1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Davidowitz EJ, Lopez P, Patel D, Jimenez H, Wolin A, Eun J, Adrien L, Koppel J, Morgan D, Davies P, Moe JG. Therapeutic Treatment With OLX-07010 Inhibited Tau Aggregation and Ameliorated Motor Deficits in an Aged Mouse Model of Tauopathy. J Neurochem 2025; 169:e70025. [PMID: 40052227 PMCID: PMC11886763 DOI: 10.1111/jnc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
Targeting tau protein is a strategy for the development of disease-modifying therapeutics for Alzheimer's disease (AD) and numerous rare tauopathies. A small molecule approach targeting tau aggregation was used to select and optimize compounds inhibiting tau self-association in vitro that have translated in vivo in preventive studies in htau and P301L tau JNPL3 mouse models of tauopathy. In this therapeutic treatment study, aged JNPL3 mice with pre-existing tau aggregates were used to evaluate the therapeutic effect of OLX-07010. The study had a Baseline group of mice aged 7 months, a vehicle, and two dose groups treated until 12 months by administration in feed. The primary endpoint of the study was the reduction of insoluble tau aggregates with statistical significance. The secondary endpoints were dose-dependent reduction of insoluble tau aggregates, reduction of soluble tau, and improvement of motor behavior. ELISAs and immunoblots were used to determine the levels of tau and its aggregated forms including self-associated tau and Sarkosyl insoluble tau. Effect on motor behavior, as measured by Rotarod assay, was also assessed between the treatment groups. At the end of treatment, reduced levels of self-associated tau, Sarkosyl insoluble tau aggregates, and overall levels of tau in the heat-stable fraction with statistical significance in the cortex were observed. Treatment prevented the accumulation of tau aggregates above baseline, and in parallel, treatment groups had improved motor behavior in a Rotarod assay compared to baseline and vehicle control groups, suggesting that treatment was rescuing motor impairment in aged mice. The functional and biochemical readouts suggest that this small molecule has potential for treating neurodegenerative diseases characterized by tau aggregation such as AD and progressive supranuclear palsy.
Collapse
Affiliation(s)
- E. J. Davidowitz
- Oligomerix, Inc.White PlainsNew YorkUSA
- Oligomerix, Inc.BronxNew YorkUSA
| | - P. Lopez
- Oligomerix, Inc.BronxNew YorkUSA
| | - D. Patel
- Oligomerix, Inc.BronxNew YorkUSA
| | - H. Jimenez
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - A. Wolin
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - J. Eun
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - L. Adrien
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - J. Koppel
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - D. Morgan
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - P. Davies
- The Litwin‐Zucker Research Center for the Study of Alzheimer's DiseaseThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - J. G. Moe
- Oligomerix, Inc.White PlainsNew YorkUSA
- Oligomerix, Inc.BronxNew YorkUSA
| |
Collapse
|
3
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Jimenez H, Carrion J, Adrien L, Wolin A, Eun J, Cinamon E, Chang EH, Davies P, Vo A, Koppel J. The Impact of Muscarinic Antagonism on Psychosis-Relevant Behaviors and Striatal [ 11C] Raclopride Binding in Tau Mouse Models of Alzheimer's Disease. Biomedicines 2023; 11:2091. [PMID: 37626588 PMCID: PMC10452133 DOI: 10.3390/biomedicines11082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023] Open
Abstract
Psychosis that occurs over the course of Alzheimer's disease (AD) is associated with increased caregiver burden and a more rapid cognitive and functional decline. To find new treatment targets, studies modeling psychotic conditions traditionally employ agents known to induce psychosis, utilizing outcomes with cross-species relevance, such as locomotive activity and sensorimotor gating, in rodents. In AD, increased burdens of tau pathology (a diagnostic hallmark of the disease) and treatment with anticholinergic medications have, separately, been reported to increase the risk of psychosis. Recent evidence suggests that muscarinic antagonists may increase extracellular tau. Preclinical studies in AD models have not previously utilized muscarinic cholinergic antagonists as psychotomimetic agents. In this report, we utilize a human-mutant-tau model (P301L/COMTKO) and an over-expressed non-mutant human tau model (htau) in order to compare the impact of antimuscarinic (scopolamine 10 mg/kg/day) treatment with dopaminergic (reboxetine 20 mg/kg/day) treatment, for 7 days, on locomotion and sensorimotor gating. Scopolamine increased spontaneous locomotion, while reboxetine reduced it; neither treatment impacted sensorimotor gating. In the P301L/COMTKO, scopolamine treatment was associated with decreased muscarinic M4 receptor expression, as quantified with RNA-seq, as well as increased dopamine receptor D2 signaling, as estimated with Micro-PET [11C] raclopride binding. Scopolamine also increased soluble tau in the striatum, an effect that partially mediated the observed increases in locomotion. Studies of muscarinic agonists in preclinical tau models are warranted to determine the impact of treatment-on both tau and behavior-that may have relevance to AD and other tauopathies.
