1
|
Lucas L, Tsoi PS, Ferreon JC, Ferreon ACM. Tau Oligomers Resist Phase Separation. Biomolecules 2025; 15:336. [PMID: 40149872 PMCID: PMC11940599 DOI: 10.3390/biom15030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Tau is a microtubule-associated protein that undergoes liquid-liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer's disease. While LLPS is known to promote Tau aggregation, the relationship between Tau's structural states and its phase separation behavior remains poorly defined. Here, we examine how oligomerization modulates Tau LLPS and uncover key distinctions between monomeric, oligomeric, and amyloidogenic Tau species. Using dynamic light scattering and fluorescence microscopy, we monitored oligomer formation over time and assessed oligomeric Tau's ability to undergo LLPS. We found that Tau monomers readily phase separate and form condensates. As oligomerization progresses, Tau's propensity to undergo LLPS diminishes, with oligomers still being able to phase separate, albeit with reduced efficiency. Interestingly, oligomeric Tau is recruited into condensates formed with 0-day-aged Tau, with this recruitment depending on the oligomer state of maturation. Early-stage, Thioflavin T (ThT)-negative oligomers co-localize with 0-day-aged Tau condensates, whereas ThT-positive oligomers resist condensate recruitment entirely. This study highlights a dynamic interplay between Tau LLPS and aggregation, providing insight into how Tau's structural and oligomeric states influence its pathological and functional roles. These findings underscore the need to further explore LLPS as a likely modulator of Tau pathogenesis and distinct pathogenic oligomers as viable therapeutic targets in tauopathies.
Collapse
Affiliation(s)
| | | | - Josephine C. Ferreon
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (L.L.); (P.S.T.)
| | - Allan Chris M. Ferreon
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (L.L.); (P.S.T.)
| |
Collapse
|
2
|
Jamerlan AM, Shim KH, Sharma N, An SSA. Multimer Detection System: A Universal Assay System for Differentiating Protein Oligomers from Monomers. Int J Mol Sci 2025; 26:1199. [PMID: 39940966 PMCID: PMC11818661 DOI: 10.3390/ijms26031199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer's disease (AD); α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA); mutant huntingtin protein (Htt) in Huntington's disease (HD); and DNA-binding protein 43 kD (TDP-43) in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). The same misfolded proteins can be present in multiple diseases in the form of mixed proteinopathies. Since there is no cure for all these diseases, understanding the mechanisms of protein aggregation becomes imperative in modern medicine, especially for developing diagnostics and therapeutics. A Multimer Detection System (MDS) was designed to distinguish and quantify the multimeric/oligomeric forms from the monomeric form of aggregated proteins. As the unique epitope of the monomer is already occupied by capturing or detecting antibodies, the aggregated proteins with multiple epitopes would be accessible to both capturing and detecting antibodies simultaneously, and signals will be generated from the oligomers rather than the monomers. Hence, MDS could present a simple solution for measuring various conformations of aggregated proteins with high sensitivity and specificity, which may help to explore diagnostic and treatment strategies for developing anti-aggregation therapeutics.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| |
Collapse
|
3
|
Ammar Khodja L, Campanacci V, Lippens G, Gigant B. The structure of a Tau fragment bound to tubulin prompts new hypotheses on Tau mechanism and oligomerization. PNAS NEXUS 2024; 3:pgae487. [PMID: 39534653 PMCID: PMC11554759 DOI: 10.1093/pnasnexus/pgae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Tau is a protein involved in the regulation of axonal microtubules in neurons. In pathological conditions, it forms filamentous aggregates which are molecular markers of neurodegenerative diseases known as tauopathies. Structures of Tau in fibrils or bound to the microtubule have been reported. We present here a structure of a Tau construct comprising the PHF6 motif, an oligopeptide involved in Tau aggregation, as a complex with tubulin. This Tau fragment binds as a dimer to a new site which, when transposed to the microtubule, would correspond to a pore between protofilaments. These results raise new hypotheses on Tau-induced microtubule assembly and stabilization and on Tau oligomerization.
Collapse
Affiliation(s)
- Liza Ammar Khodja
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Valérie Campanacci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Guy Lippens
- CNRS, TBI, Université de Toulouse, INRAE, INSA, 31077 Toulouse, France
| | - Benoît Gigant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Yang J, Shen N, Shen J, Yang Y, Li HL. Complicated Role of Post-translational Modification and Protease-Cleaved Fragments of Tau in Alzheimer's Disease and Other Tauopathies. Mol Neurobiol 2024; 61:4712-4731. [PMID: 38114762 PMCID: PMC11236937 DOI: 10.1007/s12035-023-03867-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Tau, a microtubule-associated protein predominantly localized in neuronal axons, plays a crucial role in promoting microtubule assembly, stabilizing their structure, and participating in axonal transport. Perturbations in tau's structure and function are implicated in the pathogenesis of neurodegenerative diseases collectively known as tauopathies, the most common disorder of which is Alzheimer's disease (AD). In tauopathies, it has been found that tau has a variety of post-translational modification (PTM) abnormalities and/or tau is cleaved into a variety of fragments by some specific proteolytic enzymes; however, the precise contributions of these abnormal modifications and fragments to disease onset and progression remain incompletely understood. Herein, we provide an overview about the involvement of distinctive abnormal tau PTMs and different tau fragments in the pathogenesis of AD and other tauopathies and discuss the involvement of proteolytic enzymes such as caspases, calpains, and asparagine endopeptidase in mediating tau cleavage while also addressing the intercellular transmission role played by tau. We anticipate that further exploration into PTMs and fragmented forms of tau will yield valuable insights for diagnostic approaches and therapeutic interventions targeting AD and other related disorders.
