1
|
Sun W, Yu H, Li X, Wan Y, Mei Y, Yang Y, An L. Subchronic cyanuric acid treatment impairs spatial flexible behavior in female adolescent rats through depressing GluN2B-dependent neuronal and synaptic function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117513. [PMID: 39662458 DOI: 10.1016/j.ecoenv.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Subchronic exposure to cyanuric acid (CA) and its structural analogue melamine induces long-term effects on brain and behavior in male rodents. To examine if this exposure induced negative effects on cognitive function in females, we examined the behavioral performance and further attempted to investigate synaptic and neuronal function. CA was intraperitoneal treated with 20 or 40 mg/kg/day to adolescent female rats for 4 consecutive weeks. Multiple behavioral tests were employed to assess spatial cognition, learning strategy, locomotion and motivation. Hippocampal synaptic function at Schaffer collaterals-CA1 synapses and excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons was evaluated. Meanwhile, the glutamate transport inhibitor DL-threo-β-benzyloxyaspartate (DL-TBOA) was infused into hippocampal CA1 region to certify the underlying mechanism. We found that subchronic CA exposure impairs reversal learning ability with dose-dependent effects but did not affect spatial learning and memory, or learning strategy. The expression and phosphorylation of N-methyl-D-aspartate receptor (NMDAR) GluN2B subunits were simultaneously reduced in the hippocampus and the GluN2B-mediated synaptic function, including long-term depression (LTD) and paired-pulse facilitation (PPF), was suppressed. CA could also diminish postsynaptic density protein-95 (PSD-95) expression but did change the levels of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) GluA1 or NMDAR GluN2A subunit, or hippocampal spine density. Meanwhile, CA depressed frequency and amplitude of GluN2B-mediated EPSCs, indicating the presynaptic and postsynaptic actions of CA on neuronal activity. Furthermore, the DL-TBOA infusions could effectively mitigate the diminished GluN2B-LTD and GluN2B-EPSCs and the impairments in behavioral flexibility. Our findings provide the first evidence that CA can exert neurotoxic effects on females and certify that one of the potential mechanisms for neuronal and synaptic dysfunction is the GluN2B-mediated signaling pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Haiyang Yu
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiaoliang Li
- Department of Chinese Medicine, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yiwen Wan
- Department of Rehabilitation Medicine, Shenzhen Bao'an Hospital Affiliated of Southern Medical University, Shenzhen, Guangdong 518100, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine; Guangzhou 510006, China
| | - Yang Yang
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Lei An
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China; Department of Chinese Medicine, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Graduate School of Guangzhou University of Chinese Medicine; Guangzhou 510006, China; Department of Proctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China.
| |
Collapse
|
2
|
Zernov N, Popugaeva E. Role of Neuronal TRPC6 Channels in Synapse Development, Memory Formation and Animal Behavior. Int J Mol Sci 2023; 24:15415. [PMID: 37895105 PMCID: PMC10607207 DOI: 10.3390/ijms242015415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The transient receptor potential cation channel, subfamily C, member 6 (TRPC6), has been believed to adjust the formation of an excitatory synapse. The positive regulation of TRPC6 engenders synapse enlargement and improved learning and memory in animal models. TRPC6 is involved in different synaptoprotective signaling pathways, including antagonism of N-methyl-D-aspartate receptor (NMDAR), activation of brain-derived neurotrophic factor (BDNF) and postsynaptic store-operated calcium entry. Positive regulation of TRPC6 channels has been repeatedly shown to be good for memory formation and storage. TRPC6 is mainly expressed in the hippocampus, particularly in the dentate granule cells, cornu Ammonis 3 (CA3) pyramidal cells and gamma-aminobutyric acid (GABA)ergic interneurons. It has been observed that TRPC6 agonists have a great influence on animal behavior including memory formation and storage The purpose of this review is to collect the available information on the role of TRPC6 in memory formation in various parts of the brain to understand how TRPC6-specific pharmaceutical agents will affect memory in distinct parts of the central nervous system (CNS).
