1
|
Furrer R, Dilbaz S, Steurer SA, Santos G, Karrer-Cardel B, Ritz D, Sinnreich M, Handschin C. Metabolic dysregulation contributes to the development of dysferlinopathy. Life Sci Alliance 2025; 8:e202402991. [PMID: 40021220 PMCID: PMC11871293 DOI: 10.26508/lsa.202402991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Dysferlin is a transmembrane protein that plays a prominent role in membrane repair of damaged muscle fibers. Accordingly, mutations in the dysferlin gene cause progressive muscular dystrophies, collectively referred to as dysferlinopathies for which no effective treatment exists. Unexpectedly, experimental approaches that successfully restore membrane repair fail to prevent a dystrophic phenotype, suggesting that additional, hitherto unknown dysferlin-dependent functions contribute to the development of the pathology. Our experiments revealed an altered metabolic phenotype in dysferlin-deficient muscles, characterized by (1) mitochondrial abnormalities and elevated death signaling and (2) increased glucose uptake, reduced glycolytic protein levels, and pronounced glycogen accumulation. Strikingly, elevating mitochondrial volume density and muscle glycogen accelerates disease progression; whereas, improvement of mitochondrial function and recruitment of muscle glycogen with exercise ameliorated functional parameters in a mouse model of dysferlinopathy. Collectively, our results not only shed light on a metabolic function of dysferlin but also imply new therapeutic avenues aimed at promoting mitochondrial function and normalizing muscle glycogen to ameliorate dysferlinopathies, complementing efforts that target membrane repair.
Collapse
Affiliation(s)
| | - Sedat Dilbaz
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Gesa Santos
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Sinnreich
- Department of Biomedicine and Neurology, University and University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
2
|
Khodabukus A, Prabhu NK, Roberts T, Buldo M, Detwiler A, Fralish ZD, Kondash ME, Truskey GA, Koves TR, Bursac N. Bioengineered Model of Human LGMD2B Skeletal Muscle Reveals Roles of Intracellular Calcium Overload in Contractile and Metabolic Dysfunction in Dysferlinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400188. [PMID: 38887849 PMCID: PMC11336985 DOI: 10.1002/advs.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Indexed: 06/20/2024]
Abstract
Dysferlin is a multi-functional protein that regulates membrane resealing, calcium homeostasis, and lipid metabolism in skeletal muscle. Genetic loss of dysferlin results in limb girdle muscular dystrophy 2B/2R (LGMD2B/2R) and other dysferlinopathies - rare untreatable muscle diseases that lead to permanent loss of ambulation in humans. The mild disease severity in dysferlin-deficient mice and diverse genotype-phenotype relationships in LGMD2B patients have prompted the development of new in vitro models for personalized studies of dysferlinopathy. Here the first 3-D tissue-engineered hiPSC-derived skeletal muscle ("myobundle") model of LGMD2B is described that exhibits compromised contractile function, calcium-handling, and membrane repair, and transcriptomic changes indicative of impaired oxidative metabolism and mitochondrial dysfunction. In response to the fatty acid (FA) challenge, LGMD2B myobundles display mitochondrial deficits and intracellular lipid droplet (LD) accumulation. Treatment with the ryanodine receptor (RyR) inhibitor dantrolene or the dissociative glucocorticoid vamorolone restores LGMD2B contractility, improves membrane repair, and reduces LD accumulation. Lastly, it is demonstrated that chemically induced chronic RyR leak in healthy myobundles phenocopies LGMD2B contractile and metabolic deficit, but not the loss of membrane repair capacity. Together, these results implicate intramyocellular Ca2+ leak as a critical driver of dysferlinopathic phenotype and validate the myobundle system as a platform to study LGMD2B pathogenesis.
Collapse
Affiliation(s)
| | - Neel K. Prabhu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Taylor Roberts
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Meghan Buldo
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Amber Detwiler
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Megan E. Kondash
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Timothy R. Koves
- Duke Molecular Physiology InstituteDuke UniversityDurhamNC27708USA
| | - Nenad Bursac
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
3
|
Gowthami N, Pursotham N, Dey G, Ghose V, Sathe G, Pruthi N, Shukla D, Gayathri N, Santhoshkumar R, Padmanabhan B, Chandramohan V, Mahadevan A, Srinivas Bharath MM. Neuroanatomical zones of human traumatic brain injury reveal significant differences in protein profile and protein oxidation: Implications for secondary injury events. J Neurochem 2023; 167:218-247. [PMID: 37694499 DOI: 10.1111/jnc.15953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.
Collapse
Affiliation(s)
- Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nithya Pursotham
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gourav Dey
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Vivek Ghose
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Gajanan Sathe
- Proteomics and Bioinformatics Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Institute of Bioinformatics, Bengaluru, India
| | - Nupur Pruthi
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology (SIT), Tumakuru, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Krishnappa G, Mandal M, Ganesan S, Babu S, Padavattan S, Haradara Bahubali VK, Padmanabhan B. Structural and biochemical insights into the bacteriophage PlyGRCS endolysin targeting methicillin-resistant Staphylococcus aureus (MRSA) and serendipitous discovery of its interaction with a cold shock protein C (CspC). Protein Sci 2023; 32:e4737. [PMID: 37497650 PMCID: PMC10443338 DOI: 10.1002/pro.4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes life-threatening human infections. Bacteriophage-encoded endolysins degrade the cell walls of Gram-positive bacteria by selectively hydrolyzing the peptidoglycan layer and thus are promising candidates to combat bacterial infections. PlyGRCS, the S. aureus-specific bacteriophage endolysin, contains a catalytic CHAP domain and a cell-wall binding SH3_5 domain connected by a linker. Here, we show the crystal structure of full-length PlyGRCS refined to 2.1 Å resolution. In addition, a serendipitous finding revealed that PlyGRCS binds to cold-shock protein C (CspC) by interacting with its CHAP and SH3_5 domains. CspC is an RNA chaperone that plays regulatory roles by conferring bacterial adaptability to various stress conditions. PlyGRCS has substantial lytic activity against S. aureus and showed only minimal change in its lytic activity in the presence of CspC. Whereas the PlyGRCS-CspC complex greatly reduced CspC-nucleic acid binding, the aforesaid complex may downregulate the CspC function during bacterial infection. Overall, the crystal structure and biochemical results of PlyGRCS provide a molecular basis for the bacteriolytic activity of PlyGRCS against S. aureus.
