutamate release and induce glutamatergic synaptic plasticity.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
30
|
King JR, Nordman JC, Bridges SP, Lin MK, Kabbani N. Identification and Characterization of a G Protein-binding Cluster in α7 Nicotinic Acetylcholine Receptors. J Biol Chem 2015; 290:20060-70. [PMID: 26088141 DOI: 10.1074/jbc.m115.647040] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345-348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345-348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling.
Collapse
Affiliation(s)
- Justin R King
- From the Department of Molecular Neuroscience, Krasnow Institute for Advanced Study and Department of Computer Science, George Mason University, Fairfax, Virginia 22030 and the INOVA Neuroscience Program, Annandale, Virginia 22003
| | - Jacob C Nordman
- From the Department of Molecular Neuroscience, Krasnow Institute for Advanced Study and Department of Computer Science, George Mason University, Fairfax, Virginia 22030 and the INOVA Neuroscience Program, Annandale, Virginia 22003
| | - Samuel P Bridges
- From the Department of Molecular Neuroscience, Krasnow Institute for Advanced Study and Department of Computer Science, George Mason University, Fairfax, Virginia 22030 and the INOVA Neuroscience Program, Annandale, Virginia 22003
| | - Ming-Kuan Lin
- From the Department of Molecular Neuroscience, Krasnow Institute for Advanced Study and Department of Computer Science, George Mason University, Fairfax, Virginia 22030 and the INOVA Neuroscience Program, Annandale, Virginia 22003
| | - Nadine Kabbani
- From the Department of Molecular Neuroscience, Krasnow Institute for Advanced Study and Department of Computer Science, George Mason University, Fairfax, Virginia 22030 and the INOVA Neuroscience Program, Annandale, Virginia 22003
| |
Collapse
|
31
|
Guerra-Álvarez M, Moreno-Ortega AJ, Navarro E, Fernández-Morales JC, Egea J, López MG, Cano-Abad MF. Positive allosteric modulation of alpha-7 nicotinic receptors promotes cell death by inducing Ca(2+) release from the endoplasmic reticulum. J Neurochem 2015; 133:309-19. [PMID: 25650007 DOI: 10.1111/jnc.13049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/11/2022]
Abstract
Positive allosteric modulation of α7 isoform of nicotinic acetylcholine receptors (α7-nAChRs) is emerging as a promising therapeutic approach for central nervous system disorders such as schizophrenia or Alzheimer's disease. However, its effect on Ca(2+) signaling and cell viability remains controversial. This study focuses on how the type II positive allosteric modulator (PAM II) PNU120596 affects intracellular Ca(2+) signaling and cell viability. We used human SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH). We monitored cytoplasmic and endoplasmic reticulum (ER) Ca(2+) with Fura-2 and the genetically encoded cameleon targeting the ER, respectively. Nicotinic inward currents were measured using patch-clamp techniques. Viability was assessed using methylthiazolyl blue tetrazolium bromide or propidium iodide staining. We observed that in the presence of a nicotinic agonist, PNU120596 (i) reduced viability of α7-SH but not of C-SH cells; (ii) significantly increased inward nicotinic currents and cytosolic Ca(2+) concentration; (iii) released Ca(2+) from the ER by a Ca(2+) -induced Ca(2+) release mechanism only in α7-SH cells; (iv) was cytotoxic in rat organotypic hippocampal slice cultures; and, lastly, all these effects were prevented by selective blockade of α7-nAChRs, ryanodine receptors, or IP3 receptors. In conclusion, positive allosteric modulation of α7-nAChRs with the PAM II PNU120596 can lead to dysregulation of ER Ca(2+) , overloading of intracellular Ca(2+) , and neuronal cell death. This study focuses on how the type II positive allosteric modulator PNU120596 (PAM II PNU12) affects intracellular Ca(2+) signaling and cell viability. Using SH-SY5Y neuroblastoma cells overexpressing α7-nAChRs (α7-SH) and their control (C-SH), we find that PAM of α7-nAChRs with PNU120596: (i) increases inward calcium current (ICa ) and cytosolic Ca(2+) concentration ([Ca(2+) ]cyt ); (ii) releases Ca(2+) from the ER ([Ca(2+) ]ER ) by a Ca(2+) -induced Ca(2+) release mechanism; and (iv) reduces cell viability. These findings were corroborated in rat hippocampal organotypic cultures. [Ca(2+) ]cyt , cytosolic Ca(2+) concentration; [Ca(2+) ]ER , endoplasmic reticulum Ca(2+) concentration; α7 nAChR, α7 isoform of nicotinic acetylcholine receptors; α7-SH, SH-SY5Y stably overexpressing α7 nAChRs cells; C-SH, control SH-SY5Y cells; Nic, nicotine; PNU12, PNU120596.
