1
|
Tang X, Schindler RL, Di Lucente J, Oloumi A, Tena J, Harvey D, Lebrilla CB, Zivkovic AM, Jin LW, Maezawa I. Unique N-glycosylation signatures in human iPSC derived microglia activated by Aβ oligomer and lipopolysaccharide. Sci Rep 2025; 15:12348. [PMID: 40210651 PMCID: PMC11985925 DOI: 10.1038/s41598-025-96596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Microglia are the immune cells in the central nervous system (CNS) and become pro-inflammatory/activated in Alzheimer's disease (AD). Cell surface glycosylation plays an important role in immune cells; however, the N-glycosylation and glycosphingolipid (GSL) signatures of activated microglia are poorly understood. Here, we study comprehensively combined transcriptomic and glycomic profiles using human induced pluripotent stem cells-derived microglia (hiMG). Distinct changes in N-glycosylation patterns in amyloid-β oligomer (AβO) and LPS-treated hiMG were observed. In AβO-treated cells, the relative abundance of bisecting N-acetylglucosamine (GlcNAc) N-glycans decreased, corresponding with a downregulation of MGAT3. The sialylation of N-glycans increased in response to AβO, accompanied by an upregulation of genes involved in N-glycan sialylation (ST3GAL4 and 6). Unlike AβO-induced hiMG, LPS-induced hiMG exhibited a decreased abundance of complex-type N-glycans, aligned with downregulation of mannosidase genes (MAN1A1, MAN2A2, and MAN1C1) and upregulation of ER degradation related-mannosidases (EDEM1-3). Fucosylation increased in LPS-induced hiMG, aligned with upregulated fucosyltransferase 4 (FUT4) and downregulated alpha-L-fucosidase 1 (FUCA1) gene expression, while sialofucosylation decreased, aligned with upregulated neuraminidase 4 (NEU4). Inhibition of sialylation and fucosylation in AβO- and LPS-induced hiMG alleviated pro-inflammatory responses. However, the GSL profile did not exhibit significant changes in response to AβO or LPS activation, at least in the 24-hour stimulation timeframe. AβO- and LPS- specific glycosylation changes could contribute to impaired microglia function, highlighting glycosylation pathways as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Nutrition, University of California, Davis, CA, 95618, USA
| | - Ryan Lee Schindler
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Armin Oloumi
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Danielle Harvey
- Department of Public Health Sciences, University of California-Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, CA, 95618, USA.
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Zhou RZ, Gaunitz S, Kirsebom BE, Lundin B, Hellström M, Jejcic A, Sköldunger A, Wimo A, Winblad B, Fladby T, Schedin-Weiss S, Tjernberg LO. Blood N-glycomics reveals individuals at risk for cognitive decline and Alzheimer's disease. EBioMedicine 2025; 113:105598. [PMID: 39983328 PMCID: PMC11893330 DOI: 10.1016/j.ebiom.2025.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Blood biomarkers with prognostic accuracy for Alzheimer's disease (AD) are crucial for selecting at-risk individuals for interventions. Altered protein N-glycosylation has been implicated in several pathogenic pathways in AD and could be an early AD biomarker. METHODS We developed a mass spectrometry-based method to simultaneously quantify 62 blood N-glycan structures in individuals with biological or clinical AD and matched controls. We analysed N-glycan levels in a Swedish discovery cohort (n = 40) and validated our results in a Norwegian cohort (n = 60). Individuals were grouped according to N-glycan levels using unsupervised hierarchical clustering. Difference in disease progression between groups were modelled using linear mixed-effects models. FINDINGS A subgroup of individuals exhibited low blood N-glycosylation (32.4% of Swedish cohort, 37.9% of Norwegian cohort). In the Swedish cohort, low N-glycosylation was associated with AD and cognitive decline. In the Norwegian cohort, low blood N-glycosylation showed no correlation with amyloid/tau, but importantly, strongly predicted future cognitive decline. In total, fourteen N-glycan structures were significantly less abundant in the low N-glycosylation group compared to the rest of the individuals in both cohorts. INTERPRETATION Reduced blood N-glycan levels predict cognitive decline independent of amyloid or tau status. Blood N-glycome profiling could be used to identify individuals at risk for AD dementia. FUNDING Stiftelsen för Gamla Tjänarinnor, Stockholm County Council-ALF, JPND, PMI-AD, Medical Diagnostics Karolinska, Helse-Nord, Gun och Bertil Stohnes stiftelse, Demensförbundet, Stiftelsen Dementia, Margaretha af Ugglas' foundation, Vinnova, the private initiative "Innovative ways to fight Alzheimer's disease-Leif Lundblad Family and others".
Collapse
Affiliation(s)
- Robin Ziyue Zhou
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Stefan Gaunitz
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway; Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Britt Lundin
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Hellström
- Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alenka Jejcic
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Anders Sköldunger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Anders Wimo
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden.
