1
|
Moriyama Y, Hasuzawa N, Nomura M. María Teresa Miras Portugal: a pioneer for vesicular nucleotide storage. Purinergic Signal 2024; 20:93-98. [PMID: 36525101 PMCID: PMC10997567 DOI: 10.1007/s11302-022-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chromaffin granules are secretory granules present in adrenal medulla chromaffin cells. They contain high contents of catecholamines and nucleotides and have been regarded as a model system for the study of vesicular transmitter uptake and release. In 1988, Dr. María Teresa Miras Portugal, when studying catecholamine biosynthesis, detected a novel group of nucleotides, the diadenosine polyphosphates, in the adrenal chromaffin granules. Based on this finding, she unraveled the existence of diadenosine polyphosphate-mediated chemical transmission, leading to a paradigm shift in the field of purinergic signaling. She is also a pioneer in the studies on vesicular nucleotide storage. First, María Teresa and her group characterized nucleotide transport in chromaffin granules and synaptic vesicles using fluorescent nucleotide derivatives such as 1, N6-ethenoadenosine triphosphates. Then, they revealed the presence of a hypothetical vesicular nucleotide transporter with unique properties in terms of substrate specificity. In this article, we will describe her contributions to vesicular nucleotide storage and the foundations she laid for future studies.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan.
| | - Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
2
|
Denison JD, De Alwis AC, Shah R, McCarty GS, Sombers LA. Untapped Potential: Real-Time Measurements of Opioid Exocytosis at Single Cells. J Am Chem Soc 2023; 145:24071-24080. [PMID: 37857375 PMCID: PMC10637323 DOI: 10.1021/jacs.3c07487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/21/2023]
Abstract
The endogenous opioid system is commonly targeted in pain treatment, but the fundamental nature of neuropeptide release remains poorly understood due to a lack of methods for direct detection of specific opioid neuropeptides in situ. These peptides are concentrated in, and released from, large dense-core vesicles in chromaffin cells. Although catecholamine release from these neuroendocrine cells is well characterized, the direct quantification of opioid peptide exocytosis events has not previously been achieved. In this work, a planar carbon-fiber microelectrode served as a "postsynaptic" sensor for probing catecholamine and neuropeptide release dynamics via amperometric monitoring. A constant potential of 500 mV was employed for quantification of catecholamine release, and a higher potential of 1000 mV was used to drive oxidation of tyrosine, the N-terminal amino acid in the opioid neuropeptides released from chromaffin cells. By discriminating the results collected at the two potentials, the data reveal unique kinetics for these two neurochemical classes at the single-vesicle level. The amplitude of the peptidergic signals decreased with repeat stimulation, as the halfwidth of these signals simultaneously increased. By contrast, the amplitude of catecholamine release events increased with repeat stimulation, but the halfwidth of each event did not vary. The chromogranin dense core was identified as an important mechanistic handle by which separate classes of transmitter can be kinetically modulated when released from the same population of vesicles. Overall, the data provide unprecedented insight into key differences between catecholamine and opioid neuropeptide release from isolated chromaffin cells.
Collapse
Affiliation(s)
- J. Dylan Denison
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - A. Chathuri De Alwis
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ruby Shah
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
De Alwis AC, Denison JD, Shah R, McCarty GS, Sombers LA. Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells. ACS Sens 2023; 8:3187-3194. [PMID: 37552870 PMCID: PMC10464603 DOI: 10.1021/acssensors.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Carbon fiber microelectrodes are commonly used for real-time monitoring of individual exocytosis events at single cells. Since the nature of an electrochemical signal is fundamentally governed by mass transport to the electrode surface, microelectrode geometry can be exploited to achieve precise and accurate measurements. Researchers traditionally pair amperometric measurements of exocytosis with a ∼10-μm diameter, disk microelectrode in an "artificial synapse" configuration to directly monitor individual release events from single cells. Exocytosis is triggered, and released molecules diffuse to the "post-synaptic" electrode for oxidation. This results in a series of distinct current spikes corresponding to individual exocytosis events. However, it remains unclear how much of the material escapes detection. In this work, the performance of 10- and 34-μm diameter carbon fiber disk microelectrodes was directly compared in monitoring exocytosis at single chromaffin cells. The 34-μm diameter electrode was more sensitive to catecholamines and enkephalins than its traditional, 10-μm diameter counterpart, and it more effectively covered the entire cell. As such, the larger sensor detected more exocytosis events overall, as well as a larger quantal size, suggesting that the traditional tools underestimate the above measurements. Both sensors reliably measured l-DOPA-evoked changes in quantal size, and both exhibited diffusional loss upon adjustment of cell-electrode spacing. Finite element simulations using COMSOL support the improved collection efficiency observed using the larger sensor. Overall, this work demonstrates how electrode geometry can be exploited for improved detection of exocytosis events by addressing diffusional loss─an often-overlooked source of inaccuracy in single-cell measurements.
