1
|
Fan Y, Tian M, Chen Y, Qi X, Zhang Q, Yin K, Shi J, Xiao M. Cerebellar Crus II Regulates Recognition and Spatial Memory in Mice. Mol Neurobiol 2025:10.1007/s12035-025-04852-2. [PMID: 40198447 DOI: 10.1007/s12035-025-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
The cerebellar Crus II is implicated in the late stages of Alzheimer's disease (AD), yet its specific roles in memory regulation and therapeutic potential remain unclear. Using in vivo fiber photometry, we observed robust activation of Crus II neurons in healthy mice during recognition memory tasks. Acute chemogenetic inhibition of Crus II neurons impaired recognition and spatial memory in mice. Polysynaptic circuit tracing revealed that Crus II neurons modulate neural activity in the contralateral prelimbic cortex (PrL) via the Crus II-cerebellar lateral nucleus (LN)-ventromedial thalamus/zona incerta (VM/ZI)-PrL pathway. In 5 × FAD mice, β-amyloid (Aβ) plaque deposition in Crus II exhibited age-dependent progression, occurring later and less severely compared to the prefrontal cortex. Chronic activation of Crus II neurons ameliorated recognition and spatial memory deficits in 5 × FAD mice. These findings highlight the cerebellar Crus II as a modulator of cognitive function and a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Yi Fan
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Minjie Tian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyang Qi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Qian Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronic Technology, Nanjing, 210039, China
| | - Jingping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|
3
|
Wang X, Chen H, Tang T, Zhan X, Qin S, Hang T, Song M. Chronic Sleep Deprivation Altered the Expression of Memory-Related Genes and Caused Cognitive Memory Dysfunction in Mice. Int J Mol Sci 2024; 25:11634. [PMID: 39519186 PMCID: PMC11546330 DOI: 10.3390/ijms252111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Lack of sleep, whether acute or chronic, is quite common and negatively affects an individual's memory and cognitive function. The question of whether chronic sleep deprivation (CSD) causes cognitive impairment to arise and progress is not well studied. To investigate the effects of CSD on memory and cognition, this study began by establishing a CSD mouse model. Behavioral experiments on animals revealed that CSD induced cognitive behavioral abnormalities reminiscent of Alzheimer's disease. Western blot experiments further demonstrated a considerable increase in amyloid-β (Aβ) expression in the mouse brain following CSD. Meanwhile, the hub gene Prkcg was searched for in the cerebellum using RNA-seq and bioinformatics analysis. PKCγ (Prkcg) expression was significantly reduced, as demonstrated by RT-qPCR and Western blot validations. Additionally, CSD was associated with downregulated CREB expression, decreased expression of the endothelin-converting enzyme (ECE1), and increased phosphorylation of ERK1/2 downstream of PKCγ. These findings suggested that CSD down-regulated PKCγ expression, decreased ECE1 expression, impaired Aβ degradation, and affected the PKCγ/ERK/CREB pathway and the synthesis of memory-related proteins. Overall, this study highlighted how CSD modulated PKCγ-related metabolism, impacting Aβ clearance and the production of memory-related proteins. Such insights are crucial for understanding and preventing sporadic Alzheimer's disease (sAD) associated with CSD.
Collapse
Affiliation(s)
| | | | | | | | | | - Taijun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211100, China; (X.W.); (H.C.); (T.T.); (X.Z.); (S.Q.)
| | - Min Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211100, China; (X.W.); (H.C.); (T.T.); (X.Z.); (S.Q.)
| |
Collapse
|
4
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
5
|
Bychkov ML, Isaev AB, Andreev-Andrievskiy AA, Petrov K, Paramonov AS, Kirpichnikov MP, Lyukmanova EN. Aβ1-42 Accumulation Accompanies Changed Expression of Ly6/uPAR Proteins, Dysregulation of the Cholinergic System, and Degeneration of Astrocytes in the Cerebellum of Mouse Model of Early Alzheimer Disease. Int J Mol Sci 2023; 24:14852. [PMID: 37834299 PMCID: PMC10573428 DOI: 10.3390/ijms241914852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer disease (AD) is a widespread neurodegenerative disease characterized by the accumulation of oligomeric toxic forms of β-amyloid (Aβ1-42) and dysfunction of the cholinergic system in the different brain regions. However, the exact mechanisms of AD pathogenesis and the role of the nicotinic acetylcholine receptors (nAChRs) in the disease progression remain unclear. Here, we revealed a decreased expression of a number of the Ly6/uPAR proteins targeting nAChRs in the cerebellum of 2xTg-AD mice (model of early AD) in comparison with non-transgenic mice both at mRNA and protein levels. We showed that co-localization of one of them, - neuromodulator Lynx1, with α7-nAChR was diminished in the vicinity of cerebellar astrocytes of 2xTg-AD mice, while Aβ1-42 co-localization with this receptor present was increased. Moreover, the expression of anti-inflammatory transcription factor KLF4 regulating transcription of the Ly6/uPAR genes was decreased in the cerebellum of 2xTg-AD mice, while expression of inflammatory cytokine TNF-α was increased. Based on these data together with observed astrocyte degeneration in the cerebellum of 2xTg-AD mice, we suggest the mechanism by which expression of the Ly6/uPAR proteins upon Aβ pathology results in dysregulation of the cholinergic system and particularly of α7-nAChR function in the cerebellum. This leads to enhanced neuroinflammation and cerebellar astrocyte degeneration.
Collapse
Affiliation(s)
- Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.L.B.); (A.B.I.); (A.S.P.); (M.P.K.)
| | - Aizek B. Isaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.L.B.); (A.B.I.); (A.S.P.); (M.P.K.)
- Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia
| | - Alexander A. Andreev-Andrievskiy
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Institute for Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, Arbuzov Str., 8, 420088 Kazan, Russia;
| | - Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.L.B.); (A.B.I.); (A.S.P.); (M.P.K.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.L.B.); (A.B.I.); (A.S.P.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (M.L.B.); (A.B.I.); (A.S.P.); (M.P.K.)
- Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Biological Department, Shenzhen MSU-BIT University, Shenzhen 518172, China
| |
Collapse
|
6
|
Niikura R, Miyazaki T, Takase K, Sasaguri H, Saito T, Saido TC, Goto T. Assessments of prolonged effects of desflurane and sevoflurane on motor learning deficits in aged App NL-G-F/NL-G-F mice. Mol Brain 2022; 15:32. [PMID: 35387663 PMCID: PMC8988377 DOI: 10.1186/s13041-022-00910-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
As the proportion of elderly in society increases, so do the number of older patients undergoing surgical procedures. This is concerning as exposure to anesthesia has been identified as a risk factor for Alzheimer's disease (AD). However, the causal relationship between clinical AD development and anesthesia remains conjectural. Preclinical studies have demonstrated that anesthesia, such as halothane, isoflurane, and sevoflurane, induces AD-like pathophysiological changes and cognitive impairments in transgenic mouse models of AD. Desflurane does not have these effects and is expected to have more potential for use in elderly patients, yet little is known about its effects, especially on non-cognitive functions, such as motor and emotional functions. Thus, we examined the postanesthetic effects of desflurane and sevoflurane on motor and emotional function in aged AppNL-G-F/NL-G-F (App-KI) mice. This is a recently developed transgenic mouse model of AD exhibiting amyloid β peptide (Aβ) amyloidosis and a neuroinflammatory response in an age-dependent manner without non-physiological amyloid precursor protein (APP) overexpression. Mice were subjected to a short behavioral test battery consisting of an elevated plus maze, a balance beam test, and a tail suspension test seven days after exposure to 8.0% desflurane for 6 h or 2.8% sevoflurane for 2 h. App-KI mice showed significant increments in the percentage of entry and time spent in open arms in the elevated plus maze, increments in the number of slips and latency to traverse for the balance beam test, increments in the limb clasping score, increments in immobile duration, and decrements in latency to first immobile episode for the tail suspension test compared to age-matched wild type (WT) controls. Desflurane- and sevoflurane-exposed App-KI mice showed a delayed decrement in the number of slips for each trial in the balance beam test, while air-treated App-KI mice rapidly improved their performance, and increased their clasping behavior in the tail suspension test. Furthermore, App-KI inhibited the change in membrane GluA3 following exposure to anesthetics in the cerebellum. These results suggest high validity of App-KI mice as an animal model of AD.
Collapse
Affiliation(s)
- Ryo Niikura
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University School of Medicine, Simotsuke, Tochigi, Japan.
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takahisa Goto
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
7
|
Broberg D, Wong D, Bellyou M, Montero-Odasso M, Beauchet O, Annweiler C, Bartha R. Effects of Memantine and High Dose Vitamin D on Gait in Male APP/PS1 Alzheimer's Disease Mice Following Vitamin D Deprivation. J Alzheimers Dis 2021; 85:1755-1766. [PMID: 34958027 DOI: 10.3233/jad-215188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Altered gait is a frequent feature of Alzheimer's disease (AD), as is vitamin D deficiency. Treatment with memantine and vitamin D can protect cortical axons from exposure to amyloid-β and glutamate toxicity, suggesting this combination may mitigate altered gait in AD. OBJECTIVE Investigate the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on gait performance in APPswe/PS1dE9 mice. METHODS Male APPswe/PS1dE9 mice were split into four groups (n = 14 each) at 2.5 months of age. A control group was fed a standard diet throughout while the other three groups started a vitamin D-deficient diet at month 6. One group remained on this deficient diet for the rest of the study. At month 9, the other two groups began treatment with either memantine alone or memantine combined with 10 IU/g of vitamin D. Gait was assessed using CatWalk at months 6, 9, 12, and 15. RESULTS Vitamin D deprivation led to a 13% increase in hind stride width by month 15 (p < 0.001). Examination of the treatment groups at month 15 revealed that mice treated with memantine alone still showed an increase in hind stride width compared to controls (p < 0.01), while mice treated with memantine and vitamin D did not (p = 0.21). CONCLUSION Vitamin D deprivation led to impaired postural control in the APPswe/PS1dE9 model. Treatment with memantine and vitamin D, but not memantine alone, prevented this impairment. Future work should explore the potential for treatments incorporating vitamin D supplementation to improve gait in people with AD.
Collapse
Affiliation(s)
- Dana Broberg
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Dickson Wong
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Manuel Montero-Odasso
- Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, University of Western Ontario, London, ON, Canada.,Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Olivier Beauchet
- Department of Medicine, University of Montreal, Montreal, QC, Canada.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Cedric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France.,UNIV ANGERS, UPRES EA 4638, University of Angers, Angers, France.,Gérontopôle Autonomie Longévité des Pays de la Loire, France
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Chaudhari K, Wang L, Kruse J, Winters A, Sumien N, Shetty R, Prah J, Liu R, Shi J, Forster M, Yang SH. Early loss of cerebellar Purkinje cells in human and a transgenic mouse model of Alzheimer's disease. Neurol Res 2021; 43:570-581. [PMID: 33688799 DOI: 10.1080/01616412.2021.1893566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The cerebellum's involvement in AD has been under-appreciated by historically labeling as a normal control in AD research. METHODS We determined the involvement of the cerebellum in AD progression. Postmortem human and APPswe/PSEN1dE9 mice cerebellums were used to assess the cerebellar Purkinje cells (PC) by immunohistochemistry. The locomotor and spatial cognitive functions were assessed in 4- to 5-month-old APPswe/PSEN1dE9 mice. Aβ plaque and APP processing were determined in APPswe/PSEN1dE9 mice at different age groups by immunohistochemistry and Western blot. RESULTS We observed loss of cerebellar PC in mild cognitive impairment and AD patients compared with cognitively normal controls. A strong trend towards PC loss was found in AD mice as early as 5 months. Impairment of balance beam and rotorod performance, but no spatial learning and memory dysfunction was observed in AD mice at 4-5 months. Aβ plaque in the cerebral cortex was evidenced in AD mice at 2 months and dramatically increased at 6 months. Less and smaller Aβ plaques were observed in the cerebellum than in the cerebrum of AD mice. Similar intracellular APP staining was observed in the cerebellum and cerebrum of AD mice at 2 to 10 months. Similar expression of full-length APP and C-terminal fragments were indicated in the cerebrum and cerebellum of AD mice during aging. DISCUSSION Our study in post-mortem human brains and transgenic AD mice provided neuropathological and functional evidence that cerebellar dysfunction may occur at the early stage of AD and likely independent of Aβ plaque.