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Solna, Sweden; Clinical Chemistry, Medical Diagnostics Karolinska, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Lee YR, Kaya I, Wik E, Baijnath S, Lodén H, Nilsson A, Zhang X, Sehlin D, Syvänen S, Svenningsson P, Andrén PE. Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, N-Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues. Anal Chem 2025; 97:1338-1346. [PMID: 39781894 PMCID: PMC11755403 DOI: 10.1021/acs.analchem.4c05665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, N-glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples. The optimization process involved testing multiple organic solvents, which identified serial washing in ice-cold methanol, followed by chloroform as optimal for N-glycan analysis. Integrating this optimized protocol into MALDI-MSI workflows enabled comprehensive sequential analysis of lipids (in dual polarity mode), N-glycans, and tryptic peptides within the same tissue sections, enhancing both the efficiency and reliability. Validation across diverse rodent brain tissue samples confirmed the protocol's robustness and versatility. The optimized methodology was subsequently applied to a transgenic Alzheimer's disease (AD) mouse model (tgArcSwe) as a proof of concept. In the AD model, significant molecular alterations were observed in various sphingolipid and glycerophospholipid species, as well as in biantennary and GlcNAc-bisecting N-glycans, particularly in the cerebral cortex. These region-specific alterations are potentially associated with amyloid-beta (Aβ) plaque accumulation, which may contribute to cognitive and memory impairments. The proposed standardized methodology represents a significant advancement in neurobiological research, providing valuable insights into disease mechanisms and laying the foundation for potential preclinical applications. It could aid the development of diagnostic biomarkers and targeted therapies for AD and other neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Ibrahim Kaya
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Elin Wik
- Department
of Public Health and Caring Sciences, Uppsala
University, SE-75237 Uppsala ,Sweden
| | - Sooraj Baijnath
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
- Integrated
Molecular Physiology Research Initiative, School of Physiology, Faculty
of Health Sciences, University of the Witwatersrand, Johannesburg 2017, South Africa
| | - Henrik Lodén
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Anna Nilsson
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| | - Xiaoqun Zhang
- Department
of Clinical Neuroscience, Karolinska Institute, SE-17177 Stockholm ,Sweden
| | - Dag Sehlin
- Department
of Public Health and Caring Sciences, Uppsala
University, SE-75237 Uppsala ,Sweden
| | - Stina Syvänen
- Department
of Public Health and Caring Sciences, Uppsala
University, SE-75237 Uppsala ,Sweden
| | - Per Svenningsson
- Department
of Clinical Neuroscience, Karolinska Institute, SE-17177 Stockholm ,Sweden
| | - Per E. Andrén
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden
| |
Collapse
|
4
|
Jiang P, Hakim MA, Saffarian Delkhosh A, Ahmadi P, Li Y, Mechref Y. 4-plex quantitative glycoproteomics using glycan/protein-stable isotope labeling in cell culture. J Proteomics 2025; 310:105333. [PMID: 39426592 PMCID: PMC11834166 DOI: 10.1016/j.jprot.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Alterations in glycoprotein abundance and glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics is pivotal for biomarker discovery, but comprehensive analysis within biological samples remains challenging due to low abundance, complexity, and lack of universal technology. We developed a multiplex glycoproteomic approach using an LC-ESI-MS platform for direct comparison of glycoproteomic quantitation. Glycopeptides were isotopically labeled during cell culture, achieving high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation was validated by mixing the same cell line in a 1:1:1:1 ratio, with mathematical correction applied to deconvolute the ratios. This method proved reliable and was applied to a comparative glycoproteomic study of three breast cancer cell lines (HTB22, MDA-MB-231, MDA-MB-231BR) and one brain cancer cell line (CRL-1620), quantifying glycopeptides from three replicates. The expression of glycopeptides was relatively quantified, and up/down-regulation between cell lines was investigated. This approach provided insights into glycosylation microheterogeneity, crucial for breast cancer brain metastasis research. Benefits include eliminating fluctuations from nano electrospray ionization and reducing analysis time, enabling up to 4-plex profiling in a single injection. Metabolic labeling introduced mass differences at the MS1 level, ensuring increased sensitivity and higher resolution for accurate quantitation. SIGNIFICANCE: Alternations in glycoprotein abundance, changes in glycosylation levels, and variations in glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics has emerged as a popular area of research for biomarker discovery. However, conducting a comprehensive quantitative analysis of the glycoproteome within biological samples remains challenging due to low abundance, inherent complexities, and the absence of universal quantitative technology. Here, we developed a multiplex glycoproteomic approach using an LC-ESI-MS platform to facilitate direct comparison of glycoproteomic quantitation and enhance throughput. This approach offers benefits such as eliminating quantitative fluctuations arising from nano electrospray ionization (ESI) and reducing analysis time, enabling up to 4-plex glycoproteomic profiling in a single injection. Glycopeptides were stable isotopic labeled during cell culture procedure, attaching to monosaccharides, amino acids, or both. We achieved a high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation validation was tested on glycopeptides by mixing the same cell line with 1:1:1:1 ratio. Due to the overlapped isotopes, a mathematical correction was applied to deconvolute the ratio of 4-plex glycopeptides. This method demonstrated quantitative reliability and was successfully applied to a comparative glycoproteomic study of three breast cancer cells (HTB22, MDA-MB-231, and MDA-MB-231BR) and one brain cancer cell (CRL-1620), identifying a total of 264 glycopeptides from three replicates. The expression of glycopeptides among these four cells was relatively quantified and up/down-regulation between two cell lines was investigated. The exploration of glycosylation microheterogeneity through glycopeptide quantification may offer valuable insights for further investigation into breast cancer brain metastasis. Conclusion: The primary advantage of our presented work lies in the multiplexing offered by combining two established labeling techniques, SILAC and IDAWG, both of which have been effectively used and widely cited in the scientific community. This combination enhances the applicability and accuracy of our method, as demonstrated by the extensive citations and successful use of these techniques independently. We believe that this multiplexing approach significantly advances the field, despite the method's current limitation to cell systems.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Arvin Saffarian Delkhosh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Yunxiang Li
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
5
|