Collapse
Affiliation(s)
- Jie Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianying Shen
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Zheng H, Sun H, Cai Q, Tai HC. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Int J Mol Sci 2024; 25:4969. [PMID: 38732197 PMCID: PMC11084794 DOI: 10.3390/ijms25094969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils). Compared to filamentous aggregates, soluble aggregates are more toxic and exhibit prion-like transmission, providing seeds for templated misfolding. Curiously, in its native state, tau is a highly soluble, heat-stable protein that does not form fibrils by itself, not even when hyperphosphorylated. In vitro studies have found that negatively charged molecules such as heparin, RNA, or arachidonic acid are generally required to induce tau aggregation. Two recent breakthroughs have provided new insights into tau aggregation mechanisms. First, as an intrinsically disordered protein, tau is found to undergo liquid-liquid phase separation (LLPS) both in vitro and inside cells. Second, cryo-electron microscopy has revealed diverse fibrillar tau conformations associated with different neurodegenerative disorders. Nonetheless, only the fibrillar core is structurally resolved, and the remainder of the protein appears as a "fuzzy coat". From this review, it appears that further studies are required (1) to clarify the role of LLPS in tau aggregation; (2) to unveil the structural features of soluble tau aggregates; (3) to understand the involvement of fuzzy coat regions in oligomer and fibril formation.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Seo D, Brito Oliveira S, Rex EA, Ye X, Rice LM, da Fonseca FG, Gammon DB. Poxvirus A51R proteins regulate microtubule stability and antagonize a cell-intrinsic antiviral response. Cell Rep 2024; 43:113882. [PMID: 38457341 PMCID: PMC11023057 DOI: 10.1016/j.celrep.2024.113882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.
Collapse
Affiliation(s)
- Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sabrynna Brito Oliveira
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Emily A Rex
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuecheng Ye
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke M Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Hill E, Moffat KG, Wall MJ, Zetterberg H, Blennow K, Karikari TK. A Validated Method to Prepare Stable Tau Oligomers. Methods Mol Biol 2023; 2551:203-224. [PMID: 36310205 DOI: 10.1007/978-1-0716-2597-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There is growing evidence that tau oligomers are a major pathological species in a number of tauopathies including Alzheimer's disease. However, it is still unclear what exact mechanisms underlie tau oligomer-mediated dysfunction. Studies of tau oligomers in vitro are limited by the high propensity for aggregation and consequent changes in the aggregation state of the produced tau samples over time. In this protocol, we provide a step-by-step description of a validated method for producing stable and structurally characterized oligomers of tau that can be used in biochemical, cellular, and animal model studies to evaluate mechanisms of action of tau in tauopathies.
Collapse
Affiliation(s)
- Emily Hill
- School of Life Sciences, University of Warwick, Coventry, UK
- Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, UK
| | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Hicks C, Dhiman A, Barrymore C, Goswami T. Traumatic Brain Injury Biomarkers, Simulations and Kinetics. Bioengineering (Basel) 2022; 9:612. [PMID: 36354523 PMCID: PMC9687153 DOI: 10.3390/bioengineering9110612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
This paper reviews the predictive capabilities of blood-based biomarkers to quantify traumatic brain injury (TBI). Biomarkers for concussive conditions also known as mild, to moderate and severe TBI identified along with post-traumatic stress disorder (PTSD) and chronic traumatic encephalopathy (CTE) that occur due to repeated blows to the head during one's lifetime. Since the pathways of these biomarkers into the blood are not fully understood whether there is disruption in the blood-brain barrier (BBB) and the time it takes after injury for the expression of the biomarkers to be able to predict the injury effectively, there is a need to understand the protein biomarker structure and other physical properties. The injury events in terms of brain and mechanics are a result of external force with or without the shrapnel, in the wake of a wave result in local tissue damage. Thus, these mechanisms express specific biomarkers kinetics of which reaches half-life within a few hours after injury to few days. Therefore, there is a need to determine the concentration levels that follow injury. Even though current diagnostics linking biomarkers with TBI severity are not fully developed, there is a need to quantify protein structures and their viability after injury. This research was conducted to fully understand the structures of 12 biomarkers by performing molecular dynamics simulations involving atomic movement and energies of forming hydrogen bonds. Molecular dynamics software, NAMD and VMD were used to determine and compare the approximate thermodynamic stabilities of the biomarkers and their bonding energies. Five biomarkers used clinically were S100B, GFAP, UCHL1, NF-L and tau, the kinetics obtained from literature show that the concentration values abruptly change with time after injury. For a given protein length, associated number of hydrogen bonds and bond energy describe a lower bound region where proteins self-dissolve and do not have long enough half-life to be detected in the fluids. However, above this lower bound, involving higher number of bonds and energy, we hypothesize that biomarkers will be viable to disrupt the BBB and stay longer to be modeled for kinetics for diagnosis and therefore may help in the discoveries of new biomarkers.