Collapse
Affiliation(s)
- Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jonas Kruse
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ritu Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jude Prah
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jiong Shi
- Lou Ruvo Center for Brain Health, Cleveland Clinic Nevada, 888 W Bonneville Avenue, Las Vegas, NV USA
| | - Michael Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX USA
| |
Collapse
|
9
|
Coles M, Watt G, Kreilaus F, Karl T. Medium-Dose Chronic Cannabidiol Treatment Reverses Object Recognition Memory Deficits of APP Swe /PS1ΔE9 Transgenic Female Mice. Front Pharmacol 2021; 11:587604. [PMID: 33424597 PMCID: PMC7789874 DOI: 10.3389/fphar.2020.587604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes behavioral and cognitive impairments. The phytocannabinoid cannabidiol (CBD) has anti-inflammatory, antioxidant, and neuroprotective properties, and in vitro and limited in vivo evidence suggests that CBD possesses therapeutic-like properties for the treatment of AD. Cannabinoids are known to have dose-dependent effects and the therapeutic potential of medium-dose CBD for AD transgenic mice has not been assessed in great detail yet. 12-month-old control and APP Swe /PS1ΔE9 (APPxPS1) transgenic female mice were treated daily via intraperitoneal injection with 5 mg/kg bodyweight CBD (or vehicle) commencing three weeks prior to the assessment of behavioral domains including anxiety, exploration, locomotion, motor functions, cognition, and sensorimotor gating. APPxPS1 mice exhibited a hyperlocomotive and anxiogenic-like phenotype and had wild type-like motor and spatial learning abilities, although AD transgenic mice took generally longer to complete the cheeseboard training (due to a lower locomotion speed). Furthermore spatial learning and reversal learning was delayed by one day in APPxPS1 mice compared to control mice. All mice displayed intact spatial memory and retrieval memory, but APPxPS1 mice showed reduced levels of perseverance in the cheeseboard probe trial. Importantly, vehicle-treated APPxPS1 mice were characterized by object recognition deficits and delayed spatial learning, which were reversed by CBD treatment. Finally, impairments in sensorimotor gating of APPxPS1 mice were not affected by CBD. In conclusion, medium-dose CBD appears to have therapeutic value for the treatment of particular behavioral impairments present in AD patients. Future research should consider the molecular mechanisms behind CBD's beneficial properties for AD transgenic mice.
Collapse
Affiliation(s)
- Madilyn Coles
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Fabian Kreilaus
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
10
|
Latif-Hernandez A, Sabanov V, Ahmed T, Craessaerts K, Saito T, Saido T, Balschun D. The two faces of synaptic failure in App NL-G-F knock-in mice. Alzheimers Res Ther 2020; 12:100. [PMID: 32838792 PMCID: PMC7445922 DOI: 10.1186/s13195-020-00667-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intensive basic and preclinical research into Alzheimer's disease (AD) has yielded important new findings, but they could not yet been translated into effective therapies. One of the reasons is the lack of animal models that sufficiently reproduce the complexity of human AD and the response of human brain circuits to novel treatment approaches. As a step in overcoming these limitations, new App knock-in models have been developed that avoid transgenic APP overexpression and its associated side effects. These mice are proposed to serve as valuable models to examine Aß-related pathology in "preclinical AD." METHODS Since AD as the most common form of dementia progresses into synaptic failure as a major cause of cognitive deficits, the detailed characterization of synaptic dysfunction in these new models is essential. Here, we addressed this by extracellular and whole-cell patch-clamp recordings in AppNL-G-F mice compared to AppNL animals which served as controls. RESULTS We found a beginning synaptic impairment (LTP deficit) at 3-4 months in the prefrontal cortex of AppNL-G-F mice that is further aggravated and extended to the hippocampus at 6-8 months. Measurements of miniature EPSCs and IPSCs point to a marked increase in excitatory and inhibitory presynaptic activity, the latter accompanied by a moderate increase in postsynaptic inhibitory function. CONCLUSIONS Our data reveal a marked impairment of primarily postsynaptic processes at the level of synaptic plasticity but the dominance of a presumably compensatory presynaptic upregulation at the level of elementary miniature synaptic function.