Tang X, Schindler R, Lucente J, Oloumi A, Tena J, Harvey D, Lebrilla C, Zivkovic A, Jin LW, Maezawa I. Unique N-glycosylation signatures in Aβ oligomer-and lipopolysaccharide-activated human iPSC-derived microglia. RESEARCH SQUARE 2024:rs.3.rs-5308977. [PMID: 39606433 PMCID: PMC11601871 DOI: 10.21203/rs.3.rs-5308977/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microglia are the immune cells in the central nervous system (CNS) and become pro-inflammatory/activated in Alzheimer's disease (AD). Cell surface glycosylation plays an important role in immune cells; however, the N-glycosylation and glycosphingolipid (GSL) signatures of activated microglia are poorly understood. Here, we study comprehensive combined transcriptomic and glycomic profiles using human induced pluripotent stem cells-derived microglia (hiMG). Distinct changes in N-glycosylation patterns in amyloid-β oligomer (AβO) and LPS-treated hiMG were observed. In AβO-treated cells, the relative abundance of bisecting N-acetylglucosamine (GlcNAc) N-glycans decreased, corresponding with a downregulation of MGAT3. The sialylation of N-glycans increased in response to AβO, accompanied by an upregulation of genes involved in N-glycan sialylation (ST3GAL4 and 6). Unlike AβO-induced hiMG, LPS-induced hiMG exhibited a decreased abundance of complex-type N-glycans, aligned with downregulation of mannosidase genes (MAN1A1, MAN2A2, and MAN1C1) and upregulation of ER degradation related-mannosidases (EDEM1-3). Fucosylation increased in LPS-induced hiMG, aligned with upregulated fucosyltransferase 4 (FUT4) and downregulated alpha-L-fucosidase 1 (FUCA1) gene expression, while sialofucosylation decreased, aligned with upregulated neuraminidase 4 (NEU4). Inhibition of sialyation and fucosylation in AβO- and LPS-induced hiMG alleviated pro-inflammatory responses. However, the GSL profile did not exhibit significant changes in response to AβO or LPS activation. AβO- and LPS- specific glycosylation changes could contribute to impaired microglia function, highlighting glycosylation pathways as potential therapeutic targets for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lee-Way Jin
- University of California Davis Medical Center
| | | |
Collapse
|
6
|
Zhou RZ, Duell F, Axenhus M, Jönsson L, Winblad B, Tjernberg LO, Schedin-Weiss S. A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients. Brain Commun 2024; 6:fcae371. [PMID: 39494362 PMCID: PMC11528473 DOI: 10.1093/braincomms/fcae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Early detection of Alzheimer's disease is vital for timely treatment. Existing biomarkers for Alzheimer's disease reflect amyloid- and tau-related pathology, but it is unknown whether the disease can be detected before cerebral amyloidosis is observed. N-glycosylation has been suggested as an upstream regulator of both amyloid and tau pathology, and levels of the N-glycan structure bisecting N-acetylglucosamine (GlcNAc) correlate with tau in blood and CSF already at pre-clinical stages of the disease. Therefore, we aimed to evaluate whether bisecting GlcNAc could predict future cognitive decline in patients from a memory clinic cohort, stratified by amyloid/tau status. We included 251 patients (mean age: 65.6 ± 10.6 years, 60.6% female) in the GEDOC cohort, from the Memory Clinic at Karolinska University Hospital, Stockholm, Sweden. Patients were classified as amyloid/tau positive or negative based on CSF biomarkers. Cognitive decline, measured by longitudinal Mini-Mental State Examination scores, was followed for an average of 10.7 ± 4.1 years and modelled using non-linear mixed effects models. Additionally, bisecting GlcNAc levels were measured in hippocampus and cortex with lectin-based immunohistochemistry in 10 Alzheimer's disease and control brains. We found that CSF bisecting GlcNAc levels were elevated in tau-positive individuals compared with tau-negative individuals, but not in amyloid-positive individuals compared with amyloid-negative individuals. In the whole sample, high levels of CSF bisecting GlcNAc predicted earlier cognitive decline. Strikingly, amyloid/tau stratification showed that high CSF bisecting GlcNAc levels predicted earlier cognitive decline in amyloid-negative patients (β = 2.53 ± 0.85 years, P = 0.003) and tau-negative patients (β = 2.43 ± 1.01 years, P = 0.017), but not in amyloid- or tau-positive patients. Finally, histochemical analysis of bisecting GlcNAc showed increased levels in neurons in hippocampus and cortex of Alzheimer's disease compared with control brain (fold change = 1.44-1.49, P < 0.001). In conclusion, high CSF levels of bisecting GlcNAc reflected neuronal pathology and predicted cognitive decline in amyloid- and tau-negative individuals, suggesting that abnormal glycosylation precedes cerebral amyloidosis and tau hyper-phosphorylation in Alzheimer's disease. Bisecting GlcNAc is a promising novel early biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Robin Ziyue Zhou
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Frida Duell
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Michael Axenhus
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Linus Jönsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge 141 57, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna 171 64, Sweden
| |
Collapse
|
7
|
Solomon J, Gutierrez-Reyes CD, Chávez-Reyes J, Onigbinde S, Marichal-Cancino BA, López-Lariz CH, Beck M, Mechref Y. Neuroglycome alterations of hippocampus and prefrontal cortex of juvenile rats chronically exposed to glyphosate-based herbicide. Front Neurosci 2024; 18:1442772. [PMID: 39234181 PMCID: PMC11371619 DOI: 10.3389/fnins.2024.1442772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Glyphosate-based herbicides (GBHs) have been shown to have significant neurotoxic effects, affecting both the structure and function of the brain, and potentially contributing to the development of neurodegenerative disorders. Despite the known importance of glycosylation in disease progression, the glycome profile of systems exposed to GBH has not been thoroughly investigated. Methods In this study, we conducted a comprehensive glycomic profiling using LC-MS/MS, on the hippocampus and prefrontal cortex (PFC) of juvenile rats exposed to GBH orally, aiming to identify glyco-signature aberrations after herbicide exposure. Results We observed changes in the glycome profile, particularly in fucosylated, high mannose, and sialofucosylated N-glycans, which may be triggered by GBH exposure. Moreover, we found major significant differences in the N-glycan profiles between the GBH-exposed group and the control group when analyzing each gender independently, in contrast to the analysis that included both genders. Notably, gender differences in the behavioral test of object recognition showed a decreased performance in female animals exposed to GBH compared to controls (p < 0.05), while normal behavior was recorded in GBH-exposed male rats (p > 0.05). Conclusion These findings suggest that glycans may play a role in the neurotoxic effect caused by GBH. The result suggests that gender variation may influence the response to GBH exposure, with potential implications for disease progression and specifically the neurotoxic effects of GBHs. Understanding these gender-specific responses could enhance knowledge of the mechanisms underlying GBH-induced toxicity and its impact on brain health. Overall, our study represents the first detailed analysis of N-glycome profiles in the hippocampus and PFC of rats chronically exposed to GBH. The observed alterations in the expression of N-glycan structures suggest a potential neurotoxic effect associated with chronic GBH exposure, highlighting the importance of further research in this area.