Collapse
Affiliation(s)
- A. Chathuri De Alwis
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - J. Dylan Denison
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Ruby Shah
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Lin Z, Li Y, Hang Y, Wang C, Liu B, Li J, Yin L, Jiang X, Du X, Qiao Z, Zhu F, Zhang Z, Zhang Q, Zhou Z. Tuning the Size of Large Dense-Core Vesicles and Quantal Neurotransmitter Release via Secretogranin II Liquid-Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202263. [PMID: 35896896 PMCID: PMC9507364 DOI: 10.1002/advs.202202263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Large dense-core vesicles (LDCVs) are larger in volume than synaptic vesicles, and are filled with multiple neuropeptides, hormones, and neurotransmitters that participate in various physiological processes. However, little is known about the mechanism determining the size of LDCVs. Here, it is reported that secretogranin II (SgII), a vesicle matrix protein, contributes to LDCV size regulation through its liquid-liquid phase separation in neuroendocrine cells. First, SgII undergoes pH-dependent polymerization and the polymerized SgII forms phase droplets with Ca2+ in vitro and in vivo. Further, the Ca2+ -induced SgII droplets recruit reconstituted bio-lipids, mimicking the LDCVs biogenesis. In addition, SgII knockdown leads to significant decrease of the quantal neurotransmitter release by affecting LDCV size, which is differently rescued by SgII truncations with different degrees of phase separation. In conclusion, it is shown that SgII is a unique intravesicular matrix protein undergoing liquid-liquid phase separation, and present novel insights into how SgII determines LDCV size and the quantal neurotransmitter release.
Collapse
Affiliation(s)
- Zhaohan Lin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Yinglin Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Yuqi Hang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Yin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xiaohan Jiang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xingyu Du
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhongjun Qiao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Quanfeng Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
5
|
Arribas-Blázquez M, Olivos-Oré LA, Barahona MV, Wojnicz A, De Pascual R, Sánchez de la Muela M, García AG, Artalejo AR. The Adrenal Medulla Modulates Mechanical Allodynia in a Rat Model of Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21218325. [PMID: 33171955 PMCID: PMC7664230 DOI: 10.3390/ijms21218325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 01/26/2023] Open
Abstract
We have investigated whether the stress response mediated by the adrenal medulla in rats subjected to chronic constriction injury of the sciatic nerve (CCI) modulates their nocifensive behavior. Treatment with SK29661 (300 mg/kg; intraperitoneal (I.P.)), a selective inhibitor of phenylethanolamine N-methyltransferase (PNMT) that converts noradrenaline (NA) into adrenaline (A), fully reverted mechanical allodynia in the injured hind paw without affecting mechanical sensitivity in the contralateral paw. The effect was fast and reversible and was associated with a decrease in the A to NA ratio (A/NA) in the adrenal gland and circulating blood, an A/NA that was elevated by CCI. 1,2,3,4-tetrahydroisoquinoline-7-sulfonamide (SKF29661) did not affect exocytosis evoked by Ca2+ entry as well as major ionic conductances (voltage-gated Na+, Ca2+, and K+ channels, nicotinic acetylcholine receptors) involved in stimulus-secretion coupling in chromaffin cells, suggesting that it acted by changing the relative content of the two adrenal catecholamines. Denervation of the adrenal medulla by surgical splanchnectomy attenuated mechanical allodynia in neuropathic animals, hence confirming the involvement of the adrenal medulla in the pathophysiology of the CCI model. Inhibition of PNMT appears to be an effective and probably safe way to modulate adrenal medulla activity and, in turn, to alleviate pain secondary to the injury of a peripheral nerve.
