1
|
Lacoste B, Prat A, Freitas-Andrade M, Gu C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol 2025; 17:a041422. [PMID: 38951020 PMCID: PMC12047665 DOI: 10.1101/cshperspect.a041422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Moises Freitas-Andrade
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, Ontario K1H 8M5, Canada
| | - Chenghua Gu
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Sarkar S. Pathological role of RAGE underlying progression of various diseases: its potential as biomarker and therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3467-3487. [PMID: 39589529 DOI: 10.1007/s00210-024-03595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor with several structural types, performing a myriad of molecular mechanisms. The RAGE-ligand interactions play important roles in maintaining latent chronic inflammation, and oxidative damage underlying various pathological conditions like metabolic syndrome (MetS), neurodegenerative diseases, stroke, cardiovascular disorders, pulmonary disorders, cancer and infections. RAGE is thoroughly explored in knockout animals and human trials, targeted by small molecule inhibitors, peptides, diet, and natural compounds. But it is yet to be incorporated in the mainstream management of any ailment. This review performs an appraisal of the pathological mechanisms influenced by RAGE to uncover its prospects as a biomarker while also assessing its power to become a promising therapeutic target.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be-University, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
3
|
Gu Y, Chen N, Qi J, Zhu L, Chen X, Wang F, Zhang Y, Jiang T. The Endothelial Cell-Related Genes EIF1 and HSPA1B Contribute to the Pathogenesis of Alzheimer's Disease by Modulating Peripheral Immunoinflammatory Responses. Brain Sci 2025; 15:205. [PMID: 40002537 PMCID: PMC11852842 DOI: 10.3390/brainsci15020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that peripheral immunoinflammatory responses contribute to Alzheimer's disease (AD) pathogenesis, and endothelial cells (ECs) are involved in these responses. Nevertheless, the potential molecular mechanisms and signaling pathways by which ECs modulate peripheral immunoinflammatory responses and thus contribute to AD pathogenesis are not fully understood. METHODS The single-cell RNA sequencing dataset GSE157827 was analyzed, and AD key genes were screened using LASSO regression and random forest algorithms. Functional enrichment analyses of these AD key genes were conducted using gene set enrichment analysis (GSEA) and gene set variation analysis. Immune cell infiltration analyses for AD key genes were performed using single-sample GSEA, and their correlations with immunoinflammatory factors were assessed using the TISIDB database. Peripheral blood RNA sequencing data from our cohort were utilized to validate the expression patterns of EC-related AD key genes in peripheral blood and to investigate their association with cognition. RESULTS ECs are the most significant contributors to AD among all brain cell subpopulations. For the first time, the EC-related genes EIF1 and HSPA1B were identified as key genes associated with AD progression. These two EC-related key genes may participate in AD pathogenesis by modulating peripheral immunoinflammatory responses. The levels of EIF1 and HSPA1B were significantly altered in the peripheral blood during AD progression, and EIF1 levels correlated with cognitive functions in AD clinical continuum patients. CONCLUSIONS These findings underscore the critical roles of the EC-related genes EIF1 and HSPA1B in AD pathogenesis and their potential as biomarkers for this disease.
Collapse
Affiliation(s)
- Yucheng Gu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Nihong Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Jingwen Qi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China;
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing 210006, China; (Y.G.); (N.C.); (J.Q.); (L.Z.); (X.C.); (Y.Z.)
| |
Collapse
|
4
|
Xu Y, Shao N, Zhi F, Chen R, Yang Y, Li J, Xia Y, Peng Y. Delta-opioid receptor signaling alleviates neuropathology and cognitive impairment in the mouse model of Alzheimer's disease by regulating microglia homeostasis and inhibiting HMGB1 pathway. Alzheimers Res Ther 2025; 17:35. [PMID: 39893485 PMCID: PMC11786345 DOI: 10.1186/s13195-025-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Recent studies suggest that opioid receptor signaling may differentially affect Alzheimer's disease (AD) pathology and the relevant behavioral dysfunctions. However, the precise roles and mechanisms of opioid receptor subtypes in AD pathologies are still unclear with major controversies. METHODS We compared the delta-opioid receptor (DOR)- and mu-opioid receptor (MOR)-mediated effects on AD-associated cognitive deficits, pathologies, neuroinflammations, cell death using transgenic APP/PS1 mouse model and BV2 cell line at behavioral, molecular, and cellular levels. Unpaired t-test and one/two way analysis for variance (ANOVA) were used to analyze statistical significance of the data. RESULTS We show a distinct role of DOR and its major difference with MOR in AD injury in an APP/PS1 mouse model. DOR activation by UFP-512, but not MOR activation by DAMGO, attenuated cognitive impairment, reduced beta-amyloid (Aβ) production and aggregation, as well as protected the neurons from apoptosis in APP/PS1 mice. DOR and MOR also differentially modulated microglia in APP/PS1 mice and in vitro AD cell model with a DOR-mediated inhibition on the excessive activation of microglia and the release of pro-inflammatory cytokines in AD pathologies. Gene expression profiling further revealed that the alternations in DOR/MOR are closely associated with microglial homeostatic signatures and high mobility group protein B1 (HMGB1) in AD. DOR activation inhibited HMGB1 secretion and its translocation from nuclear to cytoplasm. Our in-vitro studies further confirmed that DOR overexpression mitigated microglial inflammatory response and rescued neurons from AD injury via HMGB1-NF-κB signaling pathway. CONCLUSIONS These novel findings uncover previously unappreciated roles of DOR in neuroprotection against AD injury via modulating microglia-related inflammatory responses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ronghua Chen
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yilin Yang
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jiahui Li
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China.
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China.
| | - Ya Peng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
5
|
Xia X, Wei Y, Huang Q, Zhou Y, Wang X, Shi Y, Yang X, Yang W, Zhang Y, Lei T, Huang Y, Li H, Qin M, Gao H. Counteracting Alzheimer's disease via normalizing neurovascular unit with a self-regulated multi-functional nano-modulator. Acta Pharm Sin B 2024; 14:5464-5478. [PMID: 39807324 PMCID: PMC11725031 DOI: 10.1016/j.apsb.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 01/16/2025] Open
Abstract
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy. The resulting siR/PIO@RP enables self-regulation of its distribution in accordance with the physio/pathological state (low/high RAGE expression) of the target site via a feedback loop. siR/PIO@RP is capable of performing intricate tasks and goes beyond the capabilities of single-target therapeutic agents utilized in AD therapy, such as reducing cerebral Aβ load, relieving neuroinflammation, and alleviating the dysfunction of NVU. Overall, the current study provides proof of concept that normalizing NVU holds promise as a means of alleviating AD symptoms.