Collapse
Affiliation(s)
- Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | | | - Jesús Chávez-Reyes
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Bruno A Marichal-Cancino
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos H López-Lariz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Mia Beck
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Grijaldo-Alvarez SJB, Alvarez MRS, Schindler RL, Oloumi A, Hernandez N, Seales T, Angeles JGC, Nacario RC, Completo GC, Zivkovic AM, Bruce German J, Lebrilla CB. N-Glycan profile of the cell membrane as a probe for lipopolysaccharide-induced microglial neuroinflammation uncovers the effects of common fatty acid supplementation. Food Funct 2024; 15:8258-8273. [PMID: 39011570 PMCID: PMC11668514 DOI: 10.1039/d4fo01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Altered N-glycosylation of proteins on the cell membrane is associated with several neurodegenerative diseases. Microglia are an ideal model for studying glycosylation and neuroinflammation, but whether aberrant N-glycosylation in microglia can be restored by diet remains unknown. Herein, we profiled the N-glycome, proteome, and glycoproteome of the human microglia following lipopolysaccharide (LPS) induction to probe the impact of dietary and gut microbe-derived fatty acids-oleic acid, lauric acid, palmitic acid, valeric acid, butyric acid, isobutyric acid, and propionic acid-on neuroinflammation using liquid chromatography-tandem mass spectrometry. LPS changed N-glycosylation in the microglial glycocalyx altering high mannose and sialofucosylated N-glycans, suggesting the dysregulation of mannosidases, fucosyltransferases, and sialyltransferases. The results were consistent as we observed the restoration effect of the fatty acids, especially oleic acid, on the LPS-treated microglia, specifically on the high mannose and sialofucosylated glycoforms of translocon-associated proteins, SSRA and SSRB along with the cell surface proteins, CD63 and CD166. In addition, proteomic analysis and in silico modeling substantiated the potential of fatty acids in reverting the effects of LPS on microglial N-glycosylation. Our results showed that N-glycosylation is likely affected by diet by restoring alterations following LPS challenge, which may then influence the disease state.
Collapse
Affiliation(s)
- Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 95616, USA.
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | | | | | - Armin Oloumi
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Noah Hernandez
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Tristan Seales
- Department of Chemistry, University of California, Davis, 95616, USA.
| | - Jorge Gil C Angeles
- Philippine Genome Center - Program for Agriculture, Livestock, Fisheries and Forestry, University of the Philippines Los Baños, Philippines, 4031.
| | - Ruel C Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Gladys C Completo
- Institute of Chemistry, University of the Philippines Los Baños, Philippines, 4031.
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, 95616, USA.
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, 95616, USA.
| | | |
Collapse
|
9
|
Fastenau C, Bunce M, Keating M, Wickline J, Hopp SC, Bieniek KF. Distinct patterns of plaque and microglia glycosylation in Alzheimer's disease. Brain Pathol 2024; 34:e13267. [PMID: 38724175 PMCID: PMC11189777 DOI: 10.1111/bpa.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 06/23/2024] Open
Abstract
Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods. The present study aims to overcome these limitations with novel combinations of histologic techniques to characterize the sialylation landscape of O- and N-linked glycans in autopsy-confirmed AD post-mortem brain tissue. Sialylated glycans facilitate important cellular functions including cell-to-cell interaction, cell migration, cell adhesion, immune regulation, and membrane excitability. Previous studies have not investigated both N- and O-linked sialylated glycans in neurodegeneration. In this study, the location and distribution of sialylated glycans were evaluated in three brain regions (frontal cortex, hippocampus, and cerebellum) from 10 AD cases using quantitative digital pathology techniques. Notably, we found significantly greater N-sialylation of the Aβ plaque microenvironment compared with O-sialylation. Plaque-associated microglia displayed the most intense N-sialylation proximal to plaque pathology. Further analyses revealed distinct differences in the levels of N- and O-sialylation between cored and diffuse Aβ plaque morphologies. Interestingly, phosphorylated tau pathology led to a slight increase in N-sialylation and no influence of O-sialylation in these AD brains. Confirming our previous observations in mice with novel histologic approach, these findings support microglia sialylation appears to have a relationship with AD protein aggregates while providing potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Caitlyn Fastenau
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Madison Bunce
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Mallory Keating
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Jessica Wickline
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Sarah C. Hopp
- Department of PharmacologyUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Science Center San AntonioSan AntonioTexasUSA
| |
Collapse
|
10
|
Kang Y, Zhang Q, Xu S, Yu Y. The alteration and role of glycoconjugates in Alzheimer's disease. Front Aging Neurosci 2024; 16:1398641. [PMID: 38946780 PMCID: PMC11212478 DOI: 10.3389/fnagi.2024.1398641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by abnormal protein deposition. With an alarming 30 million people affected worldwide, AD poses a significant public health concern. While inhibiting key enzymes such as β-site amyloid precursor protein-cleaving enzyme 1 and γ-secretase or enhancing amyloid-β clearance, has been considered the reasonable strategy for AD treatment, their efficacy has been compromised by ineffectiveness. Furthermore, our understanding of AD pathogenesis remains incomplete. Normal aging is associated with a decline in glucose uptake in the brain, a process exacerbated in patients with AD, leading to significant impairment of a critical post-translational modification: glycosylation. Glycosylation, a finely regulated mechanism of intracellular secondary protein processing, plays a pivotal role in regulating essential functions such as synaptogenesis, neurogenesis, axon guidance, as well as learning and memory within the central nervous system. Advanced glycomic analysis has unveiled that abnormal glycosylation of key AD-related proteins closely correlates with the onset and progression of the disease. In this context, we aimed to delve into the intricate role and underlying mechanisms of glycosylation in the etiopathology and pathogenesis of AD. By highlighting the potential of targeting glycosylation as a promising and alternative therapeutic avenue for managing AD, we strive to contribute to the advancement of treatment strategies for this debilitating condition.