Collapse
Affiliation(s)
- Amira Latif-Hernandez
- Brain and Cognition, KU Leuven, Tiensestraat 102, Box 3714, 3000, Leuven, Belgium
- Present Address: Neurology and Neurological Sciences, Stanford Medicine, Stanford, USA
| | - Victor Sabanov
- Brain and Cognition, KU Leuven, Tiensestraat 102, Box 3714, 3000, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tariq Ahmed
- Brain and Cognition, KU Leuven, Tiensestraat 102, Box 3714, 3000, Leuven, Belgium
- Present Address: Qatar Biomedical Research Institute, Ar-Rayyan, Qatar
| | - Katleen Craessaerts
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for the Biology of Disease, Leuven, Belgium
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Present Address: Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Detlef Balschun
- Brain and Cognition, KU Leuven, Tiensestraat 102, Box 3714, 3000, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Altered brain arginine metabolism with age in the APP swe/PSEN1 dE9 mouse model of Alzheimer's disease. Neurochem Int 2020; 140:104798. [PMID: 32711019 DOI: 10.1016/j.neuint.2020.104798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Amyloid-beta (Aβ) cleaved from amyloid precursor protein (APP) has been proposed to play a central and causative role in the aetiology of Alzheimer's disease (AD). APPswe/PSEN1dE9 (APP/PS1) transgenic mice display chronic Aβ accumulation and deposition in the brain. L-arginine is a semi-essential amino acid with a number of bioactive metabolites, and altered arginine metabolism has been implicated in the pathogenesis and/or the development of AD. This study systematically investigated how arginine metabolic profiles changed in the frontal cortex, hippocampus, parahippocampal region and cerebellum of male APP/PS1 mice at 4, 9 and 17 months of age relative to their sex- and age-matched wildtype controls. Immunohistochemistry demonstrated age-related Aβ deposition in the brain. High-performance liquid chromatography and mass spectrometry revealed age-related increases in glutamine, spermidine and spermine in APP/PS1 mice in a region-specific manner. Notably, genotype-related increases in spermine were found in the frontal cortex at the 9-month age point and in the frontal cortex, hippocampus and parahippocampal region at 17 months of age. Given the existing literature indicating the role of polyamines (spermine in particular) in modulating the aggregation and toxicity of Aβ oligomers, increased spermidine and spermine levels in APP/PS1 mice may be a neuroprotective mechanism to combat Aβ toxicity. Future research is required to better understand the functional significance of these changes.
Collapse
|
12
|
Massimi L, Pieroni N, Maugeri L, Fratini M, Brun F, Bukreeva I, Santamaria G, Medici V, Poloni TE, Balducci C, Cedola A. Assessment of plaque morphology in Alzheimer's mouse cerebellum using three-dimensional X-ray phase-based virtual histology. Sci Rep 2020; 10:11233. [PMID: 32641715 PMCID: PMC7343834 DOI: 10.1038/s41598-020-68045-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/18/2020] [Indexed: 02/03/2023] Open
Abstract
Visualization and characterization of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}β-amyloid deposits is a fundamental task in pre-clinical study of Alzheimer’s disease (AD) to assess its evolution and monitor the efficiency of new therapeutic strategies. While the cerebellum is one of the brain areas most underestimated in the context of AD, renewed interest in cerebellar lesions has recently arisen as they may link to motor and cognitive alterations. Thus, we quantitatively investigated three-dimensional plaque morphology in the cerebellum in APP/PS1 transgenic mouse, as a model of AD. In order to obtain a complete high-resolution three-dimensional view of the investigated tissue, we exploited synchrotron X-ray phase contrast tomography (XPCT), providing virtual slices with histology-matching resolution. We found the formation of plaques elongated in shape, and with a specific orientation in space depending on the investigated region of the cerebellar cortex. Remarkably, a similar shape is observed in human cerebellum from demented patients. Our findings demonstrate the capability of XPCT in volumetric quantification, supporting the current knowledge about plaque morphology in the cerebellum and the fundamental role of the surrounding tissue in driving their evolution. A good correlation with the human neuropathology is also reported.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK. .,Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.
| | - Nicola Pieroni
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,Department of Anatomical Sciences, Histological, Legal Medical and Locomotor, University of Rome "Sapienza", Rome, Italy
| | - Laura Maugeri
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Michela Fratini
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Francesco Brun
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy.,Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Inna Bukreeva
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy
| | - Giulia Santamaria
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Medici
- Department of Neuropathology and Neurology, Golgi-Cenci Foundation, 20081, Abbiategrasso, Italy
| | - Tino Emanuele Poloni
- Department of Neuropathology and Neurology, Golgi-Cenci Foundation, 20081, Abbiategrasso, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessia Cedola
- Institute of Nanotechnology - CNR, Rome Unit, Rome, Italy
| |
Collapse
|
13
|
Protective effect of maternal exercise against amyloid-β neurotoxicity in the male rat offspring's cerebellum. J Dev Orig Health Dis 2020; 11:521-532. [PMID: 32631472 DOI: 10.1017/s2040174420000562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) states that intrauterine maternal environment influences postnatal life by programming offspring's metabolism. Intrauterine milieu induced by exercise during pregnancy promotes long-lasting benefits to the offspring's health and seems to offer some resistance against chronic diseases in adult life. Alzheimer's disease is a public health concern with limited treatment options. In the present study, we assessed the potential of maternal exercise during pregnancy in long-term programming of young adult male rat offspring's cerebellar metabolism in conferring neuroprotection against amyloid-β (Aβ) neurotoxicity. Female Wistar rats were submitted to a swimming protocol 1 week prior mating and throughout pregnancy (five sessions/a week lasting 30 min). Aβ oligomers were infused bilaterally in the brain ventricles of 60-day-old male offspring. Fourteen days after surgery, we measured parameters related to redox state, mitochondrial function, and the immunocontent of proteins related to synaptic function. We found that maternal exercise during pregnancy attenuated several parameters in the offspring's male rat cerebellum, such as the reactive species rise, the increase of inducible nitric oxide synthase immunocontent and tau phosphorylation induced by Aβ oligomers, increased mitochondrial fission indicated by dynamin-related protein 1 (DRP1), and protein oxidation identified by carbonylation. Strikingly, we find that maternal exercise promotes changes in the rat offspring's cerebellum that are still evident in young adult life. These favorable neurochemical changes in offspring's cerebellum induced by maternal exercise may contribute to a protective phenotype against Aβ-induced neurotoxicity in young adult male rat offspring.