Collapse
Affiliation(s)
- Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yulong Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- Key Laboratory of Coarse Cereal Processing, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Yue Q, Leng X, Xie N, Zhang Z, Yang D, Hoi MPM. Endothelial Dysfunctions in Blood-Brain Barrier Breakdown in Alzheimer's Disease: From Mechanisms to Potential Therapies. CNS Neurosci Ther 2024; 30:e70079. [PMID: 39548663 PMCID: PMC11567945 DOI: 10.1111/cns.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 11/18/2024] Open
Abstract
Recent research has shown the presence of blood-brain barrier (BBB) breakdown in Alzheimer's disease (AD). BBB is a dynamic interface consisting of a continuous monolayer of brain endothelial cells (BECs) enveloped by pericytes and astrocytes. The restricted permeability of BBB strictly controls the exchange of substances between blood and brain parenchyma, which is crucial for brain homeostasis by excluding blood-derived detrimental factors and pumping out brain-derived toxic molecules. BBB breakdown in AD is featured as a series of BEC pathologies such as increased paracellular permeability, abnormal levels and functions of transporters, and inflammatory or oxidative profile, which may disturb the substance transportation across BBB, thereafter induce CNS disorders such as hypometabolism, Aβ accumulation, and neuroinflammation, eventually aggravate cognitive decline. Therefore, it seems important to protect BEC properties for BBB maintenance and neuroprotection. In this review, we thoroughly summarized the pathological alterations of BEC properties reported in AD patients and numerous AD models, including paracellular permeability, influx and efflux transporters, and inflammatory and oxidative profiles, and probably associated underlying mechanisms. Then we reviewed current therapeutic agents that are effective in ameliorating a series of BEC pathologies, and ultimately protecting BBB integrity and cognitive functions. Regarding the current drug development for AD proceeds extremely hard, this review aims to discuss the therapeutic potentials of targeting BEC pathologies and BBB maintenance for AD treatment, therefore expecting to shed a light on the future AD drug development by targeting BEC pathologies and BBB protection.
Collapse
Affiliation(s)
- Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
| | - Xinyue Leng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐Cerebrovascular Diseases, and Institute of New Drug ResearchJinan UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs ResearchJinan University College of PharmacyGuangzhouChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Deguang Yang
- Department of CardiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
- The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital)HeyuanGuangdongChina
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)Jinan University College of PharmacyGuangzhouChina
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacao SARChina
- Department of Pharmaceutical Sciences, Faculty of Health SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
7
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
8
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
9
|
Zhang Y, Mu BR, Ran Z, Zhu T, Huang X, Yang X, Wang DM, Ma QH, Lu MH. Pericytes in Alzheimer's disease: Key players and therapeutic targets. Exp Neurol 2024; 379:114825. [PMID: 38777251 DOI: 10.1016/j.expneurol.2024.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.
Collapse
Affiliation(s)
- Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
11
|
Pomilio C, Presa J, Oses C, Vinuesa A, Bentivegna M, Gregosa A, Riudavets M, Sevlever G, Galvan V, Levi V, Beauquis J, Saravia F. Loss of Direct Vascular Contact to Astrocytes in the Hippocampus as an Initial Event in Alzheimer's Disease. Evidence from Patients, In Vivo and In Vitro Experimental Models. Mol Neurobiol 2024; 61:5142-5160. [PMID: 38172288 DOI: 10.1007/s12035-023-03897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and within the walls of cerebral vessels. The hippocampus-a complex brain structure with a pivotal role in learning and memory-is implicated in this disease. However, there is limited data on vascular changes during AD pathological degeneration in this susceptible structure, which has distinctive vascular traits. Our aim was to evaluate vascular alterations in the hippocampus of AD patients and PDAPP-J20 mice-a model of AD-and to determine the impact of Aβ40 and Aβ42 on endothelial cell activation. We found a loss of physical astrocyte-endothelium interaction in the hippocampus of individuals with AD as compared to non-AD donors, along with reduced vascular density. Astrocyte-endothelial interactions and levels of the tight junction protein occludin were altered early in PDAPP-J20 mice, preceding any signs of morphological changes or disruption of the blood-brain barrier in these mice. At later stages, PDAPP-J20 mice exhibited decreased vascular density in the hippocampus and leakage of fluorescent tracers, indicating dysfunction of the vasculature and the BBB. In vitro studies showed that soluble Aβ40 exposure in human brain microvascular endothelial cells (HBMEC) was sufficient to induce NFκB translocation to the nucleus, which may be linked with an observed reduction in occludin levels. The inhibition of the membrane receptor for advanced glycation end products (RAGE) prevented these changes in HBMEC. Additional results suggest that Aβ42 indirectly affects the endothelium by inducing astrocytic factors. Furthermore, our results from human and mouse brain samples provide evidence for the crucial involvement of the hippocampal vasculature in Alzheimer's disease.
Collapse
Affiliation(s)
- C Pomilio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - J Presa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - C Oses
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - A Vinuesa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - M Bentivegna
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - A Gregosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - M Riudavets
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - G Sevlever
- FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina
| | - V Galvan
- Department of Biochemistry and Molecular Biology and Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA
| | - V Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - J Beauquis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - F Saravia
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Teng CY, Kao NJ, Nguyen NTK, Lin CI, Cross TWL, Lin SH. Effects of xylo-oligosaccharide on gut microbiota, brain protein expression, and lipid profile induced by high-fat diet. J Nutr Biochem 2024; 129:109640. [PMID: 38583497 DOI: 10.1016/j.jnutbio.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Midlife overweight and obesity are risk factors of cognitive decline and Alzheimer' s disease (AD) in late life. In addition to increasing risk of obesity and cognitive dysfunction, diets rich in fats also contributes to an imbalance of gut microbiota. Xylo-oligosaccharides (XOS) are a kind of prebiotic with several biological advantages, and can selectively promote the growth of beneficial microorganisms in the gut. To explore whether XOS can alleviate cognitive decline induced by high-fat diet (HFD) through improving gut microbiota composition, mice were fed with normal control or 60% HFD for 9 weeks to induce obesity. After that, mice were supplemented with XOS (30 g or 60 g/kg-diet) or without, respectively, for 12 weeks. The results showed that XOS inhibited weight gain, decreased epidydimal fat weight, and improved fasting blood sugar and blood lipids in mice. Additionally, XOS elevated spatial learning and memory function, decreased amyloid plaques accumulation, increased brain-derived neurotrophic factor levels, and improved neuroinflammation status in hippocampus. Changes in glycerolipids metabolism-associated lipid compounds caused by HFD in hippocampus were reversed after XOS intervention. On the other hand, after XOS intervention, increase in immune-mediated bacteria, Faecalibacterium was observed. In conclusion, XOS improved gut dysbiosis and ameliorated spatial learning and memory dysfunction caused by HFD by decreasing cognitive decline-associated biomarkers and changing lipid composition in hippocampus.
Collapse
Affiliation(s)
- Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ning-Jo Kao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Ngan Thi Kim Nguyen
- Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-I Lin
- Department of Nutrition and Health Sciences, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzu-Wen L Cross
- Departmen of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food Safety, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Fotuhi SN, Khalaj-Kondori M. Imbalanced clearance of Aβ peptide cause presynaptic plaque formation. Int J Neurosci 2024; 134:66-70. [PMID: 35639020 DOI: 10.1080/00207454.2022.2085099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease is characterized by abnormal increase of Aβ peptide which is likely as the result of imbalanced homeostasis of its production and clearance mechanisms. Here, we briefly review that the uncleaned extracellular Aβ peptides are loaded into presynaptic neurons. The Aβ oligomers desperately affect pre- and post-synapse neuron activity and turn into plaques inside the presynaptic neurons over the time passes.