Collapse
Affiliation(s)
- Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Joseph Carrion
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Adam Wolin
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - John Eun
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Ezra Cinamon
- Department of Biochemistry, Queens College, Flushing, NY 11355, USA;
| | - Eric H. Chang
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - An Vo
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| |
Collapse
|
5
|
Premi E, Pengo M, Mattioli I, Cantoni V, Dukart J, Gasparotti R, Buratti E, Padovani A, Bocchetta M, Todd EG, Bouzigues A, Cash DM, Convery RS, Russell LL, Foster P, Thomas DL, van Swieten JC, Jiskoot LC, Seelaar H, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Tsvetanov KA, Vandenberghe R, Finger E, Tiraboschi P, de Mendonça A, Santana I, Butler CR, Ducharme S, Gerhard A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Rohrer JD, Borroni B. Early neurotransmitters changes in prodromal frontotemporal dementia: A GENFI study. Neurobiol Dis 2023; 179:106068. [PMID: 36898614 DOI: 10.1016/j.nbd.2023.106068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.
Collapse
Affiliation(s)
- Enrico Premi
- Neurology, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Irene Mattioli
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research CentreJülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical and Surgical Specialties, University of Brescia, Brescia, Italy
| | | | - Alessandro Padovani
- Neurology, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Phoebe Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John C van Swieten
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer center, Erasmus Medical Center Rotterdam, the Netherlands
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- Neurology Department, Hospital Clinic, Institut d'Investigacions Biomèdiques, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Fermin Moreno
- Hospital Universitario Donostia, San Sebastian, Spain
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden; Unit for Hereditray Dementia, Theme Aging, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Mario Masellis
- Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Pietro Tiraboschi
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Portugal
| | - Chris R Butler
- Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of System Neurology, Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Halle, Germany
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND)
| | - Florence Pasquier
- University of Lille, France; Inserm 1172, Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Barbara Borroni
- Neurology, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
6
|
Lancini E, Haag L, Bartl F, Rühling M, Ashton NJ, Zetterberg H, Düzel E, Hämmerer D, Betts MJ. Cerebrospinal fluid and positron-emission tomography biomarkers for noradrenergic dysfunction in neurodegenerative diseases: a systematic review and meta-analysis. Brain Commun 2023; 5:fcad085. [PMID: 37151227 PMCID: PMC10154713 DOI: 10.1093/braincomms/fcad085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The noradrenergic system shows pathological modifications in aging and neurodegenerative diseases and undergoes substantial neuronal loss in Alzheimer's disease and Parkinson's disease. While a coherent picture of structural decline in post-mortem and in vivo MRI measures seems to emerge, whether this translates into a consistent decline in available noradrenaline levels is unclear. We conducted a meta-analysis of noradrenergic differences in Alzheimer's disease dementia and Parkinson's disease using CSF and PET biomarkers. CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol levels as well as noradrenaline transporters availability, measured with PET, were summarized from 26 articles using a random-effects model meta-analysis. Compared to controls, individuals with Parkinson's disease showed significantly decreased levels of CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol, as well as noradrenaline transporters availability in the hypothalamus. In Alzheimer's disease dementia, 3-methoxy-4-hydroxyphenylglycol but not noradrenaline levels were increased compared to controls. Both CSF and PET biomarkers of noradrenergic dysfunction reveal significant alterations in Parkinson's disease and Alzheimer's disease dementia. However, further studies are required to understand how these biomarkers are associated to the clinical symptoms and pathology.