Collapse
Affiliation(s)
- Gopinatha Krishnappa
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Mitali Mandal
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Saranya Ganesan
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Sudhagar Babu
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - Sivaraman Padavattan
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | | | - Balasundaram Padmanabhan
- Department of BiophysicsNational Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| |
Collapse
|
5
|
Chithra Y, Dey G, Ghose V, Chandramohan V, Gowthami N, Vasudev V, Srinivas Bharath MM. Mitochondrial Complex I Inhibition in Dopaminergic Neurons Causes Altered Protein Profile and Protein Oxidation: Implications for Parkinson's disease. Neurochem Res 2023:10.1007/s11064-023-03907-x. [PMID: 36964824 DOI: 10.1007/s11064-023-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Yogeshachar Chithra
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - Gourav Dey
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Vivek Ghose
- Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India
| | - Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India
| | - V Vasudev
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India.
| |
Collapse
|
6
|
Anusha-Kiran Y, Mol P, Dey G, Bhat FA, Chatterjee O, Deolankar SC, Philip M, Prasad TSK, Srinivas Bharath MM, Mahadevan A. Regional heterogeneity in mitochondrial function underlies region specific vulnerability in human brain ageing: Implications for neurodegeneration. Free Radic Biol Med 2022; 193:34-57. [PMID: 36195160 DOI: 10.1016/j.freeradbiomed.2022.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Selective neuronal vulnerability (SNV) of specific neuroanatomical regions such as frontal cortex (FC) and hippocampus (HC) is characteristic of age-associated neurodegenerative diseases (NDDs), although its pathogenetic basis remains unresolved. We hypothesized that physiological differences in mitochondrial function in neuroanatomical regions could contribute to SNV. To investigate this, we evaluated mitochondrial function in human brains (age range:1-90 y) in FC, striatum (ST), HC, cerebellum (CB) and medulla oblongata (MD), using enzyme assays and quantitative proteomics. Striking differences were noted in resistant regions- MD and CB compared to the vulnerable regions- FC, HC and ST. At younger age (25 ± 5 y), higher activity of electron transport chain enzymes and upregulation of metabolic and antioxidant proteins were noted in MD compared to FC and HC, that was sustained with increasing age (≥65 y). In contrast, the expression of synaptic proteins was higher in FC, HC and ST (vs. MD). In line with this, quantitative phospho-proteomics revealed activation of upstream regulators (ERS, PPARα) of mitochondrial metabolism and inhibition of synaptic pathways in MD. Microtubule Associated Protein Tau (MAPT) showed overexpression in FC, HC and ST both in young and older age (vs. MD). MAPT hyperphosphorylation and the activation of its kinases were noted in FC and HC with age. Our study demonstrates that regional heterogeneity in mitochondrial and other cellular functions contribute to SNV and protect regions such as MD, while rendering FC and HC vulnerable to NDDs. The findings also support the "last in, first out" hypothesis of ageing, wherein regions such as FC, that are the most recent to develop phylogenetically and ontogenetically, are the first to be affected in ageing and NDDs.
Collapse
Affiliation(s)
- Yarlagadda Anusha-Kiran
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India; Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, White Field, Bangalore, 560066, India; Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Mariamma Philip
- Department of Biostatistics, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, India.
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, 560029, India.
| |
Collapse
|
7
|
The role of amyloid β in the pathological mechanism of GNE myopathy. Neurol Sci 2022; 43:6309-6321. [PMID: 35904705 PMCID: PMC9616754 DOI: 10.1007/s10072-022-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
GNE myopathy is a hereditary muscle disorder characterized by muscle atrophy and weakness initially involving the lower distal extremities. The treatment of GNE myopathy mainly focuses on a sialic acid deficiency caused by a mutation in the GNE gene, but it has not achieved the expected effect. The main pathological features of GNE myopathy are myofiber atrophy and rimmed vacuoles, including accumulation of amyloid β, which is mainly found in atrophic muscle fibers. Although the role of amyloid β and other misfolded proteins on the nervous system has been widely recognized, the cause and process of the formation of amyloid β in the pathological process of GNE myopathy are unclear. In addition, amyloid β has been reported to be linked to quality control mechanisms of proteins, such as molecular chaperones, the ubiquitin–proteasome system, and the autophagy-lysosome system. Herein, we summarize the possible reasons for amyloid β deposition and illustrate amyloid β-mediated events in the cells and their role in muscle atrophy in GNE myopathy. This review represents an overview of amyloid β and GNE myopathy that could help identify a potential mechanism and thereby a plausible therapeutic for the disease.