Collapse
Affiliation(s)
- Seyedeh Nahid Fotuhi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
14
|
Uzoechi SC, Collins BE, Badeaux CJ, Li Y, Kwak SS, Kim DY, Laskowitz DT, Lee JM, Yun Y. Effects of Amyloid Beta (Aβ) Oligomers on Blood-Brain Barrier Using a 3D Microfluidic Vasculature-on-a-Chip Model. APPLIED SCIENCES (BASEL, SWITZERLAND) 2024; 14:3917. [PMID: 39027034 PMCID: PMC11257072 DOI: 10.3390/app14093917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The disruption of the blood-brain barrier (BBB) in Alzheimer's Disease (AD) is largely influenced by amyloid beta (Aβ). In this study, we developed a high-throughput microfluidic BBB model devoid of a physical membrane, featuring endothelial cells interacting with an extracellular matrix (ECM). This paper focuses on the impact of varying concentrations of Aβ1-42 oligomers on BBB dysfunction by treating them in the luminal. Our findings reveal a pronounced accumulation of Aβ1-42 oligomers at the BBB, resulting in the disruption of tight junctions and subsequent leakage evidenced by a barrier integrity assay. Additionally, cytotoxicity assessments indicate a concentration-dependent increase in cell death in response to Aβ1-42 oligomers (LC50 ~ 1 μM). This study underscores the utility of our membrane-free vascular chip in elucidating the dysfunction induced by Aβ with respect to the BBB.
Collapse
Affiliation(s)
- Samuel Chidiebere Uzoechi
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Biomedical Engineering, Federal University of Technology, PMB 1526, Owerri 460114, Nigeria
| | - Boyce Edwin Collins
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Cody Joseph Badeaux
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Yan Li
- Chemical & Biomedical Engineering, College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, Mass General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Mass General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | - Daniel Todd Laskowitz
- Neurosurgery, Anesthesiology & Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yeoheung Yun
- Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
15
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
16
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Chen S, Guo D, Zhu Y, Xiao S, Xie J, Zhang Z, Hu Y, Huang J, Ma X, Ning Z, Cao L, Cheng J, Tang Y. Amyloid β oligomer induces cerebral vasculopathy via pericyte-mediated endothelial dysfunction. Alzheimers Res Ther 2024; 16:56. [PMID: 38475929 PMCID: PMC10935813 DOI: 10.1186/s13195-024-01423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Although abnormal accumulation of amyloid beta (Aβ) protein is thought to be the main cause of Alzheimer's disease (AD), emerging evidence suggests a pivotal vascular contribution to AD. Aberrant amyloid β induces neurovascular dysfunction, leading to changes in the morphology and function of the microvasculature. However, little is known about the underlying mechanisms between Aβ deposition and vascular injuries. Recent studies have revealed that pericytes play a substantial role in the vasculopathy of AD. Additional research is imperative to attain a more comprehensive understanding. METHODS Two-photon microscopy and laser speckle imaging were used to examine cerebrovascular dysfunction. Aβ oligomer stereotactic injection model was established to explain the relationship between Aβ and vasculopathy. Immunofluorescence staining, western blot, and real-time PCR were applied to detect the morphological and molecular alternations of pericytes. Primary cultured pericytes and bEnd.3 cells were employed to explore the underlying mechanisms. RESULTS Vasculopathy including BBB damage, hypoperfusion, and low vessel density were found in the cortex of 8 to 10-month-old 5xFAD mice. A similar phenomenon accompanied by pericyte degeneration appeared in an Aβ-injected model, suggesting a direct relationship between Aβ and vascular dysfunction. Pericytes showed impaired features including low PDGFRβ expression and increased pro-inflammatory chemokines secretion under the administration of Aβ in vitro, of which supernatant cultured with bEND.3 cells led to significant endothelial dysfunction characterized by TJ protein deficiency. CONCLUSIONS Our results provide new insights into the pathogenic mechanism underlying Aβ-induced vasculopathy. Targeting pericyte therapies are promising to ameliorate vascular dysfunction in AD.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Yuanyuan Zhu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhan Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Hu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jialin Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xueying Ma
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
18
|
Li Y, Ni N, Lee M, Wei W, Andrikopoulos N, Kakinen A, Davis TP, Song Y, Ding F, Leong DT, Ke PC. Endothelial leakiness elicited by amyloid protein aggregation. Nat Commun 2024; 15:613. [PMID: 38242873 PMCID: PMC10798980 DOI: 10.1038/s41467-024-44814-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia debilitating the global ageing population. Current understanding of the AD pathophysiology implicates the aggregation of amyloid beta (Aβ) as causative to neurodegeneration, with tauopathies, apolipoprotein E and neuroinflammation considered as other major culprits. Curiously, vascular endothelial barrier dysfunction is strongly associated with Aβ deposition and 80-90% AD subjects also experience cerebral amyloid angiopathy. Here we show amyloid protein-induced endothelial leakiness (APEL) in human microvascular endothelial monolayers as well as in mouse cerebral vasculature. Using signaling pathway assays and discrete molecular dynamics, we revealed that the angiopathy first arose from a disruption to vascular endothelial (VE)-cadherin junctions exposed to the nanoparticulates of Aβ oligomers and seeds, preceding the earlier implicated proinflammatory and pro-oxidative stressors to endothelial leakiness. These findings were analogous to nanomaterials-induced endothelial leakiness (NanoEL), a major phenomenon in nanomedicine depicting the paracellular transport of anionic inorganic nanoparticles in the vasculature. As APEL also occurred in vitro with the oligomers and seeds of alpha synuclein, this study proposes a paradigm for elucidating the vascular permeation, systemic spread, and cross-seeding of amyloid proteins that underlie the pathogeneses of AD and Parkinson's disease.
Collapse
Affiliation(s)
- Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nengyi Ni
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Myeongsang Lee
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- The Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - David Tai Leong
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- The Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China.