Collapse
Affiliation(s)
- Celeste Hicks
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Akshima Dhiman
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Chauntel Barrymore
- Boonshoft School of Medicine, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| | - Tarun Goswami
- Biomedical, Industrial and Human Factors Engineering, Wright State University, 3640 Col. Glen Hwy, Dayton, OH 45435, USA
| |
Collapse
|
9
|
Hromadkova L, Siddiqi MK, Liu H, Safar JG. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells 2022; 11:2997. [PMID: 36230957 PMCID: PMC9562632 DOI: 10.3390/cells11192997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Recent findings of diverse populations of prion-like conformers of misfolded tau protein expand the prion concept to Alzheimer's disease (AD) and monogenic frontotemporal lobar degeneration (FTLD)-MAPT P301L, and suggest that distinct strains of misfolded proteins drive the phenotypes and progression rates in many neurodegenerative diseases. Notable progress in the previous decades has generated many lines of proof arguing that yeast, fungal, and mammalian prions determine heritable as well as infectious traits. The extraordinary phenotypic diversity of human prion diseases arises from structurally distinct prion strains that target, at different progression speeds, variable brain structures and cells. Although human prion research presents beneficial lessons and methods to study the mechanism of strain diversity of protein-only pathogens, the fundamental molecular mechanism by which tau conformers are formed and replicate in diverse tauopathies is still poorly understood. In this review, we summarize up to date advances in identification of diverse tau conformers through biophysical and cellular experimental paradigms, and the impact of heterogeneity of pathological tau strains on personalized structure- and strain-specific therapeutic approaches in major tauopathies.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - He Liu
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Ye H, Han Y, Li P, Su Z, Huang Y. The Role of Post-Translational Modifications on the Structure and Function of Tau Protein. J Mol Neurosci 2022; 72:1557-1571. [PMID: 35325356 DOI: 10.1007/s12031-022-02002-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in tune influences protein function, protein - protein interaction, and protein aggregation. While the occurrence of PTMs is dynamic and subject to regulations, conformational disorder of the target protein facilitates PTMs. The microtubule-associated protein tau is a typical intrinsically disordered protein that undergoes a variety of PTMs including phosphorylation, acetylation, ubiquitination, methylation, and oxidation. Accumulated evidence shows that these PTMs play a critical role in regulating tau-microtubule interaction, tau localization, tau degradation and aggregation, and reinforces the correlation between tau PTMs and pathogenesis of neurodegenerative disease. Here, we review tau PTMs with an emphasis on their influence on tau structure. With available biophysical characterization results, we describe how PTMs induce conformational changes in tau monomer and regulate tau aggregation. Compared to functional analysis of tau PTMs, biophysical characterization of tau PTMs is lagging. While it is challenging, characterizing the specific effects of PTMs on tau conformation and interaction is indispensable to unravel the tau PTM code.
Collapse
Affiliation(s)
- Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China. .,Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
11
|
Shahpasand‐Kroner H, Portillo J, Lantz C, Seidler PM, Sarafian N, Loo JA, Bitan G. Three-repeat and four-repeat tau isoforms form different oligomers. Protein Sci 2022; 31:613-627. [PMID: 34902187 PMCID: PMC8862439 DOI: 10.1002/pro.4257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Different tauopathies are characterized by the isoform-specific composition of the aggregates found in the brain and by structurally distinct tau strains. Although tau oligomers have been implicated as important neurotoxic species, little is known about how the primary structures of the six human tau isoforms affect tau oligomerization because the oligomers are metastable and difficult to analyze. To address this knowledge gap, here, we analyzed the initial oligomers formed by the six tau isoforms in the absence of posttranslational modifications or other manipulations using dot blots probed by an oligomer-specific antibody, native-PAGE/western blots, photo-induced cross-linking of unmodified proteins, mass-spectrometry, and ion-mobility spectroscopy. We found that under these conditions, three-repeat (3R) isoforms are more prone than four-repeat (4R) isoforms to form oligomers. We also tested whether known inhibitors of tau aggregation affect its oligomerization using three small molecules representing different classes of tau aggregation inhibitors, Methylene Blue (MB), the molecular tweezer CLR01, and the all-D peptide TLKIVW, for their ability to inhibit or modulate the oligomerization of the six tau isoforms. Unlike their reported inhibitory effect on tau fibrillation, the inhibitors had little or no effect on the initial oligomerization. Our study provides novel insight into the primary-quaternary structure relationship of human tau and suggests that 3R-tau oligomers may be an important target for future development of compounds targeting pathological tau assemblies.
Collapse
Affiliation(s)
- Hedieh Shahpasand‐Kroner
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Portillo
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Carter Lantz
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical SciencesUniversity of Southern California School of PharmacyLos AngelesCaliforniaUSA
| | - Natalie Sarafian
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Joseph A. Loo
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Brain Research InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
The pathogenic R5L mutation disrupts formation of Tau complexes on the microtubule by altering local N-terminal structure. Proc Natl Acad Sci U S A 2022; 119:2114215119. [PMID: 35135879 PMCID: PMC8851524 DOI: 10.1073/pnas.2114215119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein (MAP) Tau is an intrinsically disordered protein (IDP) primarily expressed in axons, where it functions to regulate microtubule dynamics, modulate motor protein motility, and participate in signaling cascades. Tau misregulation and point mutations are linked to neurodegenerative diseases, including progressive supranuclear palsy (PSP), Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau occur in the C-terminal microtubule-binding domain of the protein. Effects of C-terminal mutations in Tau have led to the widely accepted disease-state theory that missense mutations in Tau reduce microtubule-binding affinity or increase Tau propensity to aggregate. Here, we investigate the effect of an N-terminal arginine to leucine mutation at position 5 in Tau (R5L), associated with PSP, on Tau-microtubule interactions using an in vitro reconstituted system. Contrary to the canonical disease-state theory, we determine that the R5L mutation does not reduce Tau affinity for the microtubule using total internal reflection fluorescence microscopy. Rather, the R5L mutation decreases the ability of Tau to form larger-order complexes, or Tau patches, at high concentrations of Tau. Using NMR, we show that the R5L mutation results in a local structural change that reduces interactions of the projection domain in the presence of microtubules. Altogether, these results challenge both the current paradigm of how mutations in Tau lead to disease and the role of the projection domain in modulating Tau behavior on the microtubule surface.
Collapse
|
13
|
The formation of small aggregates contributes to the neurotoxic effects of tau 45-230. Neurochem Int 2022; 152:105252. [PMID: 34856321 PMCID: PMC8712401 DOI: 10.1016/j.neuint.2021.105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023]
Abstract
Intracellular deposits of hyperphosphorylated tau are commonly detected in tauopathies. Furthermore, these aggregates seem to play an important role in the pathobiology of these diseases. In the present study, we determined whether the recently identified neurotoxic tau45-230 fragment also formed aggregates in neurodegenerative disorders. The presence of such aggregates was examined in brain samples obtained from Alzheimer's disease (AD) subjects by means of Western blot analysis performed under non-denaturing conditions. Our results showed that a mixture of tau45-230 oligomers of different sizes was easily detectable in brain samples obtained from AD subjects. Our data also suggested that tau45-230 oligomers could be internalized by cultured hippocampal neurons, mainly through a clathrin-mediated mechanism, triggering their degeneration. In addition, in vitro aggregation studies showed that tau45-230 modulated full-length tau aggregation thereby inducing the formation of smaller, and potentially more toxic, aggregates of this microtubule-associated protein. Together, these data identified alternative mechanisms underlying the toxic effects of tau45-230.