Collapse
|
8
|
Wu D, Chen M, Chen S, Zhang S, Chen Y, Zhao Q, Xue K, Xue F, Chen X, Zhou M, Li H, Zheng J, Le Y, Cao H. Enhanced tryptophan-kynurenine metabolism via indoleamine 2,3-dioxygenase 1 induction in dermatomyositis. Clin Rheumatol 2022; 41:3107-3117. [PMID: 35778590 PMCID: PMC9485101 DOI: 10.1007/s10067-022-06263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
Objectives Extrahepatic tryptophan (Trp)-kynurenine (Kyn) metabolism via indoleamine 2,3-dioxygenase 1 (IDO1) induction was found to be associated with intrinsic immune regulation. However, the Trp-Kyn metabolism–associated immune regulation in dermatomyositis (DM) remains unknown. Therefore, we aimed to investigate the clinical relevance of the Trp-Kyn metabolism via IDO1 induction in DM. Methods Liquid chromatography-mass spectrometry (HPLC–MS) was used to examine the serum Kyn and Trp concentrations in DM. In addition, we used X-tile software to determine the optimal cutoff value of the Kyn/Trp ratio, a surrogate marker for Trp-Kyn metabolism. Spearman analysis was performed to evaluate the association of Trp-Kyn metabolism with muscle enzymes and inflammatory markers. Results DM patients had significantly higher serum Kyn/Trp ratio (× 10−3) when compared with the healthy controls. The serum Kyn/Trp ratio was positively correlated with the levels of muscle enzymes and inflammatory markers. In addition, the serum Kyn/Trp ratio significantly decreased (36.89 (26.00–54.00) vs. 25.00 (18.00–37.00), P = 0.0006) after treatment. DM patients with high serum Kyn/Trp ratio had a significantly higher percentage of muscle weakness symptoms (62.5% vs. 20.0%, P = 0.019) and higher levels of LDH (316.0 (236.0–467.0) vs. 198.0 (144.0–256.0), P = 0.004) and AST (56.5 (35.0–92.2) vs. 23.0 (20.0–36.0), P = 0.002)) than those with low serum Kyn/Trp ratio. Multiple Cox regression analyses identified ln(Kyn/Trp) (HR 4.874, 95% CI 1.105–21.499, P = 0.036) as an independent prognostic predictor of mortality in DM. Conclusions DM patients with enhanced Trp-Kyn metabolism at disease onset are characterized by more severe disease status and poor prognosis. Intrinsic immune regulation function via enhanced Trp-Kyn metabolism by IDO1 induction may be a potential therapeutic target in DM.Key Points • HPLC–MS identified increased serum Kyn/Trp ratio in DM patients, which positively correlated with levels of muscle enzymes and inflammatory markers and was downregulated upon treatment. • Cox regression analyses identified ln(Kyn/Trp) as an independent prognostic predictor of mortality in DM. • Monitoring intrinsic immune regulation function should be considered a potential therapeutic target in DM patients. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-022-06263-3.
Collapse
Affiliation(s)
- Dan Wu
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Mengya Chen
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Shile Chen
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Shimin Zhang
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yongheng Chen
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Qian Zhao
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Ke Xue
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Feng Xue
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yunchen Le
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Hua Cao
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
9
|
Harsha PK, Ranganayaki S, Yale G, Dey G, Mangalaparthi KK, Yarlagadda A, Chandrasekhar Sagar BK, Mahadevan A, Srinivas Bharath MM, Mani RS. Mitochondrial Dysfunction in Rabies Virus-Infected Human and Canine Brains. Neurochem Res 2022; 47:1610-1636. [PMID: 35229271 DOI: 10.1007/s11064-022-03556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Rabies is a fatal encephalitis caused by the Rabies lyssavirus (RABV). The presence of minimal neuropathological changes observed in rabies indicates that neuronal dysfunction, rather than neuronal death contributes to the fatal outcome. The role of mitochondrial changes has been suggested as a possible mechanism for neuronal dysfunction in rabies. However, these findings are mostly based on studies that have employed experimental models and laboratory-adapted virus. Studies on brain tissues from naturally infected human and animal hosts are lacking. The current study investigated the role of mitochondrial changes in rabies by morphological, biochemical and proteomic analysis of RABV-infected human and canine brains. Morphological analysis showed minimal inflammation with preserved neuronal and disrupted mitochondrial structure in both human and canine brains. Proteomic analysis revealed involvement of mitochondrial processes (oxidative phosphorylation, cristae formation, homeostasis and transport), synaptic proteins and autophagic pathways, with over-expression of subunits of mitochondrial respiratory complexes. Consistent with these findings, human and canine brains displayed elevated activities of complexes I (p < 0.05), IV (p < 0.05) and V (p < 0.05). However, this did not result in elevated ATP production (p < 0.0001), probably due to lowered mitochondrial membrane potential as noted in RABV-infected cells in culture. These could lead to mitochondrial dysfunction and mitophagy as indicated by expression of FKBP8 (p < 0.05) and PINK1 (p < 0.001)/PARKIN (p > 0.05) and ensuing autophagy, as shown by the status of LCIII (p < 0.05), LAMP1 (p < 0.001) and pertinent ultrastructural markers. We propose that altered mitochondrial bioenergetics and cristae architecture probably induce mitophagy, leading to autophagy and consequent neuronal dysfunction in rabies.
Collapse
Affiliation(s)
- Pulleri Kandi Harsha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sathyanarayanan Ranganayaki
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Gourav Dey
- Manipal Academy of Higher Education, Manipal, India
- Institute of Bioinformatics, Bangalore, India
| | | | - Anusha Yarlagadda
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - B K Chandrasekhar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
10
|
Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, Lin CH, Chan CC. Mitochondrial Function and Parkinson's Disease: From the Perspective of the Electron Transport Chain. Front Mol Neurosci 2021; 14:797833. [PMID: 34955747 PMCID: PMC8695848 DOI: 10.3389/fnmol.2021.797833] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jeng-Lin Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Division of Neurology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan County, Taiwan
| | - Tai-Yi Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Lin Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Ni Guo
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|
12
|
Gayathri N, Deepha S, Sharma S. Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects. Mitochondrion 2021; 61:69-84. [PMID: 34592422 DOI: 10.1016/j.mito.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial disorders are one of the most common neurometabolic disorders affecting all age groups. The phenotype-genotype heterogeneity in these disorders can be attributed to the dual genetic control on mitochondrial functions, posing a challenge for diagnosis. Though the advancement in the high-throughput sequencing and other omics platforms resulted in a "genetics-first" approach, the muscle biopsy remains the benchmark in most of the mitochondrial disorders. This review focuses on the myopathological aspects of primary mitochondrial disorders. The utility of muscle biopsy is not limited to analyse the structural abnormalities; rather it also proves to be a potential tool to understand the deranged sub-cellular functions.