Collapse
Affiliation(s)
- Yue Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Silu Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Markussen KH, Corti M, Byrne BJ, Kooi CWV, Sun RC, Gentry MS. The multifaceted roles of the brain glycogen. J Neurochem 2024; 168:728-743. [PMID: 37554056 PMCID: PMC10901277 DOI: 10.1111/jnc.15926] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Glycogen is a biologically essential macromolecule that is directly involved in multiple human diseases. While its primary role in carbohydrate storage and energy metabolism in the liver and muscle is well characterized, recent research has highlighted critical metabolic and non-metabolic roles for glycogen in the brain. In this review, the emerging roles of glycogen homeostasis in the healthy and diseased brain are discussed with a focus on advancing our understanding of the role of glycogen in the brain. Innovative technologies that have led to novel insights into glycogen functions are detailed. Key insights into how cellular localization impacts neuronal and glial function are discussed. Perturbed glycogen functions are observed in multiple disorders of the brain, including where it serves as a disease driver in the emerging category of neurological glycogen storage diseases (n-GSDs). n-GSDs include Lafora disease (LD), adult polyglucosan body disease (APBD), Cori disease, Glucose transporter type 1 deficiency syndrome (G1D), GSD0b, and late-onset Pompe disease (PD). They are neurogenetic disorders characterized by aberrant glycogen which results in devastating neurological and systemic symptoms. In the most severe cases, rapid neurodegeneration coupled with dementia results in death soon after diagnosis. Finally, we discuss current treatment strategies that are currently being developed and have the potential to be of great benefit to patients with n-GSD. Taken together, novel technologies and biological insights have resulted in a renaissance in brain glycogen that dramatically advanced our understanding of both biology and disease. Future studies are needed to expand our understanding and the multifaceted roles of glycogen and effectively apply these insights to human disease.
Collapse
Affiliation(s)
- Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Craig W. Vander Kooi
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Ramon C. Sun
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Matthew S. Gentry
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| |
Collapse
|
12
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform coregulation network and glycan modification alterations in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eadk6911. [PMID: 38579000 PMCID: PMC10997212 DOI: 10.1126/sciadv.adk6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we report a proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified more than 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching and elongation as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of coregulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide valuable insights into disease pathogenesis and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lih-Shen Chin
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lian Li
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Axenhus M, Doeswijk T, Nilsson P, Matton A, Winblad B, Tjernberg L, Schedin-Weiss S. DEAD Box Helicase 24 Is Increased in the Brain in Alzheimer's Disease and AppN-LF Mice and Influences Presymptomatic Pathology. Int J Mol Sci 2024; 25:3622. [PMID: 38612434 PMCID: PMC11011903 DOI: 10.3390/ijms25073622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
At the time of diagnosis, Alzheimer's disease (AD) patients already suffer from significant neuronal loss. The identification of proteins that influence disease progression before the onset of symptoms is thus an essential part of the development of new effective drugs and biomarkers. Here, we used an unbiased 18O labelling proteomics approach to identify proteins showing altered levels in the AD brain. We studied the relationship between the protein with the highest increase in hippocampus, DEAD box Helicase 24 (DDX24), and AD pathology. We visualised DDX24 in the human brain and in a mouse model for Aβ42-induced AD pathology-AppNL-F-and studied the interaction between Aβ and DDX24 in primary neurons. Immunohistochemistry in the AD brain confirmed the increased levels and indicated an altered subcellular distribution of DDX24. Immunohistochemical studies in AppNL-F mice showed that the increase of DDX24 starts before amyloid pathology or memory impairment is observed. Immunocytochemistry in AppNL-F primary hippocampal neurons showed increased DDX24 intensity in the soma, nucleus and nucleolus. Furthermore, siRNA targeting of DDX24 in neurons decreased APP and Aβ42 levels, and the addition of Aβ42 to the medium reduced DDX24. In conclusion, we have identified DDX24 as a protein with a potential role in Aβ-induced AD pathology.