Collapse
|
14
|
Wang D, Huang X, Yan L, Zhou L, Yan C, Wu J, Su Z, Huang Y. The Structure Biology of Tau and Clue for Aggregation Inhibitor Design. Protein J 2021; 40:656-668. [PMID: 34401998 DOI: 10.1007/s10930-021-10017-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein that is mainly expressed in central and peripheral nerve systems. Tau binds to tubulin and regulates assembly and stabilization of microtubule, thus playing a critical role in neuron morphology, axon development and navigation. Tau is highly stable under normal conditions; however, there are several factors that can induce or promote aggregation of tau, forming neurofibrillary tangles. Neurofibrillary tangles are toxic to neurons, which may be related to a series of neurodegenerative diseases including Alzheimer's disease. Thus, tau is widely accepted as an important therapeutic target for neurodegenerative diseases. While the monomeric structure of tau is highly disordered, the aggregate structure of tau is formed by closed packing of β-stands. Studies on the structure of tau and the structural transition mechanism provide valuable information on the occurrence, development, and therapy of tauopathies. In this review, we summarize recent progress on the structural investigation of tau and based on which we discuss aggregation inhibitor design.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Xianlong Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Lu Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Luoqi Zhou
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Chang Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jinhu Wu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
15
|
Saito T, Chiku T, Oka M, Wada-Kakuda S, Nobuhara M, Oba T, Shinno K, Abe S, Asada A, Sumioka A, Takashima A, Miyasaka T, Ando K. Disulfide bond formation in microtubule-associated tau protein promotes tau accumulation and toxicity in vivo. Hum Mol Genet 2021; 30:1955-1967. [PMID: 34137825 PMCID: PMC8522637 DOI: 10.1093/hmg/ddab162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/12/2022] Open
Abstract
Accumulation of microtubule-associated tau protein is thought to cause neuron loss in a group of neurodegenerative diseases called tauopathies. In diseased brains, tau molecules adopt pathological structures that propagate into insoluble forms with disease-specific patterns. Several types of posttranslational modifications in tau are known to modulate its aggregation propensity in vitro, but their influence on tau accumulation and toxicity at the whole-organism level has not been fully elucidated. Herein, we utilized a series of transgenic Drosophila models to compare systematically the toxicity induced by five tau constructs with mutations or deletions associated with aggregation, including substitutions at seven disease-associated phosphorylation sites (S7A and S7E), deletions of PHF6 and PHF6* sequences (ΔPHF6 and ΔPHF6*), and substitutions of cysteine residues in the microtubule binding repeats (C291/322A). We found that substitutions and deletions resulted in different patterns of neurodegeneration and accumulation, with C291/322A having a dramatic effect on both tau accumulation and neurodegeneration. These cysteines formed disulfide bonds in mouse primary cultured neurons and in the fly retina, and stabilized tau proteins. Additionally, they contributed to tau accumulation under oxidative stress. We also found that each of these cysteine residues contributes to the microtubule polymerization rate and microtubule levels at equilibrium, but none of them affected tau binding to polymerized microtubules. Since tau proteins expressed in the Drosophila retina are mostly present in the early stages of tau filaments self-assembly, our results suggest that disulfide bond formation by these cysteine residues could be attractive therapeutic targets.
Collapse
Affiliation(s)
- Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomoki Chiku
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Mikiko Oka
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Satoko Wada-Kakuda
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Mika Nobuhara
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Toshiya Oba
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kanako Shinno
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Saori Abe
- Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akio Sumioka
- Faculty of Science, Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Faculty of Science, Department of Life Science, Gakushuin University, Tokyo, Japan
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
16
|
Gyparaki MT, Arab A, Sorokina EM, Santiago-Ruiz AN, Bohrer CH, Xiao J, Lakadamyali M. Tau forms oligomeric complexes on microtubules that are distinct from tau aggregates. Proc Natl Acad Sci U S A 2021; 118:e2021461118. [PMID: 33952699 PMCID: PMC8126857 DOI: 10.1073/pnas.2021461118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule-associated protein, which promotes neuronal microtubule assembly and stability. Accumulation of tau into insoluble aggregates known as neurofibrillary tangles (NFTs) is a pathological hallmark of several neurodegenerative diseases. The current hypothesis is that small, soluble oligomeric tau species preceding NFT formation cause toxicity. However, thus far, visualizing the spatial distribution of tau monomers and oligomers inside cells under physiological or pathological conditions has not been possible. Here, using single-molecule localization microscopy, we show that tau forms small oligomers on microtubules ex vivo. These oligomers are distinct from those found in cells exhibiting tau aggregation and could be precursors of aggregated tau in pathology. Furthermore, using an unsupervised shape classification algorithm that we developed, we show that different tau phosphorylation states are associated with distinct tau aggregate species. Our work elucidates tau's nanoscale composition under nonaggregated and aggregated conditions ex vivo.