| |
Collapse
|
19
|
Zhao X, Li L, Ma X, Li Y, Gao B, Luo W. The role of immune and inflammatory-related indicators in cognitive dysfunction and disease severity in patients with parkinson's disease. J Neural Transm (Vienna) 2024; 131:13-24. [PMID: 37864052 DOI: 10.1007/s00702-023-02704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
We aimed to explore the role of immune and inflammatory indicators in cognitive dysfunction and disease severity in patients with Parkinson's disease (PD). A total of 123 patients with Parkinson's disease were enrolled in the PD group and 49 healthy volunteers in the control group. The patients with PD were further divided into 2 subgroups by evaluating cognitive function using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE): the normal cognitive function (PD-NCI) group and the mild cognitive impairment (PD-MCI) group. Moreover, the PD patients were also divided into 2 subgroups using the defined scale of the Hoehn and Yahr (H-Y) stage: the early-stage group and the middle- and late-stage group. Immune and inflammatory indicators, including serum Aβ1-42, Tau, CD4+, CD8+, CD3+, B lymphocytes cell, NK cell, Th17 cell, Treg cell, IL-6, IL-17, and TNF-α levels, were evaluated and analyzed to explore the potential correlation with the cognitive dysfunction and disease severity of PD. Among the 123 PD patients, 60 (48.8%) were diagnosed with mild cognitive impairment. Aβ1-42, CD4+, CD8+, CD3+, and Treg levels observed in the PD-NCI group were lower than the control group (P < 0.001), while higher than the PD-MCI group (P < 0.001). The levels of Tau, Th17, IL-6, IL-17, and TNF-α observed in the PD-NCI group were higher than the control group (P < 0.001), while lower than in the PD-MCI group (P < 0.01). Using the same method, the results of the early-stage group and the middle- and the late-stage group were the same as above. Logistic regression analysis and ROC curve estimation were performed and indicated that the variation of Tau, CD8+, Treg, TNF-α levels was associated with cognitive decline in PD patients, and may serve as markers of PD onset. Furthermore, the variation of Aβ1-42, IL-6, and TNF-α levels was found to correlate with the disease severity of PD. The immune and inflammatory-related indicators may represent an important factor in the pathogenesis of PD, cognitive dysfunction, and disease severity. The variation of Tau protein, CD8+, Treg, and TNF-α levels are associated with the cognitive dysfunction of PD, which may be considered as onset markers. Moreover, the variation of Aβ1-42, IL-6, and TNF-α levels can predict the progression of PD.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China
- Department of General Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Lei Li
- Department of General Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Xiuping Ma
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Yang Li
- Department of Neurology, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, 313000, Zhejiang Province, China
| | - Beibei Gao
- Department of General Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu Province, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu Province, China.
| |
Collapse
|
20
|
Hood RJ, Sanchez-Bezanilla S, Beard DJ, Rust R, Turner RJ, Stuckey SM, Collins-Praino LE, Walker FR, Nilsson M, Ong LK. Leakage beyond the primary lesion: A temporal analysis of cerebrovascular dysregulation at sites of hippocampal secondary neurodegeneration following cortical photothrombotic stroke. J Neurochem 2023; 167:733-752. [PMID: 38010732 DOI: 10.1111/jnc.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023]
Abstract
We have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-β accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-β around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke. In the current study, we aimed to characterise the spatiotemporal cerebrovascular changes after cortical stroke. This was done using the photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Cerebrovascular morphology as well as the co-localisation of amyloid-β with vasculature and blood-brain barrier integrity were assessed in the cortex and hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed transient cerebrovascular remodelling in the peri-infarct area up to 28 days post-stroke. Importantly, the cerebrovascular changes were extended beyond the peri-infarct region to the ipsilateral hippocampus and were sustained out to 84 days post-stroke. When investigating vessel diameter, we showed a decrease at 84 days in the peri-infarct and CA1 regions that were exacerbated in vessels with amyloid-β deposition. Lastly, we showed sustained vascular leakage in the peri-infarct and ipsilateral hippocampus, indicative of a compromised blood-brain-barrier. Our findings indicate that hippocampal vasculature may represent an important therapeutic target to mitigate the progression of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Rebecca J Hood
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Daniel J Beard
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ruslan Rust
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Renée J Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon M Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Nilsson
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|
21
|
Pradhan SP, Sahu PK, Behera A. New insights toward molecular and nanotechnological approaches to antidiabetic agents for Alzheimer's disease. Mol Cell Biochem 2023; 478:2739-2762. [PMID: 36949264 DOI: 10.1007/s11010-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder affecting a major class of silver citizens. The disorder shares a mutual relationship on account of its cellular and molecular pathophysiology with type-II diabetes mellitus (DM). Chronic DM increases the risk for AD. Emerging evidence recommended that resistance in insulin production develops cognitive dysfunction, which generally leads to AD. Repurposing of antidiabetic drugs can be effective in preventing and treatment of the neurodegenerative disorder. Limitations of antidiabetic drugs restrict the repurposing of the drugs for other disorders. Therefore, nanotechnological intervention plays a significant role in the treatment of neurological disorders. In this review, we discuss the common cellular and molecular pathophysiologies between AD and type-II DM, the relevance of in vivo models of type II DM in the study of AD, and the repurposing of antidiabetic drugs and the nanodelivery systems of antidiabetic drugs against AD.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India.
| |
Collapse
|
22
|
Hanafy AS, Lamprecht A, Dietrich D. Local perfusion of capillaries reveals disrupted beta-amyloid homeostasis at the blood-brain barrier in Tg2576 murine Alzheimer's model. Fluids Barriers CNS 2023; 20:85. [PMID: 37993886 PMCID: PMC10666337 DOI: 10.1186/s12987-023-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Parenchymal accumulation of beta-amyloid (Aβ) characterizes Alzheimer's disease (AD). Aβ homeostasis is maintained by two ATP-binding cassette (ABC) transporters (ABCC1 and ABCB1) mediating efflux, and the receptor for advanced glycation end products (RAGE) mediating influx across the blood-brain barrier (BBB). Altered transporter levels and disruption of tight junctions (TJ) were linked to AD. However, Aβ transport and the activity of ABCC1, ABCB1 and RAGE as well as the functionality of TJ in AD are unclear. METHODS ISMICAP, a BBB model involving microperfusion of capillaries, was used to assess BBB properties in acute cortical brain slices from Tg2576 mice compared to wild-type (WT) controls using two-photon microscopy. TJ integrity was tested by vascularly perfusing biocytin-tetramethylrhodamine (TMR) and quantifying its extravascular diffusion as well as the diffusion of FM1-43 from luminal to abluminal membranes of endothelial cells (ECs). To assess ABCC1 and ABCB1 activity, calcein-AM was perfused, which is converted to fluorescent calcein in ECs and gets actively extruded by both transporters. To probe which transporter is involved, probenecid or Elacridar were applied, individually or combined, to block ABCC1 and ABCB1, respectively. To assess RAGE activity, the binding of 5-FAM-tagged Aβ by ECs was quantified with or without applying FPS-ZM1, a RAGE antagonist. RESULTS In Tg2576 mouse brain, extravascular TMR was 1.8-fold that in WT mice, indicating increased paracellular leakage. FM1-43 staining of abluminal membranes in Tg2576 capillaries was 1.7-fold that in WT mice, indicating reduced TJ integrity in AD. While calcein was undetectable in WT mice, its accumulation was significant in Tg2576 mice, suggesting lower calcein extrusion in AD. Incubation with probenecid or Elacridar in WT mice resulted in a marked calcein accumulation, yet probenecid alone had no effect in Tg2576 mice, implying the absence of probenecid-sensitive ABC transporters. In WT mice, Aβ accumulated along the luminal membranes, which was undetectable after applying FPS-ZM1. In contrast, marginal Aβ fluorescence was observed in Tg2576 vessels, and FPS-ZM1 was without effect, suggesting reduced RAGE binding activity. CONCLUSIONS Disrupted TJ integrity, reduced ABCC1 functionality and decreased RAGE binding were identified as BBB alterations in Tg2576 mice, with the latter finding challenging the current concepts. Our results suggest to manage AD by including modulation of TJ proteins and Aβ-RAGE binding.