Collapse
Affiliation(s)
- Michael Axenhus
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Tosca Doeswijk
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Anna Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
- Campus Huddinge, Theme Inflammation and Aging, Karolinska University Hospital, 141 57 Huddinge, Sweden
| | - Lars Tjernberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Sophia Schedin-Weiss
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| |
Collapse
|
14
|
Egebäck Arulf S, Ziyue Zhou R, Kirsebom BE, Jejcic A, Fladby T, Winblad B, Tjernberg L, Schedin-Weiss S. Bisecting N-Acetylglucosamine Correlates with Phospho-Tau181 in Subjective Cognitive Decline but not in Control Cases. J Alzheimers Dis 2024; 100:S93-S101. [PMID: 39121127 DOI: 10.3233/jad-240628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background The N-glycan structure bisecting N-acetylglucosamine (bisecting GlcNAc) is present on several N-glycans that are elevated in Alzheimer's disease (AD), and previous studies have shown that bisecting GlcNAc levels correlate with total tau and phospho-tau181 in cerebrospinal fluid at early stages of AD. A recent population-based study showed that bisecting GlcNAc correlates with total tau also in blood and that this correlation could predict conversion to dementia. Objective In this study, we have further investigated how bisecting GlcNAc relates to total tau and phospho-tau 181 in cerebrospinal fluid samples from controls and cases with early cognitive deficits, stratified by amyloid/tau status and gender. Methods Relative levels of bisecting GlcNAc in cerebrospinal fluid were measured by an enzyme-linked lectin assay in individuals with subjective cognitive decline, mild cognitive impairment and controls from the Norwegian Dementia Disease Initiation cohort. Results As in our previous study, the correlation between bisecting GlcNAc and total tau or phospho-tau181 was particularly strong in the subjective cognitive decline group. The correlation was observed in amyloid negative and tau negative as well as amyloid positive and tau positive individuals, both in females and in males. Interestingly, among the amyloid negative and tau negative individuals, the correlation was observed in individuals with subjective cognitive decline but not in the controls. Conclusions Thus, bisecting GlcNAc could be a biomarker for early cognitive decline.
Collapse
Affiliation(s)
- Sofia Egebäck Arulf
- Department of Neurobiology, Division of Neurogeriatrics, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Robin Ziyue Zhou
- Department of Neurobiology, Division of Neurogeriatrics, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Troms-, Norway
- Department of Psychology, Faculty of Health Sciences, The Arctic University of Norway, Troms-, Norway
- Department of Neurology, Akershus University Hospital, L-renskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alenka Jejcic
- Department of Neurobiology, Division of Neurogeriatrics, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, L-renskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bengt Winblad
- Department of Neurobiology, Division of Neurogeriatrics, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Tjernberg
- Department of Neurobiology, Division of Neurogeriatrics, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Department of Neurobiology, Division of Neurogeriatrics, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
15
|
Klarić TS, Gudelj I, Santpere G, Novokmet M, Vučković F, Ma S, Doll HM, Risgaard R, Bathla S, Karger A, Nairn AC, Luria V, Bečeheli I, Sherwood CC, Ely JJ, Hof PR, Sousa AM, Josić D, Lauc G, Sestan N. Human-specific features and developmental dynamics of the brain N-glycome. SCIENCE ADVANCES 2023; 9:eadg2615. [PMID: 38055821 PMCID: PMC10699788 DOI: 10.1126/sciadv.adg2615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. We performed multiregional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry and then integrated these data with complementary glycotranscriptomic data. We found that, in primates, the brain N-glycome has diverged more rapidly than the underlying transcriptomic framework, providing a means for rapidly generating additional interspecies diversity. Our data suggest that brain N-glycome evolution in hominids has been characterized by an overall increase in complexity coupled with a shift toward increased usage of α(2-6)-linked N-acetylneuraminic acid. Moreover, interspecies differences in the cell type expression pattern of key glycogenes were identified, including some human-specific differences, which may underpin this evolutionary divergence. Last, by comparing the prenatal and adult human brain N-glycomes, we uncovered region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain.
Collapse
Affiliation(s)
- Thomas S. Klarić
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Ivan Gudelj
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Hospital del Mar Research Institute, Barcelona, Catalonia, Spain
| | | | | | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Hannah M. Doll
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Risgaard
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Shveta Bathla
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Amir Karger
- IT Research Computing, Harvard Medical School, Boston, MA, USA
| | - Angus C. Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | | | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - John J. Ely
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- MAEBIOS, Alamogordo, NM, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - André M. M. Sousa
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Departments of Genetics and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Xiao Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Halemubieke S, Mei L, Lu Z, Yan Y, Wang L. Posttranslational modifications of ACE2 protein: Implications for SARS-CoV-2 infection and beyond. J Med Virol 2023; 95:e29304. [PMID: 38063421 DOI: 10.1002/jmv.29304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
The present worldwide pandemic of coronavirus disease 2019 (COVID-19) has highlighted the important function of angiotensin-converting enzyme 2 (ACE2) as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. A deeper understanding of ACE2 could offer insights into the mechanisms of SARS-CoV-2 infection. While ACE2 is subject to regulation by various factors in vivo, current research in this area is insufficient to fully elucidate the corresponding pathways of control. Posttranslational modification (PTM) is a powerful tool for broadening the variety of proteins. The PTM study of ACE2 will help us to make up for the deficiency in the regulation of protein synthesis and translation. However, research on PTM-related aspects of ACE2 remains limited, mostly focused on glycosylation. Accordingly, a comprehensive review of ACE2 PTMs could help us better understand the infection process and provide a basis for the treatment of COVID-19 and beyond.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shana Halemubieke
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
17
|
Zhang Q, Ma C, Chin LS, Pan S, Li L. Human brain glycoform co-regulation network and glycan modification alterations in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566889. [PMID: 38014218 PMCID: PMC10680592 DOI: 10.1101/2023.11.13.566889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we present a new paradigm of proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified over 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of co-regulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-β accumulation, and tau pathology. Our findings provide novel insights and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.