Collapse
Affiliation(s)
- Elisa Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lena Haag
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Franziska Bartl
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Maren Rühling
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nicholas J Ashton
- Institute of Psychiatry, Department of Old Age Psychiatry, King’s College London, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Eun JD, Jimenez H, Adrien L, Wolin A, Marambaud P, Davies P, Koppel JL. Anesthesia promotes acute expression of genes related to Alzheimer's disease and latent tau aggregation in transgenic mouse models of tauopathy. Mol Med 2022; 28:83. [PMID: 35858831 PMCID: PMC9297560 DOI: 10.1186/s10020-022-00506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Exposure to anesthesia in the elderly might increase the risk of dementia. Although the mechanism underlying the association is uncertain, anesthesia has been shown to induce acute tau hyperphosphorylation in preclinical models. We sought to investigate the impact of anesthesia on gene expression and on acute and long-term changes in tau biochemistry in transgenic models of tauopathy in order to better understand how anesthesia influences the pathophysiology of dementia. Methods We exposed mice with over-expressed human mutant tau (P301L and hyperdopaminergic COMTKO/P301L) to two hours of isoflurane and compared anesthetized mice to controls at several time points. We evaluated tau hyperphosphorylation with quantitative high-sensitivity enzyme-linked immunosorbent assay and performed differential expression and functional transcriptome analyses following bulk mRNA-sequencing. Results Anesthesia induced acute hyperphosphorylation of tau at epitopes related to Alzheimer’s disease (AD) in both P301L-based models. Anesthesia was associated with differential expression of genes in the neurodegenerative pathways (e.g., AD-risk genes ApoE and Trem2) and thermogenesis pathway, which is related to both mammalian hibernation and tau phosphorylation. One and three months after anesthesia, hyperphosphorylated tau aggregates were increased in the anesthetized mice. Conclusions Anesthesia may influence the expression of AD-risk genes and induce biochemical changes in tau that promote aggregation even after single exposure. Further preclinical and human studies are necessary to establish the relevance of our transcriptomic and biochemical findings in these preclinical models to the pathogenesis of dementia following anesthesia. Trial registration: Not applicable. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00506-4.
Collapse
Affiliation(s)
- John David Eun
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Heidy Jimenez
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Leslie Adrien
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Adam Wolin
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Peter Davies
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA
| | - Jeremy L Koppel
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institutes for Medical Research, 350 Community Drive, 4th floor, Manhasset, NY, 11030, USA. .,Zucker Hillside Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA.