Collapse
Affiliation(s)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
3
|
Shekhar S, Liu Y, Wang S, Zhang H, Fang X, Zhang J, Fan L, Zheng B, Roman RJ, Wang Z, Fan F, Booz GW. Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. Int J Mol Sci 2021; 22:2074. [PMID: 33669830 PMCID: PMC7922996 DOI: 10.3390/ijms22042074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates the cAMP (adenosine 3',5'-cyclic monophosphate) response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of N-methyl-d-aspartate (NMDA) receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells, such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Jin Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| |
Collapse
|
4
|
Liu L, Chen M, Lin K, Xiang X, Yang J, Zheng Y, Xiong X, Zhu S. TRPC6 Attenuates Cortical Astrocytic Apoptosis and Inflammation in Cerebral Ischemic/Reperfusion Injury. Front Cell Dev Biol 2021; 8:594283. [PMID: 33604333 PMCID: PMC7884618 DOI: 10.3389/fcell.2020.594283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channel is an important non-selective cation channel with a variety of physiological roles in the central nervous system. Evidence has shown that TRPC6 is involved in the process of experimental stroke; however, the underlying mechanisms remain unclear. In the present study, the role of astrocytic TRPC6 was investigated in an oxygen-glucose deprivation cell model and middle cerebral artery occlusion (MCAO) mouse model of stroke. HYP9 (a selective TRPC6 agonist) and SKF96365 (SKF; a TRPC antagonist) were used to clarify the exact functions of TRPC6 in astrocytes after ischemic stroke. TRPC6 was significantly downregulated during ischemia/reperfusion (IR) injury in cultured astrocytes and in cortices of MCAO mice. Application of HYP9 in vivo alleviated the brain infarct lesion, astrocytes population, apoptosis, and interleukin-6 (IL-6) and IL-1β release in mouse cortices after ischemia. HYP9 dose-dependently inhibited the downregulation of TRPC6 and reduced astrocytic apoptosis, cytotoxicity and inflammatory responses in IR insult, whereas SKF aggravated the damage in vitro. In addition, modulation of TRPC6 channel diminished IR-induced Ca2+ entry in astrocytes. Furthermore, decreased Ca2+ entry due to TRPC6 contributed to reducing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) nuclear translocation and phosphorylation. Overexpression of astrocytic TRPC6 also attenuated apoptosis, cytotoxicity, inflammatory responses, and NF-κB phosphorylation in modeled ischemia in astrocytes. The results of the present study indicate that the TRPC6 channel can act as a potential target to reduce both inflammatory responses and apoptosis in astrocytes during IR injury, subsequently attenuating ischemic brain damage. In addition, we provide a novel view of stroke therapy by targeting the astrocytic TRPC6 channel.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Prikhodko V, Chernyuk D, Sysoev Y, Zernov N, Okovityi S, Popugaeva E. Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer's Disease and Brain Ischemia. Cells 2020; 9:cells9112351. [PMID: 33114455 PMCID: PMC7692306 DOI: 10.3390/cells9112351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer’s disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer’s disease and cerebral ischemia.
Collapse
Affiliation(s)
- Veronika Prikhodko
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Yurii Sysoev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Sergey Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Correspondence:
| |
Collapse
|
6
|
Liu L, Gu L, Chen M, Zheng Y, Xiong X, Zhu S. Novel Targets for Stroke Therapy: Special Focus on TRPC Channels and TRPC6. Front Aging Neurosci 2020; 12:70. [PMID: 32256338 PMCID: PMC7093711 DOI: 10.3389/fnagi.2020.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke remains a leading cause of death, disability, and medical care burden worldwide. However, transformation from laboratory findings toward effective pharmacological interventions for clinical stroke has been unsatisfactory. Novel evidence has been gained on the underlying mechanisms and therapeutic potential related to the transient receptor potential (TRP) channels in several disorders. The TRP superfamily consists of a diverse group of Ca2+ permeable non-selective cation channels. In particular, the members of TRP subfamilies, TRP canonical (TRPC) channels and TRPC6, have been found in different cell types in the whole body and have high levels of expression in the central nervous system (CNS). Notably, the TRPCs and TRPC6 channel have been implicated in neurite outgrowth and neuronal survival during normal development and in a range of CNS pathological conditions. Recent studies have shown that suppression of TRPC6 channel degradation prevents ischemic neuronal cell death in experimental stroke. Accumulating evidence supports the important functions of TRPC6 in brain ischemia. We have highlighted some crucial advancement that points toward an important involvement of TRPCs and TRPC6 in ischemic stroke. This review will make an overview of the TRP and TRPC channels due to their roles as targets for clinical trials and CNS disorders. Besides, the primary goal is to discuss and update the critical role of TRPC6 channels in stroke and provide a promising target for stroke prevention and therapy.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Farmer LK, Rollason R, Whitcomb DJ, Ni L, Goodliff A, Lay AC, Birnbaumer L, Heesom KJ, Xu SZ, Saleem MA, Welsh GI. TRPC6 Binds to and Activates Calpain, Independent of Its Channel Activity, and Regulates Podocyte Cytoskeleton, Cell Adhesion, and Motility. J Am Soc Nephrol 2019; 30:1910-1924. [PMID: 31416818 DOI: 10.1681/asn.2018070729] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mutations in the transient receptor potential channel 6 (TRPC6) gene are associated with an inherited form of FSGS. Despite widespread expression, patients with TRPC6 mutations do not present with any other pathologic phenotype, suggesting that this protein has a unique yet unidentified role within the target cell for FSGS, the kidney podocyte. METHODS We generated a stable TRPC6 knockout podocyte cell line from TRPC6 knockout mice. These cells were engineered to express wild-type TRPC6, a dominant negative TRPC6 mutation, or either of two disease-causing mutations of TRPC6, G109S or K874*. We extensively characterized these cells using motility, detachment, and calpain activity assays; immunofluorescence; confocal or total internal reflection fluorescence microscopy; and western blotting. RESULTS Compared with wild-type cells, TRPC6-/- podocytes are less motile and more adhesive, with an altered actin cytoskeleton. We found that TRPC6 binds to ERK1/2 and the actin regulatory proteins, caldesmon (a calmodulin- and actin-binding protein) and calpain 1 and 2 (calcium-dependent cysteine proteases that control the podocyte cytoskeleton, cell adhesion, and motility via cleavage of paxillin, focal adhesion kinase, and talin). Knockdown or expression of the truncated K874* mutation (but not expression of the gain-of-function G019S mutation or dominant negative mutant of TRPC6) results in the mislocalization of calpain 1 and 2 and significant downregulation of calpain activity; this leads to altered podocyte cytoskeleton, motility, and adhesion-characteristics of TRPC6 -/- podocytes. CONCLUSIONS Our data demonstrate that independent of TRPC6 channel activity, the physical interaction between TRPC6 and calpain in the podocyte is important for cell motility and detachment and demonstrates a scaffolding role of the TRPC6 protein in disease.