Collapse
Affiliation(s)
- Marina Arribas-Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| | - Luis Alcides Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| | - María Victoria Barahona
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| | - Aneta Wojnicz
- Departamento de Farmacología, Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.W.); (R.D.P.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Ricardo De Pascual
- Departamento de Farmacología, Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.W.); (R.D.P.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Mercedes Sánchez de la Muela
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, 20040 Madrid, Spain;
| | - Antonio G. García
- Departamento de Farmacología, Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (A.W.); (R.D.P.); (A.G.G.)
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, 28006 Madrid, Spain
| | - Antonio R. Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty and Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.A.-B.); (L.A.O.-O.); (M.V.B.)
- Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-943-851
| |
Collapse
|
6
|
Mono- and Poly-unsaturated Phosphatidic Acid Regulate Distinct Steps of Regulated Exocytosis in Neuroendocrine Cells. Cell Rep 2020; 32:108026. [DOI: 10.1016/j.celrep.2020.108026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
|
7
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
8
|
Intricacies of the Molecular Machinery of Catecholamine Biosynthesis and Secretion by Chromaffin Cells of the Normal Adrenal Medulla and in Pheochromocytoma and Paraganglioma. Cancers (Basel) 2019; 11:cancers11081121. [PMID: 31390824 PMCID: PMC6721535 DOI: 10.3390/cancers11081121] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The adrenal medulla is composed predominantly of chromaffin cells producing and secreting the catecholamines dopamine, norepinephrine, and epinephrine. Catecholamine biosynthesis and secretion is a complex and tightly controlled physiologic process. The pathways involved have been extensively studied, and various elements of the underlying molecular machinery have been identified. In this review, we provide a detailed description of the route from stimulus to secretion of catecholamines by the normal adrenal chromaffin cell compared to chromaffin tumor cells in pheochromocytomas. Pheochromocytomas are adrenomedullary tumors that are characterized by uncontrolled synthesis and secretion of catecholamines. This uncontrolled secretion can be partly explained by perturbations of the molecular catecholamine secretory machinery in pheochromocytoma cells. Chromaffin cell tumors also include sympathetic paragangliomas originating in sympathetic ganglia. Pheochromocytomas and paragangliomas are usually locally confined tumors, but about 15% do metastasize to distant locations. Histopathological examination currently poorly predicts future biologic behavior, thus long term postoperative follow-up is required. Therefore, there is an unmet need for prognostic biomarkers. Clearer understanding of the cellular mechanisms involved in the secretory characteristics of pheochromocytomas and sympathetic paragangliomas may offer one approach for the discovery of novel prognostic biomarkers for improved therapeutic targeting and monitoring of treatment or disease progression.
Collapse
|
9
|
Differential effects of the retinopathy of prematurity exam on the physiology of premature infants. J Perinatol 2019; 39:708-716. [PMID: 30755719 PMCID: PMC6483876 DOI: 10.1038/s41372-019-0331-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/31/2018] [Accepted: 01/15/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To compare the differential effects of the retinopathy of prematurity (ROP) examination on the physiology of premature infants with and without oxygen support. STUDY DESIGN We collected data from 42 premature infants (room air = 19, oxygen support = 23) and compared physiological metrics including heart rate (HR), systemic peripheral saturation (SpO2), mesenteric tissue oxygen saturation (StO2) and clinical events (oxygen desaturation episodes, bradycardia events, and gastric residuals). RESULTS We found significant differences between groups in HR during and briefly after the exam, and in mesenteric StO2, during eye drop administration, eye exam, and up to 8 min after the exam. SpO2 was significantly different between the groups at all time points. Gastric residuals were higher after the exam in infants on oxygen support, compared to baseline. CONCLUSION Premature infants on oxygen support may be at a higher risk of adverse physiologic effects in response to the ROP exam.