Collapse
Affiliation(s)
- Melina Theoni Gyparaki
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Arian Arab
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Elena M Sorokina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriana N Santiago-Ruiz
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Zeng Y, Yang J, Zhang B, Gao M, Su Z, Huang Y. The structure and phase of tau: from monomer to amyloid filament. Cell Mol Life Sci 2021; 78:1873-1886. [PMID: 33078207 PMCID: PMC11073437 DOI: 10.1007/s00018-020-03681-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Tau is a microtubule-associated protein involved in regulation of assembly and spatial organization of microtubule in neurons. However, in pathological conditions, tau monomers assemble into amyloid filaments characterized by the cross-β structures in a number of neurodegenerative diseases known as tauopathies. In this review, we summarize recent progression on the characterization of structures of tau monomer and filament, as well as the dynamic liquid droplet assembly. Our aim is to reveal how post-translational modifications, amino acid mutations, and interacting molecules modulate the conformational ensemble of tau monomer, and how they accelerate or inhibit tau assembly into aggregates. Structure-based aggregation inhibitor design is also discussed in the context of dynamics and heterogeneity of tau structures.
Collapse
Affiliation(s)
- Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Bailing Zhang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
18
|
Lindberg A, Knight AC, Sohn D, Rakos L, Tong J, Radelet A, Mason NS, Stehouwer JS, Lopresti BJ, Klunk WE, Sandell J, Sandberg A, Hammarström P, Svensson S, Mathis CA, Vasdev N. Radiosynthesis, In Vitro and In Vivo Evaluation of [ 18F]CBD-2115 as a First-in-Class Radiotracer for Imaging 4R-Tauopathies. ACS Chem Neurosci 2021; 12:596-602. [PMID: 33497190 DOI: 10.1021/acschemneuro.0c00801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CBD-2115 was selected from a library of 148 compounds based on a pyridinyl-indole scaffold as a first-in-class 4R-tau radiotracer. In vitro binding assays showed [3H]CBD-2115 had a KD value of 6.9 nM and a nominal Bmax of 500 nM in 4R-tau expressing P301L transgenic mouse tissue. In binding assays with human brain tissue homogenates, [3H]CBD-2115 has a higher affinity (4.9 nM) for progressive supranuclear palsy specific 4R-tau deposits than [3H]flortaucipir (45 nM) or [3H]MK-6240 (>50 nM). [18F]CBD-2115 was reliably synthesized (3-11% radiochemical yield with molar activity of 27-111 GBq/μmol and >97% radiochemical purity). Dynamic PET imaging was conducted in mice, rats, and nonhuman primates, and all species showed initial brain uptake of 0.5-0.65 standardized uptake value with fast clearance from normal tissues. [3H]CBD-2115 could be a useful lead radioligand for further research in 4R-tauopathies, and PET radiotracer development will focus on improving brain uptake and binding affinity.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Ashley C. Knight
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry/Institute of Medical Science, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Daniel Sohn
- CBD Solutions, Center for Molecular Medicine, Karolinska Hospital, SE-17176 Stockholm, Sweden
- Novandi Chemistry AB, SE-15136 Södertälje, Sweden
| | - Laszlo Rakos
- CBD Solutions, Center for Molecular Medicine, Karolinska Hospital, SE-17176 Stockholm, Sweden
- Novandi Chemistry AB, SE-15136 Södertälje, Sweden
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - April Radelet
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - N. Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jeffrey S. Stehouwer
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Brian J. Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | | | - Alexander Sandberg
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Samuel Svensson
- CBD Solutions, Center for Molecular Medicine, Karolinska Hospital, SE-17176 Stockholm, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Chester A. Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry/Institute of Medical Science, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
19
|
Arya S, Ganguly P, Arsiccio A, Claud SL, Trapp B, Schonfeld GE, Liu X, Lazar Cantrell K, Shea JE, Bowers MT. Terminal Capping of an Amyloidogenic Tau Fragment Modulates Its Fibrillation Propensity. J Phys Chem B 2020; 124:8772-8783. [PMID: 32816481 DOI: 10.1021/acs.jpcb.0c05768] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aberrant protein folding leading to the formation of characteristic cross-β-sheet-rich amyloid structures is well known for its association with a variety of debilitating human diseases. Often, depending upon amino acid composition, only a small segment of a large protein participates in amyloid formation and is in fact capable of self-assembling into amyloid, independent of the rest of the protein. Therefore, such peptide fragments serve as useful model systems for understanding the process of amyloid formation. An important factor that has often been overlooked while using peptides to mimic full-length protein is the charge on the termini of these peptides. Here, we show the influence of terminal charges on the aggregation of an amyloidogenic peptide from microtubule-associated protein Tau, implicated in Alzheimer's disease and tauopathies. We found that modification of terminal charges by capping the peptide at one or both of the termini drastically modulates the fibrillation of the hexapeptide sequence paired helical filament 6 (PHF6) from repeat 3 of Tau, both with and without heparin. Without heparin, the PHF6 peptide capped at both termini and PHF6 capped only at the N-terminus self-assembled to form amyloid fibrils. With heparin, all capping variants of PHF6, except for PHF6 with both termini free, formed typical amyloid fibrils. However, the rate and extent of aggregation both with and without heparin as well as the morphology of aggregates were found to be highly dependent on the terminal charges. Our molecular dynamics simulations on PHF6 capping variants corroborated our experiments and provided critical insights into the mechanism of PHF6 self-assembly. Overall, our results emphasize the importance of terminal modifications in fibrillation of small peptide fragments and provide significant insights into the aggregation of a small Tau fragment, which is considered essential for Tau filament assembly.