Collapse
|
18
|
Chen KS, Noureldein MH, Rigan DM, Hayes JM, Savelieff MG, Feldman EL. Regional interneuron transcriptional changes reveal pathologic markers of disease progression in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565165. [PMID: 37961679 PMCID: PMC10635060 DOI: 10.1101/2023.11.01.565165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and leading cause of dementia, characterized by neuronal and synapse loss, amyloid-β and tau protein aggregates, and a multifactorial pathology involving neuroinflammation, vascular dysfunction, and disrupted metabolism. Additionally, there is growing evidence of imbalance between neuronal excitation and inhibition in the AD brain secondary to dysfunction of parvalbumin (PV)- and somatostatin (SST)-positive interneurons, which differentially modulate neuronal activity. Importantly, impaired interneuron activity in AD may occur upstream of amyloid-β pathology rendering it a potential therapeutic target. To determine the underlying pathologic processes involved in interneuron dysfunction, we spatially profiled the brain transcriptome of the 5XFAD AD mouse model versus controls, across four brain regions, dentate gyrus, hippocampal CA1 and CA3, and cortex, at early-stage (12 weeks-of-age) and late-stage (30 weeks-of-age) disease. Global comparison of differentially expressed genes (DEGs) followed by enrichment analysis of 5XFAD versus control highlighted various biological pathways related to RNA and protein processing, transport, and clearance in early-stage disease and neurodegeneration pathways at late-stage disease. Early-stage DEGs examination found shared, e.g ., RNA and protein biology, and distinct, e.g ., N-glycan biosynthesis, pathways enriched in PV-versus somatostatin SST-positive interneurons and in excitatory neurons, which expressed neurodegenerative and axon- and synapse-related pathways. At late-stage disease, PV-positive interneurons featured cancer and cancer signaling pathways along with neuronal and synapse pathways, whereas SST-positive interneurons showcased glycan biosynthesis and various infection pathways. Late-state excitatory neurons were primarily characterized by neurodegenerative pathways. These fine-grained transcriptomic profiles for PV- and SST-positive interneurons in a time- and spatial-dependent manner offer new insight into potential AD pathophysiology and therapeutic targets.
Collapse
|
19
|
Zhao J, Lang M. New insight into protein glycosylation in the development of Alzheimer's disease. Cell Death Discov 2023; 9:314. [PMID: 37626031 PMCID: PMC10457297 DOI: 10.1038/s41420-023-01617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that seriously endangers the physical and mental health of patients, however, there are still no effective drugs or methods to cure this disease up to now. Protein glycosylation is the most common modifications of the translated proteins in eukaryotic cells. Recently many researches disclosed that aberrant glycosylation happens in some important AD-related proteins, such as APP, Tau, Reelin and CRMP-2, etc, suggesting a close link between abnormal protein glycosylation and AD. Because of its complexity and diversity, glycosylation is thus considered a completely new entry point for understanding the precise cause of AD. This review comprehensively summarized the currently discovered changes in protein glycosylation patterns in AD, and especially introduced the latest progress on the mechanism of protein glycosylation affecting the progression of AD and the potential application of protein glycosylation in AD detection and treatment, thereby providing a wide range of opportunities for uncovering the pathogenesis of AD and promoting the translation of glycosylation research into future clinical applications.
Collapse
Affiliation(s)
- Jingwei Zhao
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Life Science, Agricultural University of Hebei, Baoding, 071000, China.
| |
Collapse
|
20
|
Yang J, Li H, Zhao Y. Dessert or Poison? The Roles of Glycosylation in Alzheimer's, Parkinson's, Huntington's Disease, and Amyotrophic Lateral Sclerosis. Chembiochem 2023; 24:e202300017. [PMID: 37440197 DOI: 10.1002/cbic.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/27/2023] [Indexed: 07/14/2023]
Abstract
Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajun Yang
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhui Zhao
- Key Laboratory of Endemic and Ethenic Diseases Medical Molecular Biology of Guizhou Province Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
21
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
22
|
Tang X, Tena J, Di Lucente J, Maezawa I, Harvey DJ, Jin LW, Lebrilla CB, Zivkovic AM. Transcriptomic and glycomic analyses highlight pathway-specific glycosylation alterations unique to Alzheimer's disease. Sci Rep 2023; 13:7816. [PMID: 37188790 PMCID: PMC10185676 DOI: 10.1038/s41598-023-34787-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Glycosylation has been found to be altered in the brains of individuals with Alzheimer's disease (AD). However, it is unknown which specific glycosylation-related pathways are altered in AD dementia. Using publicly available RNA-seq datasets covering seven brain regions and including 1724 samples, we identified glycosylation-related genes ubiquitously changed in individuals with AD. Several differentially expressed glycosyltransferases found by RNA-seq were confirmed by qPCR in a different set of human medial temporal cortex (MTC) samples (n = 20 AD vs. 20 controls). N-glycan-related changes predicted by expression changes in these glycosyltransferases were confirmed by mass spectrometry (MS)-based N-glycan analysis in the MTC (n = 9 AD vs. 6 controls). About 80% of glycosylation-related genes were differentially expressed in at least one brain region of AD participants (adjusted p-values < 0.05). Upregulation of MGAT1 and B4GALT1 involved in complex N-linked glycan formation and galactosylation, respectively, were reflected by increased concentrations of corresponding N-glycans. Isozyme-specific changes were observed in expression of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family and the alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (ST6GALNAC) family of enzymes. Several glycolipid-specific genes (UGT8, PIGM) were upregulated. The critical transcription factors regulating the expression of N-glycosylation and elongation genes were predicted and found to include STAT1 and HSF5. The miRNA predicted to be involved in regulating N-glycosylation and elongation glycosyltransferases were has-miR-1-3p and has-miR-16-5p, respectively. Our findings provide an overview of glycosylation pathways affected by AD and potential regulators of glycosyltransferase expression that deserve further validation and suggest that glycosylation changes occurring in the brains of AD dementia individuals are highly pathway-specific and unique to AD.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Danielle J Harvey