Collapse
|
10
|
Álvarez de Toledo G, Montes MÁ, Montenegro P, Borges R. Phases of the exocytotic fusion pore. FEBS Lett 2018; 592:3532-3541. [PMID: 30169901 DOI: 10.1002/1873-3468.13234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
Abstract
Membrane fusion and fission are fundamental processes in living organisms. Membrane fusion occurs through the formation of a fusion pore, which is the structure that connects two lipid membranes during their fusion. Fusion pores can form spontaneously, but cells endow themselves with a set of proteins that make the process of fusion faster and regulatable. The fusion pore starts with a narrow diameter and dilates relatively slowly; it may fluctuate in size or can even close completely, producing a transient vesicle fusion (kiss-and-run), or can finally expand abruptly to release all vesicle contents. A set of proteins control the formation, dilation, and eventual closure of the fusion pore and, therefore, the velocity at which the contents of secretory vesicles are released to the extracellular medium. Thus, the regulation of fusion pore expansion or closure is key to regulate the release of neurotransmitters and hormones. Here, we review the phases of the fusion pore and discuss the implications in the modes of exocytosis.
Collapse
Affiliation(s)
| | - María Ángeles Montes
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Pablo Montenegro
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Spain
| |
Collapse
|
11
|
Taleat Z, Estévez-Herrera J, Machado JD, Dunevall J, Ewing AG, Borges R. Electrochemical Investigation of the Interaction between Catecholamines and ATP. Anal Chem 2018; 90:1601-1607. [PMID: 29286231 DOI: 10.1021/acs.analchem.7b02494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.
Collapse
Affiliation(s)
- Zahra Taleat
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , 41296 Gothenburg, Sweden
| | - Judith Estévez-Herrera
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - José D Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , 41296 Gothenburg, Sweden.,Department of Chemistry and Chemical Biology, University of Gothenburg , 41296 Gothenburg, Sweden
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.,Instituto Universitario de BioOrgánica, Universidad de La Laguna , 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
12
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
13
|
Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B, Angelone T, Cerra MC, Nowosielski Y, Mätzler R, Troger J, Gayen JR, Trudeau V, Corti A, Helle KB. Granin-derived peptides. Prog Neurobiol 2017; 154:37-61. [PMID: 28442394 DOI: 10.1016/j.pneurobio.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022]
Abstract
The granin family comprises altogether 7 different proteins originating from the diffuse neuroendocrine system and elements of the central and peripheral nervous systems. The family is dominated by three uniquely acidic members, namely chromogranin A (CgA), chromogranin B (CgB) and secretogranin II (SgII). Since the late 1980s it has become evident that these proteins are proteolytically processed, intragranularly and/or extracellularly into a range of biologically active peptides; a number of them with regulatory properties of physiological and/or pathophysiological significance. The aim of this comprehensive overview is to provide an up-to-date insight into the distribution and properties of the well established granin-derived peptides and their putative roles in homeostatic regulations. Hence, focus is directed to peptides derived from the three main granins, e.g. to the chromogranin A derived vasostatins, betagranins, pancreastatin and catestatins, the chromogranin B-derived secretolytin and the secretogranin II-derived secretoneurin (SN). In addition, the distribution and properties of the chromogranin A-derived peptides prochromacin, chromofungin, WE14, parastatin, GE-25 and serpinins, the CgB-peptide PE-11 and the SgII-peptides EM66 and manserin will also be commented on. Finally, the opposing effects of the CgA-derived vasostatin-I and catestatin and the SgII-derived peptide SN on the integrity of the vasculature, myocardial contractility, angiogenesis in wound healing, inflammatory conditions and tumors will be discussed.
Collapse
Affiliation(s)
- Josef Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Markus Theurl
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Bruno Tota
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Maria C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raphaela Mätzler
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Troger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Vance Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Angelo Corti
- Vita-Salute San Raffaele University and Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Karen B Helle
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|