Collapse
|
14
|
Solouki S, Bahrami F, Janahmadi M. The Concept of Transmission Coefficient Among Different Cerebellar Layers: A Computational Tool for Analyzing Motor Learning. Front Neural Circuits 2019; 13:54. [PMID: 31507382 PMCID: PMC6718712 DOI: 10.3389/fncir.2019.00054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
High-fidelity regulation of information transmission among cerebellar layers is mainly provided by synaptic plasticity. Therefore, determining the regulatory foundations of synaptic plasticity in the cerebellum and translating them to behavioral output are of great importance. To date, many experimental studies have been carried out in order to clarify the effect of synaptic defects, while targeting a specific signaling pathway in the cerebellar function. However, the contradictory results of these studies at the behavioral level further add to the ambiguity of the problem. Information transmission through firing rate changes in populations of interconnected neurons is one of the most widely accepted principles of neural coding. In this study, while considering the efficacy of synaptic interactions among the cerebellar layers, we propose a firing rate model to realize the concept of transmission coefficient. Thereafter, using a computational approach, we test the effect of different values of transmission coefficient on the gain adaptation of a cerebellar-dependent motor learning task. In conformity with the behavioral data, the proposed model can accurately predict that disruption in different forms of synaptic plasticity does not have the same effect on motor learning. Specifically, impairment in training mechanisms, like in the train-induced LTD in parallel fiber-Purkinje cell synapses, has a significant negative impact on all aspects of learning, including memory formation, transfer, and consolidation, although it does not disrupt basic motor performance. In this regard, the overinduction of parallel fiber-molecular layer interneuron LTP could not prevent motor learning impairment, despite its vital role in preserving the robustness of basic motor performance. In contrast, impairment in plasticity induced by interneurons and background activity of climbing fibers is partly compensable through overinduction of train-induced parallel fiber-Purkinje cell LTD. Additionally, blockade of climbing fiber signaling to the cerebellar cortex, referred to as olivary system lesion, shows the most destructive effect on both motor learning and basic motor performance. Overall, the obtained results from the proposed computational framework are used to provide a map from procedural motor memory formation in the cerebellum. Certainly, the generalization of this concept to other multi-layered networks of the brain requires more physiological and computational researches.
Collapse
Affiliation(s)
- Saeed Solouki
- Control and Intelligent Processing Center of Excellence, Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Control and Intelligent Processing Center of Excellence, Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Dorsal hippocampal changes in T2 relaxation times are associated with early spatial cognitive deficits in 5XFAD mice. Brain Res Bull 2019; 153:150-161. [PMID: 31422072 DOI: 10.1016/j.brainresbull.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
T2 relaxation time (T2) alterations may serve as markers for early detection and disease progression monitoring by reflecting brain microstructural integrity in Alzheimer's disease (AD). However, the characteristics of T2 alterations during the early stage of AD remain elusive. We explored T2 alterations and their possible correlations with cognitive function in 5XFAD mice at early ages (1, 2, 3, and 5 months of age). Voxel-based analysis (VBA) and region of interest (ROI) analysis showed a decreased T2 in the hippocampus of 2-, 3-, and 5-month-old 5XFAD mice compared to those of controls. The dorsal hippocampal T2 decreased earlier than the ventral hippocampus T2. A significant correlation was observed between Morris water maze (MWM) test cognitive behavior and the dorsal hippocampus T2 in 5XFAD mice. These results indicated that the microstructural integrity of brain tissues, particularly the hippocampus, was impaired early and the impairment became more extensive and severe during disease progression. Furthermore, the dorsal hippocampus is a crucial component involved in spatial cognition impairment in young 5XFAD mice.
Collapse
|
16
|
Wagner JM, Sichler ME, Schleicher EM, Franke TN, Irwin C, Löw MJ, Beindorff N, Bouter C, Bayer TA, Bouter Y. Analysis of Motor Function in the Tg4-42 Mouse Model of Alzheimer's Disease. Front Behav Neurosci 2019; 13:107. [PMID: 31156407 PMCID: PMC6533559 DOI: 10.3389/fnbeh.2019.00107] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia. Hallmarks of AD are memory impairments and cognitive deficits, but non-cognitive impairments, especially motor dysfunctions are also associated with the disease and may even precede classic clinical symptoms. With an aging society and increasing hospitalization of the elderly, motor deficits are of major interest to improve independent activities in daily living. Consistent with clinical findings, a variety of AD mouse models develop motor deficits as well. We investigated the motor function of 3- and 7-month-old Tg4-42 mice in comparison to wild-type controls and 5XFAD mice and discuss the results in context with several other AD mouse model. Our study shows impaired balance and motor coordination in aged Tg4-42 mice in the balance beam and rotarod test, while general locomotor activity and muscle strength is not impaired at 7 months. The cerebellum is a major player in the regulation and coordination of balance and locomotion through practice. Particularly, the rotarod test is able to detect cerebellar deficits. Furthermore, supposed cerebellar impairment was verified by 18F-FDG PET/MRI. Aged Tg4-42 mice showed reduced cerebellar glucose metabolism in the 18F-FDG PET. Suggesting that, deficits in coordination and balance are most likely due to cerebellar impairment. In conclusion, Tg4-42 mice develop motor deficits before memory deficits, without confounding memory test. Thus, making the Tg4-42 mouse model a good model to study the effects on cognitive decline of therapies targeting motor impairments.