Collapse
Affiliation(s)
| | | | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, and
| | - Lan Ni
- Bristol Renal, Bristol Medical School
| | | | | | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.,Faculty of Medical Sciences, Institute of Biomedical Research, Catholic University of Argentina, Buenos Aires, Argentina; and
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
8
|
Kameda T, Zvick J, Vuk M, Sadowska A, Tam WK, Leung VY, Bölcskei K, Helyes Z, Applegate LA, Hausmann ON, Klasen J, Krupkova O, Wuertz-Kozak K. Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. Int J Mol Sci 2019; 20:E1767. [PMID: 30974795 PMCID: PMC6480240 DOI: 10.3390/ijms20071767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023] Open
Abstract
Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1β) or tumor necrosis factor alpha (TNF-α) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 µM), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 µM AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.
Collapse
Affiliation(s)
- Takuya Kameda
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
- Department of Orthopaedic Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | - Joel Zvick
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Miriam Vuk
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Aleksandra Sadowska
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Wai Kit Tam
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti út 12., Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti út 12., Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Lee Ann Applegate
- Department of Musculoskeletal Medicine, Unit of Regenerative Therapy (UTR), University Hospital Lausanne, EPCR/02 Chemin des Croisettes 22, 1066 Epalinges, Switzerland.
| | - Oliver N Hausmann
- Neuro- and Spine Center, St. Anna Hospital, Sankt-Anna-Strasse 32, 6006 Luzern, Switzerland.
| | - Juergen Klasen
- Clinic Prodorso, Walchestrasse 15, 8006 Zurich, Switzerland.
| | - Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU), Harlachinger Str. 51, 81547 Munich, Germany.
- Department of Health Sciences, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany.
| |
Collapse
|
9
|
Pochwat B, Szewczyk B, Kotarska K, Rafało-Ulińska A, Siwiec M, Sowa JE, Tokarski K, Siwek A, Bouron A, Friedland K, Nowak G. Hyperforin Potentiates Antidepressant-Like Activity of Lanicemine in Mice. Front Mol Neurosci 2018; 11:456. [PMID: 30618608 PMCID: PMC6299069 DOI: 10.3389/fnmol.2018.00456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) modulators induce rapid and sustained antidepressant like-activity in rodents through a molecular mechanism of action that involves the activation of Ca2+ dependent signaling pathways. Moreover, ketamine, a global NMDAR antagonist is a potent, novel, and atypical drug that has been successfully used to treat major depressive disorder (MDD). However, because ketamine evokes unwanted side effects, alternative strategies have been developed for the treatment of depression. The objective of the present study was to determine the antidepressant effects of either a single dose of hyperforin or lanicemine vs. their combined effects in mice. Hyperforin modulates intracellular Ca2+ levels by activating Ca2+-conducting non-selective canonical transient receptor potential 6 channel (TRPC6) channels. Lanicemine, on the other hand, blocks NMDARs and regulates Ca2+ dependent processes. To evaluate the antidepressant-like activity of hyperforin and lanicemine, a set of in vivo (behavioral) and in vitro methods (western blotting, Ca2+ imaging studies, electrophysiological, and radioligand binding assays) was employed. Combined administration of hyperforin and lanicemine evoked long-lasting antidepressant-like effects in both naïve and chronic corticosterone-treated mice while also enhancing the expression of the synapsin I, GluA1 subunit, and brain derived neurotrophic factor (BDNF) proteins in the frontal cortex. In Ca2+ imaging studies, lanicemine enhanced Ca2+ influx induced by hyperforin. Moreover, compound such as MK-2206 (Akt kinase inhibitor) inhibited the antidepressant-like activity of hyperforin in the tail suspension test (TST). Hyperforin reversed disturbances induced by MK-801 in the novel object recognition (NOR) test and had no effects on NMDA currents and binding to NMDAR. Our results suggest that co-administration of hyperforin and lanicemine induces long-lasting antidepressant effects in mice and that both substances may have different molecular targets.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Bernadeta Szewczyk
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Kotarska
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Rafało-Ulińska
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marcin Siwiec
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna E Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, Grenoble, France
| | - Kristina Friedland
- Pharmacology and Toxicology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gabriel Nowak
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|