Collapse
Affiliation(s)
- Shruti Arya
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrea Arsiccio
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Sarah L Claud
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Benjamin Trapp
- Neon Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Grace E Schonfeld
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Xikun Liu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kristi Lazar Cantrell
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
20
|
Verelst J, Geukens N, Eddarkaoui S, Vliegen D, De Smidt E, Rosseels J, Franssens V, Molenberghs S, Francois C, Stoops E, Bjerke M, Engelborghs S, Laghmouchi M, Carmans S, Buée L, Vanmechelen E, Winderickx J, Thomas D. A Novel Tau Antibody Detecting the First Amino-Terminal Insert Reveals Conformational Differences Among Tau Isoforms. Front Mol Biosci 2020; 7:48. [PMID: 32296712 PMCID: PMC7136581 DOI: 10.3389/fmolb.2020.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
As human Tau undergoes pathologically relevant post-translational modifications when expressed in yeast, the use of humanized yeast models for the generation of novel Tau monoclonal antibodies has previously been proven to be successful. In this study, human Tau2N4R-ΔK280 purified from yeast was used for the immunization of mice and subsequent selection of high affinity Tau-specific monoclonal antibodies. The characterization of four novel antibodies in different Tau model systems yielded a phosphorylation-dependent antibody (15A10), an antibody directed to the first microtubule-binding repeat domain (16B12), a carboxy-terminal antibody (20G10) and an antibody targeting an epitope on the hinge of the first and second amino-terminal insert (18F12). The latter was found to be conformation-dependent, suggesting structural differences between the Tau splicing isoforms and allowing insight in the roles played by the amino-terminal inserts. As this monoclonal antibody also has the capacity to detect tangle-like structures in different transgenic Tau mice and neurofibrillary tangles in brain sections of patients diagnosed with Alzheimer's disease, we also tested the diagnostic potential of 18F12 in a pilot study and found this monoclonal antibody to have the ability to discriminate Alzheimer's disease patients from control individuals based on increased Tau levels in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Joke Verelst
- Functional Biology, KU Leuven, Heverlee, Belgium
| | | | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | | | | | | | | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | | | | | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | |
Collapse
|
21
|
Corsetti V, Borreca A, Latina V, Giacovazzo G, Pignataro A, Krashia P, Natale F, Cocco S, Rinaudo M, Malerba F, Florio R, Ciarapica R, Coccurello R, D’Amelio M, Ammassari-Teule M, Grassi C, Calissano P, Amadoro G. Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse Alzheimer's disease models. Brain Commun 2020; 2:fcaa039. [PMID: 32954296 PMCID: PMC7425324 DOI: 10.1093/braincomms/fcaa039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidβ metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidβ-dependent and independent neuropathological and cognitive alterations in affected subjects.
Collapse
Affiliation(s)
| | - Antonella Borreca
- Humanitas University Laboratory of Pharmacology and Brain Pathology, Neuro Center, 20089 Milan, Italy
- Institute of Neuroscience, 20129 Milan, Italy
| | | | | | | | - Paraskevi Krashia
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | - Francesca Natale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Rita Florio
- European Brain Research Institute (EBRI), 00161 Rome, Italy
| | | | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Institute for Complex Systems (ISC), CNR, 00185 Rome, Italy
| | - Marcello D’Amelio
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT)–National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
22
|
Amadoro G, Latina V, Corsetti V, Calissano P. N-terminal tau truncation in the pathogenesis of Alzheimer's disease (AD): Developing a novel diagnostic and therapeutic approach. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165584. [PMID: 31676377 DOI: 10.1016/j.bbadis.2019.165584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023]
Abstract
Tau truncation occurs at early stages during the development of human Alzheimer's disease (AD) and other tauopathy dementias. Tau cleavage, particularly in its N-terminal projection domain, is able to drive per se neurodegeneration, regardless of its pro-aggregative pathway(s) and in fragment(s)-dependent way. In this short review, we highlight the pathological relevance of the 20-22 kDa NH2-truncated tau fragment which is endowed with potent neurotoxic "gain-of-function" action(s), both in vitro and in vivo. An extensive comment on its clinical value as novel progression/diagnostic biomarker and potential therapeutic target in the context of tau-mediated neurodegeneration is also provided.
Collapse
Affiliation(s)
- G Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy; Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - V Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - V Corsetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| |
Collapse
|
23
|
Use of the tau protein-to-peptide ratio in CSF to improve diagnostic classification of Alzheimer's disease. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:74-82. [PMID: 34917763 DOI: 10.1016/j.clinms.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
Cerebrospinal fluid (CSF) tau and phospho-tau are well established biomarkers of Alzheimer's disease. While these measures are conventionally referred to as 'total tau' (T-tau) and 'phospho-tau' (P-tau), several truncated and modified tau forms exist that may relay additional diagnostic information. We evaluated the diagnostic performance of an endogenous tau peptide in CSF, tau 175-190, in the phosphorylated and non-phosphorylated state. A liquid chromatography-mass spectrometry (LC-MS) method was established to measure these peptides in CSF and was used to analyze two independent clinical cohorts; the first cohort included patients with Alzheimer's disease (AD, n = 15), Parkinson's disease (PD, n = 15), progressive supranuclear palsy (PSP, n = 15), and healthy controls (n = 15), the second cohort included AD patients (n = 16), and healthy controls (n = 24). In both cohorts T-tau and P-tau concentrations were determined by immunoassay. While tau 175-190 and P-tau 175-190 did not differentiate the study groups, the separation of AD and controls by T-tau (area under the ROC Curve (AUC) = 95%) and P-tau (AUC = 92%) was improved when normalizing the ELISA measurements to the concentrations of the endogenous peptides: T-tau/tau 175-190 (AUC = 100%), P-tau/P-tau 175-190 (AUC = 95%). The separation between patients and controls by T-tau (AUC = 88%) and P-tau (AUC = 82%) was similarly improved in the second cohort by taking the ratios of T-tau/tau 175-190 (AUC = 97%) and P-tau/P-tau 175-190 (AUC = 98%). In conclusion, our results suggest that the performance of the AD biomarkers T-tau and P-tau could be improved by normalizing their measurements to the endogenous peptides tau 175-190 and P-tau 175-190, possibly because these endogenous tau peptides serve to normalize for physiological, and disease-independent, secretion of tau from neurons to the extracellular space and the CSF. Finally, the observations made here add to the general applicability of mass spectrometry as a tool for rapid identification and accurate quantification of biomarker candidates.