Collapse
Affiliation(s)
- Amira Sayed Hanafy
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
23
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
24
|
Wang Z, Sharda N, Omtri RS, Li L, Kandimalla KK. Amyloid-Beta Peptides 40 and 42 Employ Distinct Molecular Pathways for Cell Entry and Intracellular Transit at the Blood-Brain Barrier Endothelium. Mol Pharmacol 2023; 104:203-213. [PMID: 37541759 PMCID: PMC10586509 DOI: 10.1124/molpharm.123.000670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2023] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in maintaining the equilibrium between amyloid beta (Aβ) levels in blood and the brain by regulating Aβ transport. Our previous publications demonstrated that BBB trafficking of Aβ42 and Aβ40 is distinct and is disrupted under various pathophysiological conditions. However, the intracellular mechanisms that allow BBB endothelium to differentially handle Aβ40 and Aβ42 have not been clearly elucidated. In this study, we identified mechanisms of Aβ endocytosis in polarized human cerebral microvascular endothelial cell monolayers. Our studies demonstrated that Aβ peptides with fluorescent label (F-Aβ) were internalized by BBB endothelial cells via energy, dynamin, and actin-dependent endocytosis. Interestingly, endocytosis of F-Aβ40 but not F-Aβ42 was substantially reduced by clathrin inhibition, whereas F-Aβ42 but not F-Aβ40 endocytosis was reduced by half after inhibiting the caveolae-mediated pathway. Following endocytosis, both isoforms were sorted by the endo-lysosomal system. Although Aβ42 was shown to accumulate more in the lysosomes, which could lead to its higher degradation and/or aggregation at lower lysosomal pH, Aβ40 demonstrated robust accumulation in recycling endosomes, which may facilitate its exocytosis by the endothelial cells. These results provide a mechanistic insight into the selective ability of BBB endothelium to transport Aβ40 versus Aβ42. This knowledge contributes to the understanding of molecular pathways underlying Aβ accumulation in the BBB endothelium and associated BBB dysfunction. Moreover, it allows us to establish mechanistic rationale for altered Aβ40:Aβ42 ratios and anomalous amyloid deposition in the cerebral vasculature as well as brain parenchyma during Alzheimer's disease progression. SIGNIFICANCE STATEMENT: Differential interaction of Aβ40 and Aβ42 isoforms with the blood-brain barrier (BBB) endothelium may contribute to perturbation in Aβ42:Aβ40 ratio, which is associated with Alzheimer's disease (AD) progression and severity. The current study identified distinct molecular pathways by which Aβ40 and Aβ42 are trafficked at the BBB, which regulates equilibrium between blood and brain Aβ levels. These findings provide molecular insights into mechanisms that engender BBB dysfunction and promote Aβ accumulation in AD brain.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Nidhi Sharda
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Rajesh S Omtri
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| |
Collapse
|
25
|
Berends E, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity. Fluids Barriers CNS 2023; 20:75. [PMID: 37875994 PMCID: PMC10594715 DOI: 10.1186/s12987-023-00477-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The brain is a highly metabolically active organ requiring a large amount of glucose. Methylglyoxal (MGO), a by-product of glucose metabolism, is known to be involved in microvascular dysfunction and is associated with reduced cognitive function. Maintenance of the blood-brain barrier (BBB) is essential to maintain optimal brain function and a large amount of evidence indicates negative effects of MGO on BBB integrity. In this review, we summarized the current literature on the effect of MGO on the different cell types forming the BBB. BBB damage by MGO most likely occurs in brain endothelial cells and mural cells, while astrocytes are most resistant to MGO. Microglia on the other hand appear to be not directly influenced by MGO but rather produce MGO upon activation. Although there is clear evidence that MGO affects components of the BBB, the impact of MGO on the BBB as a multicellular system warrants further investigation. Diminishing MGO stress can potentially form the basis for new treatment strategies for maintaining optimal brain function.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
| | - Robert J van Oostenbrugge
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50 6229ER, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
26
|
Gullotta GS, Costantino G, Sortino MA, Spampinato SF. Microglia and the Blood-Brain Barrier: An External Player in Acute and Chronic Neuroinflammatory Conditions. Int J Mol Sci 2023; 24:ijms24119144. [PMID: 37298096 DOI: 10.3390/ijms24119144] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system that guarantee immune surveillance and exert also a modulating role on neuronal synaptic development and function. Upon injury, microglia get activated and modify their morphology acquiring an ameboid phenotype and pro- or anti-inflammatory features. The active role of microglia in blood-brain barrier (BBB) function and their interaction with different cellular components of the BBB-endothelial cells, astrocytes and pericytes-are described. Here, we report the specific crosstalk of microglia with all the BBB cell types focusing in particular on the involvement of microglia in the modulation of BBB function in neuroinflammatory conditions that occur in conjunction with an acute event, such as a stroke, or in a slow neurodegenerative disease, such as Alzheimer's disease. The potential of microglia to exert a dual role, either protective or detrimental, depending on disease stages and environmental conditioning factors is also discussed.
Collapse
Affiliation(s)
- Giorgia Serena Gullotta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Costantino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Ph.D. Program in Neuroscience and Education, DISTUM, University of Foggia, 71121 Foggia, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | |
Collapse
|
27
|
Araki W. Aβ Oligomer Toxicity-Reducing Therapy for the Prevention of Alzheimer's Disease: Importance of the Nrf2 and PPARγ Pathways. Cells 2023; 12:1386. [PMID: 37408220 DOI: 10.3390/cells12101386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Recent studies have revealed that soluble amyloid-β oligomers (AβOs) play a pathogenetic role in Alzheimer's disease (AD). Indeed, AβOs induce neurotoxic and synaptotoxic effects and are also critically involved in neuroinflammation. Oxidative stress appears to be a crucial event underlying these pathological effects of AβOs. From a therapeutic standpoint, new drugs for AD designed to remove AβOs or inhibit the formation of AβOs are currently being developed. However, it is also worth considering strategies for preventing AβO toxicity itself. In particular, small molecules with AβO toxicity-reducing activity have potential as drug candidates. Among such small molecules, those that can enhance Nrf2 and/or PPARγ activity can effectively inhibit AβO toxicity. In this review, I summarize studies on the small molecules that counteract AβO toxicity and are capable of activating Nrf2 and/or PPARγ. I also discuss how these interrelated pathways are involved in the mechanisms by which these small molecules prevent AβO-induced neurotoxicity and neuroinflammation. I propose that AβO toxicity-reducing therapy, designated ATR-T, could be a beneficial, complementary strategy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Wataru Araki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
- Memory Clinic Ochanomizu, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
28
|
Petrovskaya A, Tverskoi A, Medvedeva A, Nazarova M. Is blood-brain barrier a probable mediator of non-invasive brain stimulation effects on Alzheimer's disease? Commun Biol 2023; 6:416. [PMID: 37059824 PMCID: PMC10104838 DOI: 10.1038/s42003-023-04717-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease with no existing treatment leading to full recovery. The blood-brain barrier (BBB) breakdown usually precedes the advent of first symptoms in AD and accompanies the progression of the disease. At the same time deliberate BBB opening may be beneficial for drug delivery in AD. Non-invasive brain stimulation (NIBS) techniques, primarily transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have shown multiple evidence of being able to alleviate symptoms of AD. Currently, TMS/tDCS mechanisms are mostly investigated in terms of their neuronal effects, while their possible non-neuronal effects, including mitigation of the BBB disruption, are less studied. We argue that studies of TMS/tDCS effects on the BBB in AD are necessary to boost the effectiveness of neuromodulation in AD. Moreover, such studies are important considering the safety issues of TMS/tDCS use in the advanced AD stages when the BBB is usually dramatically deteriorated. Here, we elucidate the evidence of NIBS-induced BBB opening and closing in various models from in vitro to humans, and highlight its importance in AD.