Collapse
Affiliation(s)
- Jannek M. Wagner
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Marius E. Sichler
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Eva M. Schleicher
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Timon N. Franke
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Caroline Irwin
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Maximilian Johannes Löw
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center, Charité – University Medicine Berlin, Berlin, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
17
|
Motor deficits in 16-month-old male and female 3xTg-AD mice. Behav Brain Res 2019; 356:305-313. [DOI: 10.1016/j.bbr.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/22/2022]
|
18
|
Hoxha E, Lippiello P, Zurlo F, Balbo I, Santamaria R, Tempia F, Miniaci MC. The Emerging Role of Altered Cerebellar Synaptic Processing in Alzheimer's Disease. Front Aging Neurosci 2018; 10:396. [PMID: 30542279 PMCID: PMC6278174 DOI: 10.3389/fnagi.2018.00396] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the cerebellum in Alzheimer's disease (AD) has been neglected for a long time. Recent studies carried out using transgenic mouse models have demonstrated that amyloid-β (Aβ) is deposited in the cerebellum and affects synaptic transmission and plasticity, sometimes before plaque formation. A wide variability of motor phenotype has been observed in the different murine models of AD, without a consistent correlation with the extent of cerebellar histopathological changes or with cognitive deficits. The loss of noradrenergic drive may contribute to the impairment of cerebellar synaptic function and motor learning observed in these mice. Furthermore, cerebellar neurons, particularly granule cells, have been used as in vitro model of Aβ-induced neuronal damage. An unexpected conclusion is that the cerebellum, for a long time thought to be somehow protected from AD pathology, is actually considered as a region vulnerable to Aβ toxic damage, even at the early stage of the disease, with consequences on motor performance.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fabio Zurlo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Russo R, Cattaneo F, Lippiello P, Cristiano C, Zurlo F, Castaldo M, Irace C, Borsello T, Santamaria R, Ammendola R, Calignano A, Miniaci MC. Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol Aging 2018; 68:123-133. [DOI: 10.1016/j.neurobiolaging.2018.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
|
20
|
Thygesen C, Metaxas A, Larsen MR, Finsen B. Age-Dependent Changes in the Sarkosyl-Insoluble Proteome of APPSWE/PS1ΔE9 Transgenic Mice Implicate Dysfunctional Mitochondria in the Pathogenesis of Alzheimer’s Disease. J Alzheimers Dis 2018; 64:1247-1259. [DOI: 10.3233/jad-180197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Camilla Thygesen
- Department of Neurobiology, University of Southern Denmark, Institute of Molecular Medicine, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Athanasios Metaxas
- Department of Neurobiology, University of Southern Denmark, Institute of Molecular Medicine, Odense, Denmark
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology, University of Southern Denmark, Institute of Molecular Medicine, Odense, Denmark
| |
Collapse
|
21
|
Ordoñez-Gutierrez L, Fernandez-Perez I, Herrera JL, Anton M, Benito-Cuesta I, Wandosell F. AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging. J Alzheimers Dis 2018; 54:645-56. [PMID: 27567877 DOI: 10.3233/jad-160572] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.
Collapse
Affiliation(s)
- Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Madrid, Spain.,Centro de Investigacion Neurologica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Jose Luis Herrera
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| | - Marta Anton
- Centro de Investigacion Neurologica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Francisco Wandosell
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Madrid, Spain.,Centro de Investigacion Neurologica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
22
|
Kumar S, Paul A, Kalita S, Ghosh AK, Mandal B, Mondal AC. Protective effects of β-sheet breaker α/β-hybrid peptide against amyloid β-induced neuronal apoptosis in vitro. Chem Biol Drug Des 2016; 89:888-900. [PMID: 27995757 DOI: 10.1111/cbdd.12912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/13/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is most common neurodegenerative disorder and is characterized by increased production of soluble amyloid-β oligomers, the main toxic species predominantly formed from aggregation of monomeric amyloid-β (Aβ). Increased production of Aβ invokes a cascade of oxidative damages to neurons and eventually leads to neuronal death. This study was aimed to investigate the neuroprotective effects of a β-sheet breaker α/β-hybrid peptide (BSBHp) and the underlying mechanisms against Aβ40 -induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Cells were pretreated with the peptide Aβ40 to induce neurotoxicity. Assays for cell viability, cell membrane damage, cellular apoptosis, generation of reactive oxygen species (ROS), intracellular free Ca2+ , and key apoptotic protein levels were performed in vitro. Our results showed that pretreatment with BSBHp significantly attenuates Aβ40 -induced toxicity by retaining cell viability, suppressing generation of ROS, Ca2+ levels, and effectively protects neuronal apoptosis by suppressing pro-apoptotic protein Bax and up-regulating antiapoptotic protein Bcl-2. These results suggest that α/β-hybrid peptide has neuroprotective effects against Aβ40 -induced oxidative stress, which might be a potential therapeutic agent for treating or preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Sourav Kumar
- Neuroscience Research Unit, Department of Physiology, Raja Peary Mohan College, Uttarpara, Hooghly, West Bengal, India
| | - Ashim Paul
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Sourav Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Anup Kumar Ghosh
- Department of Instrumentation Science, Jadavpur University, Kolkata, West Bengal, India
| | - Bhubaneswar Mandal
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Amal Chandra Mondal
- Neuroscience Research Unit, Department of Physiology, Raja Peary Mohan College, Uttarpara, Hooghly, West Bengal, India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
23
|
Dao AT, Zagaar MA, Levine AT, Alkadhi KA. Comparison of the Effect of Exercise on Late-Phase LTP of the Dentate Gyrus and CA1 of Alzheimer's Disease Model. Mol Neurobiol 2016; 53:6859-6868. [PMID: 26660327 DOI: 10.1007/s12035-015-9612-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/03/2015] [Indexed: 01/15/2023]
Abstract
We investigated the neuroprotective effect of regular treadmill exercise training on long-term memory and its correlate: the late-phase long-term potentiation (L-LTP) and plasticity- and memory-related signaling molecules in the DG and CA1 areas of a rat model of Alzheimer's disease (AD) (i.c.v. infusion of Aβ1-42 peptides, 2 weeks, 250 pmol/day). Testing in the radial arm water maze revealed severe impairment of spatial long-term memory in Aβ-infused sedentary rats but not in exercised Aβ-infused rats. The L-LTP, measured as changes in the field (f)EPSP and in the amplitude of population spike (pspike), was induced by multiple high-frequency stimulation in the CA1 and DG areas of anesthetized rats. The L-LTP of fEPSP in both areas was severely impaired in the sedentary Aβ rats but not in exercised Aβ rats. However, L-LTP of the pspike was severely suppressed in the CA1 area but not in the DG of sedentary Aβ rats. Immunoblot analysis revealed no increase in the levels of phosphorylated (p)-CREB, CaMKIV, and brain-derived neurotrophic factor (BDNF) in both CA1 and DG areas of sedentary Aβ rats during L-LTP, whereas the levels of these molecules were robustly increased in exercised Aβ rats. Impairment of synaptic function may be due to deleterious changes in the molecular signaling cascades that mediate synaptic structural and functional changes. The protective effect of regular exercise can be a promising therapeutic measure for countering or delaying the AD-like pathology.