Collapse
Affiliation(s)
- María Guerra-Álvarez
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Sebastião AM, Ribeiro JA. Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Res 2014; 1621:102-13. [PMID: 25446444 DOI: 10.1016/j.brainres.2014.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023]
Abstract
Synaptic plasticity mechanisms, i.e. the sequence of events that underlies persistent changes in synaptic strength as a consequence of transient alteration in neuronal firing, are greatly influenced by the 'chemical atmosphere' of the synapses, that is to say by the presence of molecules at the synaptic cleft able to fine-tune the activity of other molecules more directly related to plasticity. One of those fine tuners is adenosine, known for a long time as an ubiquitous neuromodulator and metamodulator and recognized early as influencing synaptic plasticity. In this review we will refer to the mechanisms that adenosine can use to affect plasticity, emphasizing aspects of the neurobiology of adenosine relevant to its ability to control synaptic functioning. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
33
|
Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev 2014; 46 Pt 2:315-25. [PMID: 24879992 DOI: 10.1016/j.neubiorev.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/13/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The involvement of the cholinergic system in learning, memory and attention has long been recognized, although its neurobiological mechanisms are not fully understood. Recent evidence identifies the endogenous cholinergic signaling via nicotinic acetylcholine receptors (nAChRs) as key players in determining the morphological and functional maturation of the glutamatergic system. Here, we review the available experimental and clinical evidence of nAChRs contribution to the establishment of the glutamatergic system, and therefore to cognitive function. We provide some clues of the putative underlying molecular mechanisms and discuss recent human studies that associate genetic variability of the genes encoding nAChR subunits with cognitive disorders. Finally, we discuss the new avenues to therapeutically targeting nAChRs in persons with cognitive dysfunction for which the α7-nAChR subunit is an important etiological mechanism.
Collapse
Affiliation(s)
- Susanna Molas
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain.
| |
Collapse
|
34
|
Nordman JC, Kabbani N. Microtubule dynamics at the growth cone are mediated by α7 nicotinic receptor activation of a Gαq and IP3 receptor pathway. FASEB J 2014; 28:2995-3006. [PMID: 24687992 DOI: 10.1096/fj.14-251439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The α7 nicotinic receptor (α7) plays an important role in neuronal growth and structural plasticity in the developing brain. We have recently characterized a G-protein-signaling pathway regulated by α7 that directs the growth of neurites in developing neural cells. Now we show that choline activation of α7 promotes a rise in intracellular calcium from local ER stores via Gαq signaling, leading to IP3 receptor (IP3R) activation at the growth cone of differentiating PC12 cells. A mutant α7 significantly attenuated in calcium conductance (D44A; P<0.001) was found to be unable to promote IP3R signaling and calcium store release. In addition, calcium elevation via α7 correlates with a significant attenuation in the rate of microtubule invasion of the growth cone (P<0.001). This process was also attenuated in the D44A mutant and blocked by an inhibitor of the IP3R, suggesting that calcium flow through the α7 channel and activation of the Gαq pathway are necessary for growth. Taken together, the findings reveal an inhibitory mechanism of α7 on cytoskeletal growth via the intracellular calcium activity of the receptor channel and the Gαq signaling pathway at the growth cone.-Nordman, J. C., Kabbani, N. Microtubule dynamics at the growth cone are mediated by α7 nicotinic receptor activation of a Gαq and IP3 receptor pathway.
Collapse
Affiliation(s)
- Jacob C Nordman
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, USA
| | - Nadine Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|