Collapse
Affiliation(s)
- Aleksandra Petrovskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Artem Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Angela Medvedeva
- Department of Chemistry, Rice University, Houston, TX, 77005, US
| | - Maria Nazarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, 101000, Russian Federation
| |
Collapse
|
29
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
30
|
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS. Vascular contributions to Alzheimer's disease. Transl Res 2023; 254:41-53. [PMID: 36529160 PMCID: PMC10481451 DOI: 10.1016/j.trsl.2022.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bolanle M Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeremy H Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
31
|
Ocenasova A, Shawkatova I, Javor J, Parnicka Z, Minarik G, Kralova M, Kiralyova I, Mikolaskova I, Durmanova V. MMP2 rs243866 and rs2285053 Polymorphisms and Alzheimer’s Disease Risk in Slovak Caucasian Population. Life (Basel) 2023; 13:life13040882. [PMID: 37109410 PMCID: PMC10143987 DOI: 10.3390/life13040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterised by progressive loss of memory. In the AD brain, matrix metalloproteinases (MMPs) are involved in the disruption of the blood-brain barrier resulting in a neuroinflammatory response. The objective of our investigation was to assess the association of MMP2 rs243866 and rs2285053 polymorphisms with susceptibility to AD, to assess the interaction of MMP2 variants with APOE ε4 risk allele, and to evaluate their influence on the age at disease onset and MoCA score. A total of 215 late-onset AD patients and 373 control subjects from Slovakia were genotyped for MMP2 rs243866 and rs2285053 polymorphisms. The MMP2 association with AD risk and clinical parameters was evaluated by logistic and linear regression analyses. No statistically significant differences in either MMP2 rs243866 and rs2285053 allele or genotype frequencies between AD patients and the control group have been observed (p > 0.05). However, the correlation with clinical findings revealed a higher age at disease onset in MMP2 rs243866 GG carriers in the dominant model as compared to other MMP2 genotype carriers (p = 0.024). Our results suggest that MMP2 rs243866 promoter polymorphism may have an impact on the age at AD onset in the patients.
Collapse
Affiliation(s)
- Agata Ocenasova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Ivana Shawkatova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Juraj Javor
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Zuzana Parnicka
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | | | - Maria Kralova
- Clinic of Psychiatry, Faculty of Medicine, University Hospital, Comenius University in Bratislava, 813 69 Bratislava, Slovakia
| | | | - Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Vladimira Durmanova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9011-9887
| |
Collapse
|
32
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
33
|
Zhang T, Zhao S, Dong F, Jia Y, Chen X, Sun Y, Zhu L. Novel Insight into the Mechanisms of Neurotoxicity Induced by 6:6 PFPiA through Disturbing the Gut-Brain Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1028-1038. [PMID: 36594808 DOI: 10.1021/acs.est.2c04765] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are frequently detected in aquatic environments, but the neurotoxic effects and underlying mechanisms remain unclear. In this study, male zebrafish were exposed to 6:6 PFPiA (1 and 10 nM) for 28 days, which exhibited anxiety-like symptoms. Gut microbiome results indicated that 6:6 PFPiA significantly increased the abundance of Gram-negative bacteria, leading to enhanced levels of lipopolysaccharide (LPS) and inflammation in the gut. The LPS was delivered to the brain through the gut-brain axis (GBA), damaged the blood-brain barrier (BBB), stimulated neuroinflammation, and caused apoptosis as well as neural injury in the brain. This mechanism was verified by the fact that antibiotics reduced the LPS levels in the gut and brain, accompanied by reduced inflammatory responses and anxiety-like behavior. The BBB damage also resulted in the enhanced accumulation of 6:6 PFPiA in the brain, where it might bind strongly with and activate aryl hydrocarbon receptor (AhR) to induce brain inflammation directly. Additionally, as the fish received treatment with an inhibitor of AhR, the inflammation response and anxiety-like behavior decreased distinctly. This study sheds light on the new mechanisms of neurotoxicity-induced 6:6 PFPiA due to the interruption on GBA.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Sujuan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- School of Public Health, Anhui Medical University, Hefei 230032, P.R. China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
34
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Burek M, Kaupp V, Blecharz-Lang K, Dilling C, Meybohm P. Protocadherin gamma C3: a new player in regulating vascular barrier function. Neural Regen Res 2023. [PMID: 35799511 PMCID: PMC9241426 DOI: 10.4103/1673-5374.343896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not fully understood. Several newly discovered molecules that are involved in the regulation of cellular processes in brain microvascular endothelial cells have been described in the literature in recent years. One of these molecules that are highly expressed in brain microvascular endothelial cells is protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is a newly identified key player involved in the regulation of vascular barrier function.
Collapse
|
36
|
Yuan Y, Sun J, Dong Q, Cui M. Blood-brain barrier endothelial cells in neurodegenerative diseases: Signals from the "barrier". Front Neurosci 2023; 17:1047778. [PMID: 36908787 PMCID: PMC9998532 DOI: 10.3389/fnins.2023.1047778] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
As blood-brain barrier (BBB) disruption emerges as a common problem in the early stages of neurodegenerative diseases, the crucial roles of barrier-type brain endothelial cells (BECs), the primary part of the BBB, have been reported in the pathophysiology of neurodegenerative diseases. The mechanisms of how early vascular dysfunction contributes to the progress of neurodegeneration are still unclear, and understanding BEC functions is a promising start. Our understanding of the BBB has gone through different stages, from a passive diffusion barrier to a mediator of central-peripheral interactions. BECs serve two seemingly paradoxical roles: as a barrier to protect the delicate brain from toxins and as an interface to constantly receive and release signals, thus maintaining and regulating the homeostasis of the brain. Most previous studies about neurodegenerative diseases focus on the loss of barrier functions, and far too little attention has been paid to the active regulations of BECs. In this review, we present the current evidence of BEC dysfunction in neurodegenerative diseases and explore how BEC signals participate in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer's disease, a relationship intricate to define. Biol Res 2022; 55:39. [PMID: 36550479 PMCID: PMC9784299 DOI: 10.1186/s40659-022-00404-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Collapse
Affiliation(s)
- Catalina Novoa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Roberto Vera-Salazar
- Facultad de Ciencias Médicas, Escuela de Kinesiología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
38
|
Petrovskaya AV, Tverskoi AM, Barykin EP, Varshavskaya KB, Dalina AA, Mitkevich VA, Makarov AA, Petrushanko IY. Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood-Brain Barrier Endothelium. Int J Mol Sci 2022; 24:ijms24010183. [PMID: 36613623 PMCID: PMC9820675 DOI: 10.3390/ijms24010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The Alzheimer's disease (AD)-associated breakdown of the blood-brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice versa. The breakdown of the BBB during AD may be caused by the emergence of blood-borne Aβ pathogenic forms, such as structurally and chemically modified Aβ species; their effect on the BBB cells has not yet been studied. Here, we report that the effects of Aβ42, Aβ42, containing isomerized Asp7 residue (iso-Aβ42) or phosphorylated Ser8 residue (p-Aβ42) on the mitochondrial potential and respiration are closely related to the redox status changes in the mouse brain endothelial cells bEnd.3. Aβ42 and iso-Aβ42 cause a significant increase in nitric oxide, reactive oxygen species, glutathione, cytosolic calcium and the mitochondrial potential after 4 h of incubation. P-Aβ42 either does not affect or its effect develops after 24 h of incubation. Aβ42 and iso-Aβ42 activate mitochondrial respiration compared to p-Aβ42. The isomerized form promotes a greater cytotoxicity and mitochondrial dysfunction, causing maximum oxidative stress. Thus, Aβ42, p-Aβ42 and iso-Aβ42 isoforms differently affect the BBBs' cell redox parameters, significantly modulating the functioning of the mitochondria. The changes in the level of modified Aβ forms can contribute to the BBBs' breakdown during AD.