Collapse
Key Words
- AD
- AD, Alzheimer’s disease
- AUC, Area under the ROC curve
- Biomarker
- CSF, cerebrospinal fluid
- ELISA, enzyme-linked immunosorbent assay
- Endogenous peptides
- GdnHCl, Guanidinium hydrochloride
- Mass spectrometry
- Microtubule-associated protein tau
- P-tau, phospho-tau protein
- PD, Parkinson’s disease
- PSP, Progressive Supranuclear Palsy
- Peptidomics
- SIL, peptide Synthetic isotope-labelled peptide
- T-tau, total tau protein
Collapse
|
24
|
Afreen S, Ferreira A. Altered Cytoskeletal Composition and Delayed Neurite Elongation in tau 45-230-Expressing Hippocampal Neurons. Neuroscience 2019; 412:1-15. [PMID: 31158440 DOI: 10.1016/j.neuroscience.2019.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Calpain-mediated tau cleavage into the neurotoxic tau45-230 fragment plays an important role in Alzheimer's disease (AD). This tau fragment accumulates mainly in the cytoplasm of degenerating neurons. However, subcellular localization studies indicated that a pool of tau45-230 associates with the cytoskeleton in hippocampal neurons. In the present study, we assessed whether such localization could underlie tau45-230 neurotoxic effects. Quantitative Western blot analysis showed decreased levels of full-length tau bound to microtubules in tau45-230-expressing hippocampal neurons when compared to controls. In addition, the presence of this tau fragment induced a transient increase in tyrosinated tubulin, a marker of unstable microtubules, followed by a significant decrease in the levels of this tubulin isoform. The data obtained also showed a significant reduction in actin filaments in tau45-230-expressing neurons. These changes in microtubules and actin filaments correlated with delayed neurite elongation and axonal differentiation in the presence of this tau fragment. Together, these results suggest that tau45-230 could exert its toxic effects, at least in part, by modifying the composition of the neuronal cytoskeleton and impairing neurite elongation in neurons undergoing degeneration.
Collapse
Affiliation(s)
- Sana Afreen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Ben-Nissan G, Sharon M. The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr Opin Chem Biol 2018; 42:25-33. [PMID: 29128665 PMCID: PMC5796646 DOI: 10.1016/j.cbpa.2017.10.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
Ion-mobility mass spectrometry (IM-MS) is an approach that can provide information on the stoichiometry, composition, protein contacts and topology of protein complexes. The power of this approach lies not only in its sensitivity and speed of analysis, but also in the fact that it is a technique that can capture the repertoire of conformational states adopted by protein assemblies. Here, we describe the array of available IM-MS based tools, and demonstrate their application to the structural characterization of various protein complexes, including challenging systems as amyloid aggregates and membrane proteins. We also discuss recent studies in which IM-MS was applied towards investigations of conformational transitions and stabilization effects induced by protein interactions.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
26
|
Prezel E, Elie A, Delaroche J, Stoppin-Mellet V, Bosc C, Serre L, Fourest-Lieuvin A, Andrieux A, Vantard M, Arnal I. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles. Mol Biol Cell 2017; 29:154-165. [PMID: 29167379 PMCID: PMC5909928 DOI: 10.1091/mbc.e17-06-0429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 11/11/2022] Open
Abstract
Tau is a neuronal microtubule bundler that is known to stabilize microtubules by promoting their growth and inhibiting their shrinkage. This study reveals novel mechanisms by which tau is able to switch microtubule network organizations via the differential regulation of microtubule bundling and dynamics. In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau’s ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo–electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau’s ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration.
Collapse
Affiliation(s)
- Elea Prezel
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Auréliane Elie
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Julie Delaroche
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Virginie Stoppin-Mellet
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Christophe Bosc
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes
| | - Laurence Serre
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Centre National de la Recherche Scientifique, Grenoble Institut des Neurosci ences, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Anne Fourest-Lieuvin
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Annie Andrieux
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Marylin Vantard
- Inserm, U1216, Université Grenoble Alpes.,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Centre National de la Recherche Scientifique, Grenoble Institut des Neurosci ences, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| | - Isabelle Arnal
- Inserm, U1216, Université Grenoble Alpes .,Grenoble Institut des Neurosciences, Université Grenoble Alpes.,Centre National de la Recherche Scientifique, Grenoble Institut des Neurosci ences, Institut de Biosciences et Biotechnologies de Grenoble, F-38000 Grenoble, France
| |
Collapse
|
27
|
Stern JL, Lessard DV, Hoeprich GJ, Morfini GA, Berger CL. Phosphoregulation of Tau modulates inhibition of kinesin-1 motility. Mol Biol Cell 2017; 28:1079-1087. [PMID: 28251926 PMCID: PMC5391184 DOI: 10.1091/mbc.e16-10-0728] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/30/2017] [Accepted: 02/22/2017] [Indexed: 11/11/2022] Open
Abstract
Microtubule-based axonal transport is tightly regulated by numerous pathways, ensuring appropriate delivery of specific organelle cargoes to selected subcellular domains. Highlighting the importance of this process, pathological evidence has linked alterations in these pathways to the pathogenesis of several neurodegenerative diseases. An important regulator of this system, the microtubule-associated protein Tau, has been shown to participate in signaling cascades, modulate microtubule dynamics, and preferentially inhibit kinesin-1 motility. However, the cellular means of regulating Tau's inhibition of kinesin-1 motility remains unknown. Tau is subject to various posttranslational modifications, including phosphorylation, but whether phosphorylation regulates Tau on the microtubule surface has not been addressed. It has been shown that tyrosine 18 phosphorylated Tau regulates inhibition of axonal transport in the disease state. Tyrosine 18 is both a disease- and nondisease-state modification and is therefore an attractive starting point for understanding control of Tau's inhibition of kinesin-1 motility. We show that pseudophosphorylation of tyrosine 18 reduces 3RS-Tau's inhibition of kinesin-1 motility. In addition, we show that introduction of negative charge at tyrosine 18 shifts Tau's previously described static-dynamic state binding equilibrium toward the dynamic state. We also present the first evidence of Tau's static-dynamic state equilibrium under physiological conditions.