Collapse
Affiliation(s)
- Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India.
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
13
|
Rovira Gonzalez YI, Moyer AL, LeTexier NJ, Bratti AD, Feng S, Peña V, Sun C, Pulcastro H, Liu T, Iyer SR, Lovering RM, O'Rourke B, Wagner KR. Mss51 deletion increases endurance and ameliorates histopathology in the mdx mouse model of Duchenne muscular dystrophy. FASEB J 2021; 35:e21276. [PMID: 33423297 DOI: 10.1096/fj.202002106rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
Mitochondrial derangement is an important contributor to the pathophysiology of muscular dystrophies and may be among the earliest cellular deficits. We have previously shown that disruption of Mss51, a mammalian skeletal muscle protein that localizes to the mitochondria, results in enhanced muscle oxygen consumption rate, increased endurance capacity, and improved limb muscle strength in mice with wildtype background. Here, we investigate whether Mss51 deletion in the mdx murine model of Duchenne muscular dystrophy (mdx-Mss51 KO) counteracts the muscle pathology and mitochondrial irregularities observed in mdx mice. We found that mdx-Mss51 KO mice had increased myofiber oxygen consumption rates and an amelioration of muscle histopathology compared to mdx counterparts. This corresponded with greater treadmill endurance and less percent fatigue in muscle physiology, but no improvement in forelimb grip strength or limb muscle force production. These findings suggest that although Mss51 deletion ameliorates the skeletal muscle mitochondrial respiration defects in mdx and improves fatigue resistance in vivo, the lack of improvement in force production suggests that this target alone may be insufficient for a therapeutic effect.
Collapse
Affiliation(s)
- Yazmin I Rovira Gonzalez
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adam L Moyer
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicolas J LeTexier
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - August D Bratti
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Siyuan Feng
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Vanessa Peña
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Congshan Sun
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hannah Pulcastro
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Santhoshkumar R, Preethish-Kumar V, Polavarapu K, Reghunathan D, Chaudhari S, Satyamoorthy K, Vengalil S, Nashi S, Faruq M, Joshi A, Atchayaram N, Narayanappa G. A Novel L1 Linker Mutation in DES Resulted in Total Absence of Protein. J Mol Neurosci 2021; 71:2468-2473. [PMID: 34106405 DOI: 10.1007/s12031-021-01856-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
Desminopathies (MIM*601419) are clinically heterogeneous, manifesting with myopathy and/or cardiomyopathy and with intra-sarcoplasmic desmin-positive deposits. They have either an autosomal dominant (AD) or recessive (AR) pattern of inheritance. Desmin is a crucial intermediate filament protein regulating various cellular functions in muscle cells. Here, we report a 13-year-old girl, born of second-degree consanguineous parents, with normal developmental milestones, who presented with dilated cardiomyopathy, respiratory insufficiency and predominant distal upper limb weakness. A striking feature on muscle biopsy was the presence of a peripheral chain of nuclei in addition to myopathic features. Immunostaining showed complete lack of desmin expression, further confirmed by western blot analysis. Ultrastructurally, subsarcolemmal granular material, expanded Z-band aggregation, distortion of myofilaments, focal Z-band streaming, lobed and clustered myonuclei were observed. Next-generation sequencing revealed a novel homozygous nonsense mutation c.448C>T, p.R150X in the patient, while the parents were heterozygous carriers. Single mitochondrial DNA deletion and isolated complex IV deficiency were noted. Our findings add to the ever-expanding phenotype and molecular spectrum of desminopathies.
Collapse
Affiliation(s)
- Rashmi Santhoshkumar
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, 560 029, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, 560 029, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, 560 029, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, 560 029, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, 560 029, India
| | - Muhammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110 007, India
| | - Aditi Joshi
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110 007, India
| | - Nalini Atchayaram
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, 560 029, India
| | - Gayathri Narayanappa
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, 560 029, India.
| |
Collapse
|
15
|
Chakrabarty S, Govindaraj P, Sankaran BP, Nagappa M, Kabekkodu SP, Jayaram P, Mallya S, Deepha S, Ponmalar JNJ, Arivinda HR, Meena AK, Jha RK, Sinha S, Gayathri N, Taly AB, Thangaraj K, Satyamoorthy K. Contribution of nuclear and mitochondrial gene mutations in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. J Neurol 2021; 268:2192-2207. [PMID: 33484326 PMCID: PMC8179915 DOI: 10.1007/s00415-020-10390-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mitochondrial disorders are clinically complex and have highly variable phenotypes among all inherited disorders. Mutations in mitochon drial DNA (mtDNA) and nuclear genome or both have been reported in mitochondrial diseases suggesting common pathophysiological pathways. Considering the clinical heterogeneity of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) phenotype including focal neurological deficits, it is important to look beyond mitochondrial gene mutation. METHODS The clinical, histopathological, biochemical analysis for OXPHOS enzyme activity, and electron microscopic, and neuroimaging analysis was performed to diagnose 11 patients with MELAS syndrome with a multisystem presentation. In addition, whole exome sequencing (WES) and whole mitochondrial genome sequencing were performed to identify nuclear and mitochondrial mutations. RESULTS Analysis of whole mtDNA sequence identified classical pathogenic mutation m.3243A > G in seven out of 11 patients. Exome sequencing identified pathogenic mutation in several nuclear genes associated with mitochondrial encephalopathy, sensorineural hearing loss, diabetes, epilepsy, seizure and cardiomyopathy (POLG, DGUOK, SUCLG2, TRNT1, LOXHD1, KCNQ1, KCNQ2, NEUROD1, MYH7) that may contribute to classical mitochondrial disease phenotype alone or in combination with m.3243A > G mutation. CONCLUSION Individuals with MELAS exhibit clinical phenotypes with varying degree of severity affecting multiple systems including auditory, visual, cardiovascular, endocrine, and nervous system. This is the first report to show that nuclear genetic factors influence the clinical outcomes/manifestations of MELAS subjects alone or in combination with m.3243A > G mutation.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Bindu Parayil Sankaran
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Genetic Metabolic Disorders Service, Children's Hospital At Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - J N Jessiena Ponmalar
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura R Arivinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Rajan Kumar Jha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