Collapse
|
39
|
Petrovskaya AV, Barykin EP, Tverskoi AM, Varshavskaya KB, Mitkevich VA, Petrushanko IY, Makarov AA. Blood–Brain Barrier Transwell Modeling. Mol Biol 2022. [DOI: 10.1134/s0026893322060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
41
|
Israel LL, Galstyan A, Cox A, Shatalova ES, Sun T, Rashid MH, Grodzinski Z, Chiechi A, Fuchs DT, Patil R, Koronyo-Hamaoui M, Black KL, Ljubimova JY, Holler E. Signature Effects of Vector-Guided Systemic Nano Bioconjugate Delivery Across Blood-Brain Barrier of Normal, Alzheimer's, and Tumor Mouse Models. ACS NANO 2022; 16:11815-11832. [PMID: 35961653 PMCID: PMC9413444 DOI: 10.1021/acsnano.1c10034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(β-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aβ/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.
Collapse
Affiliation(s)
- Liron L. Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Ekaterina S. Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Mohammad-Harun Rashid
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Zachary Grodzinski
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery and Department of Biomedical Sciences,
Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Julia Y. Ljubimova
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation
(TIBI), 1018 Westwood
Boulevard, Los Angeles, California 90024, United States
| |
Collapse
|
42
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
43
|
TARBP2-stablized SNHG7 regulates blood-brain barrier permeability by acting as a competing endogenous RNA to miR-17-5p/NFATC3 in Aβ-microenvironment. Cell Death Dis 2022; 13:457. [PMID: 35562351 PMCID: PMC9106673 DOI: 10.1038/s41419-022-04920-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Breakdown of blood-brain barrier (BBB) is recognized as serious pathological marker of Alzheimer's disease development. Studies confirmed that β-amyloid (Aβ) deposition induced high BBB permeability by disrupting tight junction (TJ) proteins formed from endothelial cells (ECs). Here, we found TARBP2, SNHG7 and NFATC3 in expressions were increased and miR-17-5p expression was decreased in Aβ(1-42)-incubated ECs. Overexpression of TARBP2, SNHG7 and NFATC3 elevated BBB permeability and knockdown of them had converse results. Agomir-17-5p decreased BBB permeability and antagomir-17-5p increased BBB permeability. TARBP2 as a RNA-binding protein (RBP) bound to SNHG7 and resulted in longer half-life of SNHG7. The decreased expression of miR-17-5p had a negative post-transcriptional regulation to NFATC3, leading to the increased expression of NFATC3. In addition, SNHG7 regulated NFATC3 expression by acting as a molecule sponge targeting to miR-17-5p. NFATC3 inhibited TJ proteins expression by functioning as a transcription factor. TARBP2/SNHG7/miR-17-5p/NFATC3 pathway implied a potential mechanism in studies of BBB changes in AD pathological progression.
Collapse
|
44
|
Yuan Z, Wang B, Teng Y, Ho W, Hu B, Boakye-Yiadom KO, Xu X, Zhang XQ. Rational design of engineered H-ferritin nanoparticles with improved siRNA delivery efficacy across an in vitro model of the mouse BBB. NANOSCALE 2022; 14:6449-6464. [PMID: 35416195 DOI: 10.1039/d1nr07880a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gene therapy holds tremendous potential for the treatment of incurable brain diseases including Alzheimer's disease (AD), stroke, glioma, and Parkinson's disease. The main challenge is the lack of effective gene delivery systems traversing the blood-brain barrier (BBB), due to the complex microvessels present in the brain which restrict substances from the circulating blood passing through. Recently, increasing efforts have been made to develop promising gene carriers for brain-related disease therapies. One such development is the self-assembled heavy chain ferritin (HFn) nanoparticles (NPs). HFn NPs have a unique hollow spherical structure that can encapsulate nucleic acid drugs (NADs) and specifically bind to cancer cells and BBB endothelial cells (BBB ECs) via interactions with the transferrin receptor 1 (TfR1) overexpressed on their surfaces, which increases uptake through the BBB. However, the gene-loading capacity of HFn is restricted by its limited interior volume and negatively charged inner surface; therefore, these drawbacks have prompted the demand for strategies to remould the structure of HFn. In this work, we analyzed the three-dimensional (3D) structure of HFn using Chimera software (v 1.14) and developed a class of internally cationic HFn variants (HFn+ NPs) through arginine mutation on the lumenal surface of HFn. These HFn+ NPs presented powerful electrostatic forces in their cavities, and exhibited higher gene encapsulation efficacy than naive HFn. The top-performing candidate, HFn2, effectively delivered siRNA to glioma cells after traversing the BBB and achieved the highest silencing efficacy among HFn+ NPs. Overall, our findings demonstrate that HFn+ NPs obtained by this genetic engineering method provide critical insights into the future development of nucleic acid delivery carriers with BBB-crossing ability.