Collapse
Affiliation(s)
- Jamie L Stern
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Dominique V Lessard
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Gregory J Hoeprich
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Christopher L Berger
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405 .,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
28
|
Pang X, Jia C, Chen Z, Li L. Structural Characterization of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using T-Wave Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:110-118. [PMID: 27822705 PMCID: PMC5177490 DOI: 10.1007/s13361-016-1523-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 05/03/2023]
Abstract
The D-residues are crucial to biological function of D-amino acid containing peptides (DAACPs). Previous ion mobility mass spectrometry (IM-MS) studies revealing oligomerization patterns of amyloid cascade demonstrated conversion from native soluble unstructured assembly to fibril ß-sheet oligomers, which has been implicated in amyloid diseases, such as Alzheimer's disease and type 2 diabetes. Although neuropeptides are typically present at very low concentrations in circulation, their local concentrations could be much higher in large dense core vesicles, forming dimers or oligomers. We studied the oligomerization of protonated and metal-adducted achatin I and dermorphin peptide isomers with IM-MS. Our results suggested that dimerization, oligomerization, and metal adduction augment the structural differences between D/L peptide isomers compared to protonated monomers. Dimers and oligomers enhanced the structural differences between D/L peptide isomers in both aqueous and organic solvent system. Furthermore, some oligomer forms were only observed for either D- or L-isomers, indicating the importance of chiral center in oligomerization process. The oligomerization patterns of D/L isomers appear to be similar. Potassium adducts were detected to enlarge the structural differences between D/L isomers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Xueqin Pang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chenxi Jia
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
29
|
Subramanian S, Savanur G, Madhavadas S. Passive immunization targeting the N-terminal region of phosphorylated tau (residues 68-71) improves spatial memory in okadaic acid induced tauopathy model rats. Biochem Biophys Res Commun 2016; 483:585-589. [PMID: 27998769 DOI: 10.1016/j.bbrc.2016.12.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, characterized by progressive loss of memory and other cognitive functions. The cognitive impairment in patients with AD is closely associated with loss of synapses and the formation of neurofibrillary tangles (NFT) containing hyperphosphorylated tau in the hippocampus. Effective treatment for AD is still not available. In this study, the sequence comprising of residues 50-71 in the N-terminal region of tau, containing theoretically predicted B- and T-cell epitopes in close proximity to pathologically relevant phospho-serine (residue 68) and phospho-threonine (residues 69, 71) was selected as a potential immunotherapeutic peptide. This 22-residue long phospho-peptide (50TPTEDGSEEPGSETSDAKpSpTPpT71) was custom synthesized and its therapeutic potential was tested in experimental rats. For this purpose, adult Sprague-Dawley rats were intranasally treated with okadaic acid (OA), a selective inhibitor of protein phosphatase PP2A. Within a day of OA administration, these rats showed marked impairment in cognitive functions with a significant increase in p-tau/t-tau ratio in the hippocampal homogenates. Passive immunization studies conducted in these OA treated rats with polyclonal anti-phospho-peptide antibodies resulted in a significant improvement in learning and memory functions in Barne's maze task. Further, p-tau levels in the hippocampal homogenates were reduced. In addition, these antibodies effectively prevented the aggregation of recombinant tau in vitro. These results demonstrate that targeting N-terminal region of tau harbouring the phospho-residue cluster 68-71 would be beneficial and may present an effective therapeutic opportunity for AD and other tauopathies.
Collapse
Affiliation(s)
- Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India.
| | - Ganesh Savanur
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| | - Sowmya Madhavadas
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| |
Collapse
|
30
|
Abstract
Tau is an intrinsically disordered protein with an important role in maintaining the dynamic instability of neuronal microtubules. Despite intensive study, a detailed understanding of the functional mechanism of tau is lacking. Here, we address this deficiency by using intramolecular single-molecule Förster Resonance Energy Transfer (smFRET) to characterize the conformational ensemble of tau bound to soluble tubulin heterodimers. Tau adopts an open conformation on binding tubulin, in which the long-range contacts between both termini and the microtubule binding region that characterize its compact solution structure are diminished. Moreover, the individual repeats within the microtubule binding region that directly interface with tubulin expand to accommodate tubulin binding, despite a lack of extension in the overall dimensions of this region. These results suggest that the disordered nature of tau provides the significant flexibility required to allow for local changes in conformation while preserving global features. The tubulin-associated conformational ensemble is distinct from its aggregation-prone one, highlighting differences between functional and dysfunctional states of tau. Using constraints derived from our measurements, we construct a model of tubulin-bound tau, which draws attention to the importance of the role of tau's conformational plasticity in function.
Collapse
|
31
|
Avila J, Jiménez JS, Sayas CL, Bolós M, Zabala JC, Rivas G, Hernández F. Tau Structures. Front Aging Neurosci 2016; 8:262. [PMID: 27877124 PMCID: PMC5099159 DOI: 10.3389/fnagi.2016.00262] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
Tau is a microtubule-associated protein that plays an important role in axonal stabilization, neuronal development, and neuronal polarity. In this review, we focus on the primary, secondary, tertiary, and quaternary tau structures. We describe the structure of tau from its specific residues until its conformation in dimers, oligomers, and larger polymers in physiological and pathological situations.
Collapse
Affiliation(s)
- Jesus Avila
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| | - Juan S Jiménez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid Madrid, Spain
| | - Carmen L Sayas
- Centre for Biomedical Research of the Canary Islands, Institute for Biomedical Technologies, University of La Laguna Tenerife, Spain
| | - Marta Bolós
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| | - Juan C Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IDIVAL-Universidad de Cantabria Santander, Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Felix Hernández
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| |
Collapse
|