Collapse
Affiliation(s)
- An T Dao
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Munder A Zagaar
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Amber T Levine
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Karim A Alkadhi
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| |
Collapse
|
24
|
Toba J, Nikkuni M, Ishizeki M, Yoshii A, Watamura N, Inoue T, Ohshima T. PPARγ agonist pioglitazone improves cerebellar dysfunction at pre-Aβ deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice. Biochem Biophys Res Commun 2016; 473:1039-1044. [PMID: 27059136 DOI: 10.1016/j.bbrc.2016.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is one of the best known neurodegenerative diseases; it causes dementia and its pathological features include accumulation of amyloid β (Aβ) and neurofibrillary tangles (NFTs) in the brain. Elevated Cdk5 activity and CRMP2 phosphorylation have been reported in the brains of AD model mice at the early stage of the disease, but the significance thereof in human AD remains unelucidated. We have recently reported that Aβ accumulation in the cerebellum of AD model APPswe/PS1dE9 (APP/PS1) mice, and cerebellar dysfunctions, such as impairment of motor coordination ability and long-term depression (LTD) induction, at the pre-Aβ accumulation stage. In the present study, we found increased phosphorylation levels of CRMP2 as well as increased p35 protein levels in the cerebellum of APP/PS1 mice. Interestingly, we show that pioglitazone, an agonist of peroxisome proliferator-activated receptor γ, normalized the p35 protein and CRMP2 phosphorylation levels in the cerebellum. Impaired motor coordination ability and LTD in APP/PS1 mice were ameliorated by pioglitazone treatment at the pre-Aβ accumulation stage. These results suggest a correlation between CRMP2 phosphorylation and AD pathophysiology, and indicate the effectiveness of pioglitazone treatment at the pre-Aβ accumulation stage in AD model mice.
Collapse
Affiliation(s)
- Junya Toba
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Miyu Nikkuni
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Masato Ishizeki
- Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Aya Yoshii
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Naoto Watamura
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Takafumi Inoue
- Laboratory for Neurophysiology, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480 Japan.
| |
Collapse
|
25
|
Li W, Liu H, Yu M, Zhang X, Zhang Y, Liu H, Wilson JX, Huang G. Folic Acid Alters Methylation Profile of JAK-STAT and Long-Term Depression Signaling Pathways in Alzheimer's Disease Models. Mol Neurobiol 2015; 53:6548-6556. [PMID: 26627706 DOI: 10.1007/s12035-015-9556-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 01/15/2023]
Abstract
Dementia has emerged as a major societal issue because of the worldwide aging population and the absence of any effective treatment. DNA methylation is an epigenetic mechanism that evidently plays a role in Alzheimer's disease (AD). Folate acts through one-carbon metabolism to support the methylation of multiple substrates including DNA. We aimed to test the hypothesis that folic acid supplementation alters DNA methylation profiles in AD models. Mouse Neuro-2a cells expressing human APP695 (N2a-APP cells) were incubated with folic acid (2.8-20 μmol/L). AD transgenic mice were fed either folate-deficient or control diets and gavaged daily with water or folic acid (600 μg/kg). Gene methylation profiles were determined by methylated DNA immunoprecipitation-DNA microarray (MeDIP-chip). Differentially methylated regions (DMRs) were determined by Quantitative Differentially Methylated Regions analysis, and differentially methylated genes (DMGs) carrying at least three DMRs were selected for pathway analysis. Folic acid up-regulated DNA methylation levels in N2a-APP cells and AD transgenic mouse brains. Functional network analysis of folic acid-induced DMGs in these AD models revealed subnetworks composed of 24 focus genes in the janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway and 12 focus genes in the long-term depression (LTD) signaling pathway. In conclusion, these results revealed a role for folic acid in the JAK-STAT and LTD signaling pathways which may be relevant to AD pathogenesis. This novel finding may stimulate reinvestigation of folic acid supplementation as a prophylactic or therapeutic treatment for AD.