Collapse
Affiliation(s)
- Ziwei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Bin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Yilong Teng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Kofi Oti Boakye-Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
45
|
Ning H, Zhang T, Zhou X, Liu L, Shang C, Qi R, Ma T. PART1 destabilized by NOVA2 regulates blood-brain barrier permeability in endothelial cells via STAU1-mediated mRNA degradation. Gene X 2022; 815:146164. [PMID: 34990795 DOI: 10.1016/j.gene.2021.146164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Blood-brain barrier dysfunction is recognized as a precursor of Alzheimer's disease development. Endothelial cells as structural basis of blood-brain barrier were observed tight junction failure in amyloid-β(1-42)-stimulated environment. In this study, we found NOVA2, PPP2R3A were down-regulated while PART1, p-NFκB-p65 were up-regulated in amyloid-β(1-42)-incubated endothelial cells. Knockdown of either NOVA2 or PPP2R3A and overexpression of PART1 all increased blood-brain barrier permeability. Lower blood-brain barrier permeability was observed in overexpression of NOVA2 and PPP2R3A and knockdown of PART1 and NFκB-p65. Same tendencies were found in the tight junction-related proteins expressions. Furthermore, overexpression and knockdown of NOVA2 and PART1 had no effect on cell viability. Mechanistically, NOVA2 overexpression was confirmed to reduce half-life of PART1. PART1 could destabilize PPP2R3A messenger RNA (mRNA) by interacting with STAU1. In addition, p-NFκB-p65 functioning as transcription factor reduced the expression of tight junction-related proteins, which was prompted by low protein level of PPP2R3A. Our study highlights the crucial role of NOVA2/PART1/PPP2R3A/p-NFκB-p65 pathway in amyloid-β(1-42)-incubated endothelial cells to modulating blood-brain barrier permeability through STAU1-mediated messenger RNA degradation, implying a potential mechanism of lncRNA and protein interaction in pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Ning
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Tianyuan Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Xinxin Zhou
- Liaoning University of Traditional Chinese Medicine, Shenyang 110034, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Chao Shang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang 110122, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
46
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
47
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
48
|
Lyu Z, Li Q, Yu Z, Chan Y, Fu L, Li Y, Zhang C. Yi-Zhi-Fang-Dai Formula Exerts Neuroprotective Effects Against Pyroptosis and Blood-Brain Barrier-Glymphatic Dysfunctions to Prevent Amyloid-Beta Acute Accumulation After Cerebral Ischemia and Reperfusion in Rats. Front Pharmacol 2022; 12:791059. [PMID: 34975487 PMCID: PMC8714930 DOI: 10.3389/fphar.2021.791059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The dysfunctional blood–brain barrier (BBB)–glymphatic system is responsible for triggering intracerebral amyloid-beta peptide (Aβ) accumulation and acts as the key link between ischemic stroke and dementia dominated by Alzheimer’s disease (AD). Recently, pyroptosis in cerebral ischemia and reperfusion (I/R) injury is demonstrated as a considerable mechanism causing BBB–glymphatic dysfunctions and Aβ acute accumulation in the brain. Targeting glial pyroptosis to protect BBB–glymphatic functions after cerebral I/R could offer a new viewpoint to prevent Aβ accumulation and poststroke dementia. Yi-Zhi-Fang-Dai formula (YZFDF) is an herbal prescription used to cure dementia with multiple effects of regulating inflammatory responses and protecting the BBB against toxic Aβ-induced damage. Hence, YZFDF potentially possesses neuroprotective effects against cerebral I/R injury and the early pathology of poststroke dementia, which evokes our current study. Objectives: The present study was designed to confirm the potential efficacy of YZFDF against cerebral I/R injury and explore the possible mechanism associated with alleviating Aβ acute accumulation. Methods: The models of cerebral I/R injury in rats were built by the method of middle cerebral artery occlusion/reperfusion (MCAO/R). First, neurological function assessment and cerebral infarct measurement were used for confirming the efficacy of YZFDF on cerebral I/R injury, and the optimal dosage (YZFDF-H) was selected to conduct the experiments, which included Western blotting detections of pyroptosis, Aβ1-42 oligomers, and NeuN, immunofluorescence observations of glial pyroptosis, aquaporin-4 (AQP-4), and Aβ locations, brain water content measurement, SMI 71 (a specific marker for BBB)/AQP-4 immunohistochemistry, and Nissl staining to further evaluate BBB–glymphatic functions and neuronal damage. Results: YZFDF obviously alleviated neurological deficits and cerebral infarct after cerebral I/R in rats. Furthermore, YZFDF could inactivate pyroptosis signaling via inhibiting caspase-1/11 activation and gasdermin D cleavage, ameliorate glial pyroptosis and neuroinflammation, protect against BBB collapse and AQP-4 depolarization, prevent Aβ acute accumulation and Aβ1-42 oligomers formation, and reduce neuronal damage and increase neurons survival after reperfusion. Conclusion: Our study indicated that YZFDF could exert neuroprotective effects on cerebral I/R injury and prevent Aβ acute accumulation in the brain after cerebral I/R associated with inhibiting neuroinflammation-related pyroptosis and BBB–glymphatic dysfunctions.
Collapse
Affiliation(s)
- Zhongkuan Lyu
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyue Li
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanjin Chan
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lei Fu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaming Li
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chunyan Zhang
- International Medical Center of Traditional Chinese Medicine, Haikou Hospital of Traditional Chinese Medicine, Haikou, China
| |
Collapse
|
49
|
Spampinato SF, Takeshita Y, Obermeier B. An In Vitro Model of the Blood-Brain Barrier to Study Alzheimer's Disease: The Role of β-Amyloid and Its Influence on PBMC Infiltration. Methods Mol Biol 2022; 2492:333-352. [PMID: 35733055 DOI: 10.1007/978-1-0716-2289-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) is a highly specialized structure, constituted by endothelial cells that together with astrocytes and pericytes provide a functional interface between the central nervous system and the periphery. Several pathological conditions may affect its functions, and lately BBB involvement in the pathogenesis of Alzheimer's disease has been demonstrated. Both endothelial cells and astrocytes can be differentially affected during the course of the disease. In vitro BBB models present a powerful tool in evaluating the effects that β-amyloid (Aβ), or other pathogenic stimuli, play on the BBB at cellular level. In vitro BBB models derived from human cell sources are rare and not easily implemented. We generated two conditionally immortalized human cell lines, brain microvascular endothelial cells (TY10), and astrocytes (hAST), that, when co-cultured under appropriate conditions, exhibit BBB-like characteristics. This model allowed us to evaluate the transmigration of peripheral blood mononuclear cells (PBMCs) through the in vitro barrier exposed to Aβ and the role played by astrocytes in the modulation of this phenomenon. We describe here the methodology used in our lab to set up our in vitro model of the BBB and to carry out a PBMC transmigration assay.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- Departement of Scienza e Tecnologia del Farmaco, Universita' di Turin, Turin, Italy.
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | |
Collapse
|
50
|
Tao QQ, Lin RR, Chen YH, Wu ZY. Discerning the Role of Blood Brain Barrier Dysfunction in Alzheimer’s Disease. Aging Dis 2022; 13:1391-1404. [PMID: 36186141 PMCID: PMC9466977 DOI: 10.14336/ad.2022.0130-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/30/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The predominant characteristics of AD are the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau in the brain. Blood brain barrier (BBB) dysfunction as one of the causative factors of cognitive impairment is increasingly recognized in the last decades. However, the role of BBB dysfunction in AD pathogenesis is still not fully understood. It remains elusive whether BBB dysfunction is a consequence or causative fact of Aβ pathology, tau pathology, neuroinflammation, or other conditions. In this review, we summarized the major findings of BBB dysfunction in AD and the reciprocal relationships between BBB dysfunction, Aβ pathology, tau pathology, and neuroinflammation. In addition, the implications of BBB dysfunction in AD for delivering therapeutic drugs were presented. Finally, we discussed how to better determine the underlying mechanisms between BBB dysfunction and AD, as well as how to explore new therapies for BBB regulation to treat AD in the future.
Collapse
Affiliation(s)
| | | | | | - Zhi-Ying Wu
- Correspondence should be addressed to: Dr. Zhi-Ying Wu, the Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China. E-mail:
| |
Collapse
|