| |
Collapse
|
8
|
Koller EJ, Ibanez KR, Vo Q, McFarland KN, De La Cruz EG, Zobel L, Williams T, Xu G, Ryu D, Patel P, Giasson BI, Prokop S, Chakrabarty P. Combinatorial model of amyloid β and tau reveals synergy between amyloid deposits and tangle formation. Neuropathol Appl Neurobiol 2022; 48:e12779. [PMID: 34825397 PMCID: PMC8810717 DOI: 10.1111/nan.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
AIMS To illuminate the pathological synergy between Aβ and tau leading to emergence of neurofibrillary tangles (NFT) in Alzheimer's disease (AD), here, we have performed a comparative neuropathological study utilising three distinctive variants of human tau (WT tau, P301L mutant tau and S320F mutant tau). Previously, in non-transgenic mice, we showed that WT tau or P301L tau does not form NFT while S320F tau can spontaneously aggregate into NFT, allowing us to test the selective vulnerability of these different tau conformations to the presence of Aβ plaques. METHODS We injected recombinant AAV-tau constructs into neonatal APP transgenic TgCRND8 mice or into 3-month-old TgCRND8 mice; both cohorts were aged 3 months post injection. This allowed us to test how different tau variants synergise with soluble forms of Aβ (pre-deposit cohort) or with frank Aβ deposits (post-deposit cohort). RESULTS Expression of WT tau did not produce NFT or altered Aβ in either cohort. In the pre-deposit cohort, S320F tau induced Aβ plaque deposition, neuroinflammation and synaptic abnormalities, suggesting that early tau tangles affect the amyloid cascade. In the post-deposit cohort, contemporaneous expression of S320F tau did not exacerbate amyloid pathology, showing a dichotomy in Aβ-tau synergy based on the nature of Aβ. P301L tau produced NFT-type inclusions in the post-deposit cohort, but not in the pre-deposit cohort, indicating pathological synergy with pre-existing Aβ deposits. CONCLUSIONS Our data show that different tau mutations representing specific folding variants of tau synergise with Aβ to different extents, depending on the presence of cerebral deposits.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Kristen R Ibanez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Lillian Zobel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Tristan Williams
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Preya Patel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Jimenez H, Adrien L, Wolin A, Eun J, Chang EH, Burstein ES, Gomar J, Davies P, Koppel J. The impact of pimavanserin on psychotic phenotypes and tau phosphorylation in the P301L/COMT- and rTg(P301L)4510 mouse models of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12247. [PMID: 35128032 PMCID: PMC8804623 DOI: 10.1002/trc2.12247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Psychosis in Alzheimer's disease (AD) is associated with grave clinical consequences including a precipitous cognitive decline and a hastened demise. These outcomes are aggravated by use of existing antipsychotic medications, which are also associated with cognitive decline and increased mortality; preclinical models that would develop new therapeutic approaches are desperately needed. The current report evaluates the ability of the neoteric antipsychotic, pimavanserin, to normalize hyperkinesis and sensorimotor gating in the novel catechol-O-methyltransferase (COMT) deleted P301L/COMT- and rTg(P301L)4510 models of psychotic AD, and the impact of pimavanserin on tau pathology. METHODS Female P301L/COMT- mice were behaviorally characterized for abnormalities of locomotion and sensorimotor gating, and biochemically characterized for patterns of tau phosphorylation relative to relevant controls utilizing high-sensitivity tau enzyme-linked immunosorbent assay (ELISA). Female P301L/COMT- and rTg(P301L)4510 mice were randomized to pimavanserin or vehicle treatment to study the ability of pimavanserin to normalize locomotion and rescue sensorimotor gating. Additionally, high-sensitivity tau ELISA was used to investigate the impact of treatment on tau phosphorylation. RESULTS P301L/COMT- mice evidenced a hyperlocomotive phenotype and deficits of sensorimotor gating relative to wild-type mice on the same background, and increased tau phosphorylation relative to COMT-competent P301L mice. Pimavanserin normalized the hyperkinetic phenotype in both the P301L/COMT- and rTg(P301L)4510 mice but had no impact on sensorimotor gating in either model. Pimavanserin treatment had little impact on tau phosphorylation patterns. DISCUSSION These data suggest that pimavanserin ameliorates tau-driven excessive locomotion. Given the morbidity associated with aberrant motor behaviors such as pacing in AD and lack of effective treatments, future studies of the impact of pimavanserin on actigraphy in patients with this syndrome may be warranted.