16
|
Sathe G, Deepha S, Gayathri N, Nagappa M, Parayil Sankaran B, Taly AB, Khanna T, Pandey A, Govindaraj P. Ethylmalonic encephalopathy ETHE1 p. D165H mutation alters the mitochondrial function in human skeletal muscle proteome. Mitochondrion 2021; 58:64-71. [PMID: 33639274 DOI: 10.1016/j.mito.2021.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 01/01/2023]
Abstract
Ethylmalonic encephalopathy (EE) is a rare autosomal recessive inborn error of metabolism. To study the molecular effects of ETHE1 p. D165H mutation, we employed mass spectrometry-based mitochondrial proteome and phosphoproteome profiling in the human skeletal muscle. Eighty-six differentially altered proteins were identified, of which thirty-seven mitochondrial proteins were differentially expressed, and most of the proteins (37%) were down-regulated in the OXPHOS complex-IV. Also, nine phosphopeptides that correspond to eight mitochondrial proteins were significantly affected in EE patient. These altered proteins recognized are involved in several pathways and molecular functions, predominantly in oxidoreductase activity. This is the first study that has integrated proteome and phosphoproteome of skeletal muscle and identified multiple proteins associated in the pathogenesis of EE.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, International Tech Park, Bangalore, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Manipal Academy of Higher Education, Manipal, India
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Bindu Parayil Sankaran
- Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Genetic Metabolic Disorders Services, Children's Hospital at Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, Sydney Medical School, The Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Arun B Taly
- Neuromuscular Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Tripti Khanna
- Indian Council of Medical Research (ICMR), New Delhi, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Tech Park, Bangalore, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Govindaraj
- Institute of Bioinformatics, International Tech Park, Bangalore, India; Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
17
|
Sengupta A, Padhan DK, Ganguly A, Sen M. Ccn6 Is Required for Mitochondrial Integrity and Skeletal Muscle Function in Zebrafish. Front Cell Dev Biol 2021; 9:627409. [PMID: 33644064 PMCID: PMC7905066 DOI: 10.3389/fcell.2021.627409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the CCN6 (WISP3) gene are linked with a debilitating musculoskeletal disorder, termed progressive pseudorheumatoid dysplasia (PPRD). Yet, the functional significance of CCN6 in the musculoskeletal system remains unclear. Using zebrafish as a model organism, we demonstrated that zebrafish Ccn6 is present partly as a component of mitochondrial respiratory complexes in the skeletal muscle of zebrafish. Morpholino-mediated depletion of Ccn6 in the skeletal muscle leads to a significant reduction in mitochondrial respiratory complex assembly and activity, which correlates with loss of muscle mitochondrial abundance. These mitochondrial deficiencies are associated with notable architectural and functional anomalies in the zebrafish muscle. Taken together, our results indicate that Ccn6-mediated regulation of mitochondrial respiratory complex assembly/activity and mitochondrial integrity is important for the maintenance of skeletal muscle structure and function in zebrafish. Furthermore, this study suggests that defects related to mitochondrial respiratory complex assembly/activity and integrity could be an underlying cause of muscle weakness and a failed musculoskeletal system in PPRD.
Collapse
Affiliation(s)
- Archya Sengupta
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Deepesh Kumar Padhan
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ananya Ganguly
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Malini Sen
- Division of Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
18
|
Nemec M, Vernerová L, Laiferová N, Balážová M, Vokurková M, Kurdiová T, Oreská S, Kubínová K, Klein M, Špiritović M, Tomčík M, Vencovský J, Ukropec J, Ukropcová B. Altered dynamics of lipid metabolism in muscle cells from patients with idiopathic inflammatory myopathy is ameliorated by 6 months of training. J Physiol 2020; 599:207-229. [PMID: 33063873 DOI: 10.1113/jp280468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 μm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.
Collapse
Affiliation(s)
- M Nemec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - L Vernerová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - N Laiferová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - M Balážová
- Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M Vokurková
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - T Kurdiová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - S Oreská
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Kubínová
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Klein
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Špiritović
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - M Tomčík
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Vencovský
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Ukropec
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - B Ukropcová
- Biomedical Research Centre, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Bratislava, Slovakia.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
19
|
Padhan DK, Sengupta A, Patra M, Ganguly A, Mahata SK, Sen M. CCN6 regulates mitochondrial respiratory complex assembly and activity. FASEB J 2020; 34:12163-12176. [PMID: 32686858 DOI: 10.1096/fj.202000405rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Cellular communication network factor 6 (CCN6) mutations are linked with Progressive Pseudo Rheumatoid Dysplasia (PPRD) a debilitating musculoskeletal disorder. The function of CCN6 and the mechanism of PPRD pathogenesis remain unclear. Accordingly, we focused on the functional characterization of CCN6 and CCN6 mutants. Using size exclusion chromatography and native polyacrylamide gel electrophoresis we demonstrated that CCN6 is present as a component of the mitochondrial respiratory complex in human chondrocyte lines. By means of siRNA-mediated transfection and electron microscopy we showed that moderate reduction in CCN6 expression decreases the RER- mitochondria inter-membrane distance. Parallel native PAGE, immunoblotting and Complex I activity assays furthermore revealed increase in both mitochondrial distribution of CCN6 and mitochondrial respiratory complex assembly/activity in CCN6 depleted cells. CCN6 mutants resembling those linked with PPRD, which were generated by CRISPR-Cas9 technology displayed low level of expression of mutant CCN6 protein and inhibited respiratory complex assembly/activity. Electron microscopy and MTT assay of the mutants revealed abnormal mitochondria and poor cell viability. Taken together, our results indicate that CCN6 regulates mitochondrial respiratory complex assembly/activity as part of the mitochondrial respiratory complex by controlling the proximity of RER with the mitochondria, and CCN6 mutations disrupt mitochondrial respiratory complex assembly/activity resulting in mitochondrial defects and poor cell viability.