Collapse
Affiliation(s)
- Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Min Yu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yan Zhang
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Hongbo Liu
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
26
|
Sérrière S, Tauber C, Vercouillie J, Mothes C, Pruckner C, Guilloteau D, Kassiou M, Doméné A, Garreau L, Page G, Chalon S. Amyloid load and translocator protein 18 kDa in APPswePS1-dE9 mice: a longitudinal study. Neurobiol Aging 2015; 36:1639-1652. [PMID: 25680265 DOI: 10.1016/j.neurobiolaging.2014.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/03/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
We studied concomitantly the level of neuroinflammation and β-amyloid (Aβ) load in the APPswePS1dE9 transgenic mouse model of Alzheimer's disease using positron emission tomography. The translocator protein 18 kDa (TSPO) tracer [(18)F]DPA-714 was used to measure neuroinflammation and [(18)F]AV-45 for Aβ load in mice at 6, 9, 12, 15, and 19 months of age. At 19 months, we also analyzed the neuroinflammatory and neuroanatomic status of mice brains. The main affected brain areas were the cortex and hippocampus, with a concomitant progression of neuroinflammation with increased amyloid burden. At 19 months, no increase in TSPO binding was observed in the cerebellum; immunostaining revealed W0-2-positive plaques, indicating that the amyloid deposits seemed not stimulate inflammation. This finding was in agreement with the observed level of microglia and astrocytes staining. Our findings provide a better understanding of the relationships between neuroinflammation and plaque accumulation in the course of the disease in this mouse model. The monitoring of both processes should be of value to validate potential therapeutic approaches.
Collapse
Affiliation(s)
- Sophie Sérrière
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Clovis Tauber
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | | | | | | | - Denis Guilloteau
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France; CHRU de Tours, Tours, France
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Aurélie Doméné
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Lucette Garreau
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Guylène Page
- EA 3808 CiMoTheMA, Université de Poitiers, Poitiers, France
| | - Sylvie Chalon
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|
27
|
Stover KR, Campbell MA, Van Winssen CM, Brown RE. Analysis of motor function in 6-month-old male and female 3xTg-AD mice. Behav Brain Res 2014; 281:16-23. [PMID: 25486177 DOI: 10.1016/j.bbr.2014.11.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 12/19/2022]
Abstract
The 3xTg-AD mouse has high validity as a model of Alzheimer's disease (AD) because it develops both amyloid beta plaques and neurofibrillary tangles. Human patients with AD typically develop motor deficits, which worsen as the disease progresses, but 3xTg-AD mice have been reported to show enhanced motor abilities. We investigated the motor behaviour phenotype of male and female 3xTg-AD and B6129SF2 wildtype mice on a battery of motor behaviours at 6 months of age. Compared to wildtype mice, the 3xTg-AD mice had enhanced motor performance on the Rotarod, but worse performance on the grid suspension task. In gait analysis 3xTg-AD mice had a longer stride length and made more foot slips on the balance beam than wildtype mice. There was no overall difference in voluntary wheel-running activity between genotypes, but there was a disruption in circadian activity rhythm in 3xTg-AD mice. In some motor tasks, such as the Rotarod and balance beam, females appeared to perform better than males, but this sex differences was accounted for by differences in body weight. Our results indicate that while the 3xTg-AD mice show enhanced performance on the Rotarod, they have poorer performance on other motor behaviour tasks, indicating that their motor behaviour phenotype is more complex than previously reported. The presence of the P301L transgene may explain the enhancement of Rotarod performance but the poorer performance on other motor behaviour tasks may be due to other transgenes.
Collapse
Affiliation(s)
- Kurt R Stover
- Department of Psychology and Neuroscience, Dalhousie University, PO Box 1500, Halifax, NS B3H 4R2, Canada
| | - Mackenzie A Campbell
- Department of Psychology and Neuroscience, Dalhousie University, PO Box 1500, Halifax, NS B3H 4R2, Canada
| | - Christine M Van Winssen
- Department of Psychology and Neuroscience, Dalhousie University, PO Box 1500, Halifax, NS B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, PO Box 1500, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
28
|
Lee JM, Shin MS, Ji ES, Kim TW, Cho HS, Kim CJ, Jang MS, Kim TW, Kim BK, Kim DH. Treadmill exercise improves motor coordination through ameliorating Purkinje cell loss in amyloid beta23-35-induced Alzheimer's disease rats. J Exerc Rehabil 2014; 10:258-64. [PMID: 25426461 PMCID: PMC4237839 DOI: 10.12965/jer.140163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a most common age-related neurodegenerative disease. AD is characterized by a progressive loss of neurons causing cognitive dysfunction. The cerebellum is closely associated with integration of movement, including motor coordination, control, and equilibrium. In the present study, we evaluated the effect of tread-mill exercise on the survival of Purkinje neurons in relation with reactive astrocyte in the cerebellum using Aβ25-35-induced AD rats. AD was induced by a bilateral intracerebroventricular (ICV) injection of Aβ25-35. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks, starting 2 days after Aβ25-35 injection. In the present results, ICV injection of Aβ25-35 deteriorated motor coordination and balance. The number of calbindin-positive cells in the cerebellar vermis was decreased and glial fibrillary acidic protein (GFAP) expression in the cerebellar vermis was increased in the Aβ25-35-induced AD rats. Treadmill exercise improved motor coordination and balance. Treadmill exercise increased the number of Purkinje neurons and suppressed GFAP expression in the cerebellar vermis. The present study demonstrated that treadmill exercises alleviated dysfunction of motor coordination and balance by reduction of Purkinje cell loss through suppressing reactive astrocytes in the cerebellum of AD rats. The present study provides the possibility that treadmill exercise might be an important therapeutic strategy for the symptom improvement of AD patients.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Han-Sam Cho
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Myung-Soo Jang
- Department of Anesthesiology and Pain Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Wook Kim
- Department of Physical Education, College of Physical Education, Hanyang University, Seoul, Korea
| | - Bo-Kyun Kim
- KBS Institute of the Sports, Arts and Science, Seoul, Korea
| | - Dong-Hee Kim
- Department of Ophthalmology, Chungju Hospital, College of Medicine, Konkuk University, Chungju, Korea
| |
Collapse
|