Collapse
Affiliation(s)
- Heidy Jimenez
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Leslie Adrien
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Adam Wolin
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - John Eun
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Eric H. Chang
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | | | - Jesus Gomar
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Peter Davies
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| | - Jeremy Koppel
- Northwell HealthThe Feinstein Institutes for Medical ResearchManhassetNew YorkUSA
| |
Collapse
|
10
|
Wang X, Liu Q, Li XG, Zhou QZ, Wu DQ, Li SH, Liu YC, Wang JZ. T217-Phosphorylation Exacerbates Tau Pathologies and Tau-Induced Cognitive Impairment. J Alzheimers Dis 2021; 81:1403-1418. [PMID: 33935099 DOI: 10.3233/jad-210297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recent studies show that an increased T217-phosphorylation of tau in plasma could diagnose AD at an early stage with high accuracy and high specificity, while the potential toxic role of tau T217-phosphorylation is not known. OBJECTIVE To study the potential toxic role of tau T217-phosphorylation. METHODS We performed stereotactic brain injection, behavioral testing, immunohistochemistry and immunofluorescence, western blotting, Golgi staining, in vitro recombinant tau polymerization, and other measurements. RESULTS We first constructed tau T217-wild-type (T217), T217-phospho-mimic (T217E), and T217-non-phospho-mimic (T217A) plasmids or their virus vectors on the basis of wild-type tau. We found that expressing tau-T217E induced a significantly increased tau phosphorylation at multiple AD-associated sites with inhibited proteolysis and increased cleavage/fibrillization of tau, while expressing tau-T217A abolished the above changes of tau both in vitro and in vivo. By mutating T217E on tau-P301L, a dominant mutation identified in patients with frontotemporal dementia, we did not observe significant exacerbation of tau-P301L phosphorylation and cognitive impairment although the increased tau cleavage and propagation were shown. CONCLUSION T217-phosphorylation exacerbates wild-type tau hyperphosphorylation with aggravated tau cleavage/fibrillization and cognitive impairments, while overexpressing T217E on the basis P301L does not exacerbate tau phosphorylation or the P301L-induced cognitive deficits, although it aggravates tau cleavage and propagation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Qin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Chao Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Trait anxiety, a personality risk factor associated with Alzheimer's Disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110124. [PMID: 33035604 DOI: 10.1016/j.pnpbp.2020.110124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in elderly population and the leading cause of dementia worldwide. While senile plaques and neurofibrillary tangles have been proposed as the principal histopathologic hallmarks of AD, the exact etiology of this disease is still far from being clearly understood. AD has been recognized as pathological consequences of complex interactions among genetic, aging, medical, life style and psychosocial factors. Recently, the roles of neuroticism personality traits in AD incidence and progression have come into focus. More specifically, increasing evidence has further shown that the trait anxiety, one major component of neuroticism predicting the individual vulnerability in response to stress, is a risk factor for AD and may correlated with various AD pathologies. In this review, we summarized recent literature on the association of trait anxiety with AD. We also discussed the possible neuroendocrinological and neurochemical mechanisms of this association, which may provide clinical implications for AD diagnosis and therapy.
Collapse
|
12
|
Alzheimer's disease pathology: pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms. Mol Psychiatry 2021; 26:897-906. [PMID: 31138892 DOI: 10.1038/s41380-019-0437-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
The locus coeruleus (LC) supplies norepinephrine to the brain, is one of the first sites of tau deposition in Alzheimer's disease (AD) and modulates a variety of behaviors and cognitive functions. Transgenic mouse models showed that norepinephrine dysregulation after LC lesions exacerbates inflammatory responses, blood-brain barrier leakage (BBB), and cognitive deficits. Here, we investigated relationships between central norepinephrine metabolism, tau and beta-amyloid (Aβ), inflammation, BBB-dysfunction, neuropsychiatric problems, and memory in-vivo in a memory clinic population (total n = 111, 60 subjective cognitive decline, 36 mild cognitively impaired, and 19 AD dementia). Cerebrospinal fluid (CSF) and blood samples were collected and analyzed for 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), CSF/plasma albumin ratio (Q-alb), Aβ, phosphorylated tau, and interleukins. The verbal word learning task and the neuropsychiatric inventory assessed memory functioning and neuropsychiatric symptoms. Structural equation models tested the relationships between all fluid markers, cognition and behavior, corrected for age, education, sex, and clinical dementia rating score. Our results showed that neuropsychiatric symptoms show strong links to both MHPG and p-tau, whereas memory deficits are linked to MHPG via a combination of p-tau and inflammation-driven amyloidosis (30-35% indirect effect contribution). These results suggest that the LC-norepinephrine may be pivotal to understand links between AD pathology and behavioral and cognitive deficits in AD.