Collapse
Affiliation(s)
- Deepesh Kumar Padhan
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Archya Sengupta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Milan Patra
- Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ananya Ganguly
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sushil Kumar Mahata
- VA San Diego Healthcare System, University of California, San Diego, CA, USA
| | - Malini Sen
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
20
|
Dalle S, Hiroux C, Poffé C, Ramaekers M, Deldicque L, Koppo K. Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition. J Muscle Res Cell Motil 2020; 41:375-387. [PMID: 32621158 DOI: 10.1007/s10974-020-09584-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
To improve muscle healing upon injury, it is of importance to understand the interplay of key signaling pathways during muscle regeneration. To study this, mice were injected with cardiotoxin (CTX) or PBS in the Tibialis Anterior muscle and were sacrificed 2, 5 and 12 days upon injection. The time points represent different phases of the regeneration process, i.e. destruction, repair and remodeling, respectively. Two days upon CTX-injection, p-mTORC1 signaling and stress markers such as BiP and p-ERK1/2 were upregulated. Phospho-ERK1/2 and p-mTORC1 peaked at d5, while BiP expression decreased towards PBS levels. Phospho-FOXO decreased 2 and 5 days following CTX-injection, indicative of an increase in catabolic signaling. Furthermore, CTX-injection induced a shift in the fiber type composition, characterized by an initial loss in type IIa fibers at d2 and at d5. At d5, new type IIb fibers appeared, whereas type IIa fibers were recovered at d12. To conclude, CTX-injection severely affected key modulators of muscle metabolism and histology. These data provide useful information for the development of strategies that aim to improve muscle molecular signaling and thereby recovery.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Monique Ramaekers
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Louvain, Belgium.
| |
Collapse
|
21
|
Liu D, Zuo X, Luo H, Zhu H. The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Semin Arthritis Rheum 2020; 50:627-635. [PMID: 32502727 DOI: 10.1016/j.semarthrit.2020.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 11/29/2022]
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of heterogeneous autoimmune diseases characterized by muscle weakness, muscle inflammation and extramuscular manifestations. Despite extensive efforts, the mechanisms of IIMs remain largely unknown, and treatment is still a challenge for physicians. Metabolism changes have emerged as a crucial player in autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, little is known about metabolism changes in IIMs. In this review, we focus on the alteration of metabolism profile in IIMs, and the relationships with clinical information. We highlight the potential roles of metabolism in the pathogenesis of IIMs and discuss future perspectives for metabolic checkpoint-based therapeutic interventions.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China.
| |
Collapse
|
22
|
Human muscle pathology is associated with altered phosphoprotein profile of mitochondrial proteins in the skeletal muscle. J Proteomics 2020; 211:103556. [PMID: 31655151 DOI: 10.1016/j.jprot.2019.103556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022]
Abstract
Analysis of human muscle diseases highlights the role of mitochondrial dysfunction in the skeletal muscle. Our previous work revealed that diverse upstream events correlated with altered mitochondrial proteome in human muscle biopsies. However, several proteins showed relatively unchanged expression suggesting that post-translational modifications, mainly protein phosphorylation could influence their activity and regulate mitochondrial processes. We conducted mitochondrial phosphoprotein profiling, by proteomics approach, of healthy human skeletal muscle (n = 10) and three muscle diseases (n = 10 each): Dysferlinopathy, Polymyositis and Distal Myopathy with Rimmed Vacuoles. Healthy human muscle mitochondrial proteins displayed 253 phosphorylation sites (phosphosites), which contributed to metabolic and redox processes and mitochondrial organization etc. Electron transport chain complexes accounted for 84 phosphosites. Muscle pathologies displayed 33 hyperphosphorylated and 14 hypophorphorylated sites with only 5 common proteins, indicating varied phosphorylation profile across muscle pathologies. Molecular modelling revealed altered local structure in the phosphorylated sites of Voltage-Dependent Anion Channel 1 and complex V subunit ATP5B1. Molecular dynamics simulations in complex I subunits NDUFV1, NDUFS1 and NDUFV2 revealed that phosphorylation induced structural alterations thereby influencing electron transfer and potentially altering enzyme activity. We propose that altered phosphorylation at specific sites could regulate mitochondrial protein function in the skeletal muscle during physiological and pathological processes.
Collapse
|
23
|
Using the tools of proteomics to understand the pathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol 2019; 31:617-622. [PMID: 31385878 DOI: 10.1097/bor.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW One of the most important advances in medical research over the past 20 years has been the emergence of technologies to assess complex biological processes on a global scale. Although a great deal of attention has been given to genome-scale genetics and genomics technologies, the utility of studying the proteome in a comprehensive way is sometimes under-appreciated. In this review, we discuss recent advances in proteomics as applied to dermatomyositis/polymyositis as well as findings from other inflammatory diseases that may enlighten our understanding of dermatomyositis/polymyositis. RECENT FINDINGS Proteomic approaches have been used to investigate basic mechanisms contributing to lung and skin disease in dermatomyositis/polymyositis as well as to the muscle disease itself. In addition, proteomic approaches have been used to identify autoantibodies targeting the endothelium in juvenile dermatomyositis. Studies from other inflammatory diseases have shown the promise of using proteomics to characterize the composition of immune complexes and the protein cargoes of exosomes. SUMMARY There are many relevant scientific and clinical questions in dermatomyositis/polymyositis that can be addressed using proteomics approaches. Careful attention to both methodology and analytic approaches are required to obtain useful and reproducible data.