Collapse
|
13
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
14
|
Krivinko JM, Koppel J, Savonenko A, Sweet RA. Animal Models of Psychosis in Alzheimer Disease. Am J Geriatr Psychiatry 2020; 28:1-19. [PMID: 31278012 PMCID: PMC6858948 DOI: 10.1016/j.jagp.2019.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Psychosis in Alzheimer Disease (AD) represents a distinct clinicopathologic variant associated with increased cognitive and functional morbidity and an accelerated disease course. To date, extant treatments offer modest benefits with significant risks. The development of new pharmacologic treatments for psychosis in AD would be facilitated by validated preclinical models with which to test candidate interventions. The current review provides a brief summary of the process of validating animal models of human disease together with a critical analysis of the challenges posed in attempting to apply those standards to AD-related behavioral models. An overview of phenotypic analogues of human cognitive and behavioral impairments, with an emphasis on those relevant to psychosis, in AD-related mouse models is provided, followed by an update on recent progress in efforts to translate findings in the pathophysiology of psychotic AD into novel models. Finally, some future directions are suggested to expand the catalogue of psychosis-relevant phenotypes that may provide a sturdier framework for model development and targets for preclinical treatment outcomes.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
15
|
Gutiérrez IL, González-Prieto M, Caso JR, García-Bueno B, Leza JC, Madrigal JLM. Reboxetine Treatment Reduces Neuroinflammation and Neurodegeneration in the 5xFAD Mouse Model of Alzheimer's Disease: Role of CCL2. Mol Neurobiol 2019; 56:8628-8642. [PMID: 31297718 DOI: 10.1007/s12035-019-01695-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
Abstract
The reduction of brain noradrenaline levels is associated to the initiation of Alzheimer's disease and contributes to its progression. This seems to be due mainly to the anti-neuroinflammatory actions of noradrenaline. The analysis of noradrenaline effects on brain cells demonstrates that it also regulates the production of the chemokine CCL2. In the present study, we analyzed the effect of the selective noradrenaline reuptake inhibitor, reboxetine, on the inflammatory and neurodegenerative alterations present in 5xFAD mice, and how the genetic removal of CCL2 affects reboxetine actions. We observed that the removal of CCL2 reduced the memory impairments in 5xFAD mice as well as the neuroinflammatory response, the accumulation of amyloid beta plaques, and the degeneration of neurons in the brain cortex. The administration of reboxetine with osmotic pumps for 28 days also resulted in anti-inflammatory and neuroprotective changes in 5xFAD mice, even in the absence of CCL2. Yet, 6-month-old CCL2KO mice presented a significant degree of neuroinflammation and neuronal damage. These findings indicate that reboxetine treatment prevents the brain alterations caused by prolonged overproduction of amyloid beta, being these effects independent of CCL2, which is a mediator of the damage caused by amyloid beta in the brain cortex, but necessary for the prevention of the development of neurodegeneration in normal healthy conditions.
Collapse
Affiliation(s)
- Irene L Gutiérrez
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Marta González-Prieto
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Javier R Caso
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - José L M Madrigal
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain.
| |
Collapse
|