Collapse
|
24
|
Unni S, Thiyagarajan S, Srinivas Bharath MM, Padmanabhan B. Tryptophan Oxidation in the UQCRC1 Subunit of Mitochondrial Complex III (Ubiquinol-Cytochrome C Reductase) in a Mouse Model of Myodegeneration Causes Large Structural Changes in the Complex: A Molecular Dynamics Simulation Study. Sci Rep 2019; 9:10694. [PMID: 31337785 PMCID: PMC6650490 DOI: 10.1038/s41598-019-47018-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/08/2019] [Indexed: 11/09/2022] Open
Abstract
Muscle diseases display mitochondrial dysfunction and oxidative damage. Our previous study in a cardiotoxin model of myodegeneration correlated muscle damage with mitochondrial dysfunction, which in turn entailed altered mitochondrial proteome and oxidative damage of mitochondrial proteins. Proteomic identification of oxidized proteins in muscle biopsies from muscular dystrophy patients and cardiotoxin model revealed specific mitochondrial proteins to be targeted for oxidation. These included respiratory complexes which displayed oxidative modification of Trp residues in different subunits. Among these, Ubiquinol-Cytochrome C Reductase Core protein 1 (UQCRC1), a subunit of Ubiquinol-Cytochrome C Reductase Complex or Cytochrome b-c1 Complex or Respiratory Complex III displayed oxidation of Trp395, which could be correlated with the lowered activity of Complex III. We hypothesized that Trp395 oxidation might contribute to altered local conformation and overall structure of Complex III, thereby potentially leading to altered protein activity. To address this, we performed molecular dynamics simulation of Complex III (oxidized at Trp395 of UQCRC1 vs. non-oxidized control). Molecular dynamic simulation analyses revealed local structural changes in the Trp395 site. Intriguingly, oxidized Trp395 contributed to decreased plasticity of Complex III due to significant cross-talk among the subunits in the matrix-facing region and subunits in the intermembrane space, thereby leading to impaired electron flow from cytochrome C.
Collapse
Affiliation(s)
- Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - S Thiyagarajan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City Phase I, Electronic City, Bangalore, 560100, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, Hosur Road, Bangalore, 560029, Karnataka, India. .,Neurotoxicology Laboratory at the Neurobiology Research Center, NIMHANS, Hosur Road, Bangalore, 560029, Karnataka, India.
| | - B Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
25
|
Differences in the Mitochondrial and Lipid Droplet Morphology in Female Office Workers With Trapezius Myalgia, Compared With Healthy Controls: A Muscle Biopsy Study. Am J Phys Med Rehabil 2019; 98:989-997. [PMID: 31145110 DOI: 10.1097/phm.0000000000001231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Trapezius myalgia or, more specifically, myofascial dysfunction of the upper trapezius mainly affects women performing jobs requiring prolonged low level activation of the muscle. This continuous low muscle load can be accompanied by a shift to a more anaerobic energy metabolism, causing pain. The aim of the study was to investigate whether morphological signs of an impaired aerobic metabolism are present in female office workers with trapezius myalgia. DESIGN Muscle biopsy analysis, using electron and light microscopy, was performed to compare mitochondrial and fat droplet morphology, and irregular muscle fibers, between female office workers with (n = 17) and without (n = 15) work-related trapezius myalgia. RESULTS The patient group showed a significantly higher mean area (P = 0.023) and proportion (P = 0.029) for the subsarcolemmal and intermyofibrillar mitochondria respectively, compared with the control group. A significantly lower mean area of subsarcolemmal lipid droplets was found in the patient group (P = 0.015), which also displayed a significantly higher proportion of lipid droplets touching the mitochondria (P = 0.035). A significantly higher amount of muscle fibers with cytochrome c oxidase-deficient areas were found in the patient group (P = 0.030). CONCLUSIONS The results of the present study may be indicative for an impaired oxidative metabolism in work-related trapezius myalgia. However, additional research is necessary to confirm this hypothesis.
Collapse
|
26
|
De Paepe B. Sporadic Inclusion Body Myositis: An Acquired Mitochondrial Disease with Extras. Biomolecules 2019; 9:biom9010015. [PMID: 30621041 PMCID: PMC6359202 DOI: 10.3390/biom9010015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The sporadic form of inclusion body myositis (IBM) is the most common late-onset myopathy. Its complex pathogenesis includes degenerative, inflammatory and mitochondrial aspects. However, which of those mechanisms are cause and which effect, as well as their interrelations, remain partly obscured to this day. In this review the nature of the mitochondrial dysregulation in IBM muscle is explored and comparison is made with other muscle disorders. Mitochondrial alterations in IBM are evidenced by histological and serum biomarkers. Muscular mitochondrial dynamics is disturbed, with deregulated organelle fusion leading to subsequent morphological alterations and muscle displays abnormal mitophagy. The tissue increases mitochondrial content in an attempt to compensate dysfunction, yet mitochondrial DNA (mtDNA) alterations and mild mtDNA depletion are also present. Oxidative phosphorylation defects have repeatedly been shown, most notably a reduction in complex IV activities and levels of mitokines and regulatory RNAs are perturbed. Based on the cumulating evidence of mitochondrial abnormality as a disease contributor, it is therefore warranted to regard IBM as a mitochondrial disease, offering a feasible therapeutic target to be developed for this yet untreatable condition.
Collapse
Affiliation(s)
- Boel De Paepe
- Neuromuscular Reference Centre, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Gowthami N, Sunitha B, Kumar M, Keshava Prasad T, Gayathri N, Padmanabhan B, Srinivas Bharath M. Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. J Chem Neuroanat 2019; 95:13-28. [PMID: 29499254 DOI: 10.1016/j.jchemneu.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
|
28
|
Ness KK, Kirkland JL, Gramatges MM, Wang Z, Kundu M, McCastlain K, Li-Harms X, Zhang J, Tchkonia T, Pluijm SMF, Armstrong GT. Premature Physiologic Aging as a Paradigm for Understanding Increased Risk of Adverse Health Across the Lifespan of Survivors of Childhood Cancer. J Clin Oncol 2018; 36:2206-2215. [PMID: 29874132 DOI: 10.1200/jco.2017.76.7467] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The improvement in survival of childhood cancer observed across the past 50 years has resulted in a growing acknowledgment that simply extending the lifespan of survivors is not enough. It is incumbent on both the cancer research and the clinical care communities to also improve the health span of survivors. It is well established that aging adult survivors of childhood cancer are at increased risk of chronic health conditions, relative to the general population. However, as the first generation of survivors age into their 50s and 60s, it has become increasingly evident that this population is also at risk of early onset of physiologic aging. Geriatric measures have uncovered evidence of reduced strength and speed and increased fatigue, all components of frailty, among survivors with a median age of 33 years, which is similar to adults older than 65 years of age in the general population. Furthermore, frailty in survivors independently increased the risk of morbidity and mortality. Although there has been a paucity of research investigating the underlying biologic mechanisms for advanced physiologic age in survivors, results from geriatric populations suggest five biologically plausible mechanisms that may be potentiated by exposure to cancer therapies: increased cellular senescence, reduced telomere length, epigenetic modifications, somatic mutations, and mitochondrial DNA infidelity. There is now a critical need for research to elucidate the biologic mechanisms of premature aging in survivors of childhood cancer. This research could pave the way for new frontiers in the prevention of these life-changing outcomes.
Collapse
Affiliation(s)
- Kirsten K Ness
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - James L Kirkland
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maria Monica Gramatges
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Zhaoming Wang
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Mondira Kundu
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kelly McCastlain
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Xiujie Li-Harms
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jinghui Zhang
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Tamar Tchkonia
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Saskia Martine Francesca Pluijm
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gregory T Armstrong
- Kirsten K. Ness, Zhaoming Wang, Mondira Kundu, Kelly McCastlain, Xiujie Li-Harms, Jinghui Zhang, and Gregory T. Armstrong, St. Jude Children's Research Hospital, Memphis, TN; James L. Kirkland and Tamar Tchkonia, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; Maria Monica Gramatges, Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX; and Saskia Martine Francesca Pluijm, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
29
|
Debashree B, Kumar M, Keshava Prasad TS, Natarajan A, Christopher R, Nalini A, Bindu PS, Gayathri N, Srinivas Bharath MM. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder. J Neurochem 2018; 145:323-341. [PMID: 29424033 DOI: 10.1111/jnc.14318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. Cover Image for this Issue: doi: 10.1111/jnc.14177.
Collapse
Affiliation(s)
- Bandopadhyay Debashree
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Manish Kumar
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Manipal University, Manipal, Karnataka, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, Karnataka, India
| | - Archana Natarajan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | |
Collapse
|
30
|
Mythri RB, Raghunath NR, Narwade SC, Pandareesh MDR, Sabitha KR, Aiyaz M, Chand B, Sule M, Ghosh K, Kumar S, Shankarappa B, Soundararajan S, Alladi PA, Purushottam M, Gayathri N, Deobagkar DD, Laxmi TR, Srinivas Bharath MM. Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson's disease. J Neurochem 2017; 143:334-358. [DOI: 10.1111/jnc.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Rajeswara Babu Mythri
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayana Reddy Raghunath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Mirazkar Dasharatha Rao Pandareesh
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Kollarkandi Rajesh Sabitha
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Bipin Chand
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Manas Sule
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Krittika Ghosh
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Senthil Kumar
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Soundarya Soundararajan
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Phalguni Anand Alladi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Meera Purushottam
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayanappa Gayathri
- Department of Neuropathology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Thenkanidiyoor Rao Laxmi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Muchukunte Mukunda Srinivas Bharath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| |
Collapse
|
31
|
Gao S, Luo H, Zhang H, Zuo X, Wang L, Zhu H. Using multi-omics methods to understand dermatomyositis/polymyositis. Autoimmun Rev 2017; 16:1044-1048. [DOI: 10.1016/j.autrev.2017.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/08/2017] [Indexed: 12/12/2022]
|
32
|
Capitanio D, Moriggi M, Gelfi C. Mapping the human skeletal muscle proteome: progress and potential. Expert Rev Proteomics 2017; 14:825-839. [PMID: 28780899 DOI: 10.1080/14789450.2017.1364996] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human skeletal muscle represents 40% of our body mass and deciphering its proteome composition to further understand mechanisms regulating muscle function under physiological and pathological conditions has proved a challenge. The inter-individual variability, the presence of structurally and functionally different muscle types and the high protein dynamic range require carefully selected methodologies for the assessment of the muscle proteome. Furthermore, physiological studies are understandingly hampered by ethical issues related to biopsies on healthy subjects, making it difficult to recruit matched controls essential for comparative studies. Areas covered: This review critically analyses studies performed on muscle to date and identifies what still remains unknown or poorly investigated in physiological and pathological states, such as training, aging, metabolic disorders and muscular dystrophies. Expert commentary: Efforts should be made on biological fluid analyses targeting low abundant/low molecular weight fragments generated from muscle cell disruption to improve diagnosis and clinical monitoring. From a methodological point of view, particular attention should be paid to improve the characterization of intact proteins and unknown post translational modifications to better understand the molecular mechanisms of muscle disorders.
Collapse
Affiliation(s)
- Daniele Capitanio
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Manuela Moriggi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Cecilia Gelfi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| |
Collapse
|
33
|
Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis. Clin Sci (Lond) 2016; 130:1741-51. [PMID: 27413019 DOI: 10.1042/cs20160080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age- and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients.
Collapse
|