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Jin LW, di Lucente J, Mendiola UR, Tang X, Zivkovic AM, Lebrilla CB, Maezawa I. The role of FUT8-catalyzed core fucosylation in Alzheimer's amyloid-β oligomer-induced activation of human microglia. Glia 2023; 71:1346-1359. [PMID: 36692036 PMCID: PMC11021125 DOI: 10.1002/glia.24345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Fucosylation, especially core fucosylation of N-glycans catalyzed by α1-6 fucosyltransferase (fucosyltransferase 8 or FUT8), plays an important role in regulating the peripheral immune system and inflammation. However, its role in microglial activation is poorly understood. Here we used human induced pluripotent stem cells-derived microglia (hiMG) as a model to study the role of FUT8-catalyzed core fucosylation in amyloid-β oligomer (AβO)-induced microglial activation, in view of its significant relevance to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AβO and lipopolysaccharides (LPS) with a pattern of pro-inflammatory activation as well as enhanced core fucosylation and FUT8 expression within 24 h. Furthermore, we found increased FUT8 expression in both human AD brains and microglia isolated from 5xFAD mice, a model of AD-like cerebral amyloidosis. Inhibition of fucosylation in AβO-stimulated hiMG reduced the induction of pro-inflammatory cytokines, suppressed the activation of p38MAPK, and rectified phagocytic deficits. Specific inhibition of FUT8 by siRNA-mediated knockdown also reduced AβO-induced pro-inflammatory cytokines. We further showed that p53 binds to the two consensus binding sites in the Fut8 promoter, and that p53 knockdown abolished FUT8 overexpression in AβO-activated hiMG. Taken together, our evidence supports that FUT8-catalyzed core fucosylation is a signaling pathway required for AβO-induced microglia activation and that FUT8 is a component of the p53 signaling cascade regulating microglial behavior. Because microglia are a key driver of AD pathogenesis, our results suggest that microglial FUT8 could be an anti-inflammatory therapeutic target for AD.
Collapse
Affiliation(s)
- Lee-Way Jin
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Jacopo di Lucente
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Ulises R. Mendiola
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, CA 95618
| | | | | | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, 2805 50 Street, Sacramento, CA 95817
| |
Collapse
|
24
|
Siew JJ, Chern Y, Khoo KH, Angata T. Roles of Siglecs in neurodegenerative diseases. Mol Aspects Med 2023; 90:101141. [PMID: 36089405 DOI: 10.1016/j.mam.2022.101141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023]
Abstract
Microglia are resident myeloid cells in the central nervous system (CNS) with a unique developmental origin, playing essential roles in developing and maintaining the CNS environment. Recent studies have revealed the involvement of microglia in neurodegenerative diseases, such as Alzheimer's disease, through the modulation of neuroinflammation. Several members of the Siglec family of sialic acid recognition proteins are expressed on microglia. Since the discovery of the genetic association between a polymorphism in the CD33 gene and late-onset Alzheimer's disease, significant efforts have been made to elucidate the molecular mechanism underlying the association between the polymorphism and Alzheimer's disease. Furthermore, recent studies have revealed additional potential associations between Siglecs and Alzheimer's disease, implying that the reduced signal from inhibitory Siglec may have an overall protective effect in lowering the disease risk. Evidences suggesting the involvement of Siglecs in other neurodegenerative diseases are also emerging. These findings could help us predict the roles of Siglecs in other neurodegenerative diseases. However, little is known about the functionally relevant Siglec ligands in the brain, which represents a new frontier. Understanding how microglial Siglecs and their ligands in CNS contribute to the regulation of CNS homeostasis and pathogenesis of neurodegenerative diseases may provide us with a new avenue for disease prevention and intervention.
Collapse
Affiliation(s)
- Jian Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Dos Santos A, Teixeira FC, da Silva DS, Veleda TA, de Mello JE, Luduvico KP, Tavares RG, Stefanello FM, Cunico W, Spanevello RM. Thiazolidin-4-one prevents against memory deficits, increase in phosphorylated tau protein, oxidative damage and cholinergic dysfunction in Alzheimer disease model: Comparison with donepezil drug. Brain Res Bull 2023; 193:1-10. [PMID: 36442692 DOI: 10.1016/j.brainresbull.2022.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is characterized mostly by memory decline. The current therapeutic arsenal for treating AD is limited, and the available drugs only produce symptomatic benefits, but do not stop disease progression. The search for effective therapeutic alternatives with multitarget actions is therefore imperative. One such a potential alternative is thiazolidin-4-one, a compound that exhibits anti-amnesic, anticholinesterase, and antioxidant activities. The aim of this study was evaluated the effects of 2-(4-(methylthio)phenyl)- 3-(3-(piperidin-1-yl)propyl) thiazolidin-4-one (DS12) on memory and neurochemical parameters in a model of AD induced by an intracerebroventricular injection of streptozotocin (STZ). Adult male rats were divided into five groups: I, control (saline); II, DS12 (10 mg/kg); III, STZ; IV, STZ + DS12 (10 mg/kg); V, STZ + donepezil (5 mg/kg). The rats were orally treated with DS12 and donepezil for a period of 20 days. Memory, acetylcholinesterase (AChE) activity, phosphorylated tau protein levels and oxidative stress were analyzed in the cerebral cortex, hippocampus, and cerebellum. Biochemical and hematological parameters were evaluated in the blood and serum. Memory impairment and the increase in AChE activity and phosphorylated tau protein level induced by STZ were prevented by DS12 and donepezil treatment. Streptozotocin induces an increase in reactive oxygen species levels and a decrease in catalase activity in the hippocampus, cerebral cortex, and cerebellum. DS12 treatment conferred protection from oxidative alterations in all brain structures. No changes were observed in serum biochemical parameters (glucose, triglycerides, cholesterol, uric acid, and urea) or hematological parameters, such as platelets, lymphocytes, hemoglobin, hematocrit, and total plasma protein. DS12 improved memory and neurochemical changes in an AD model and did not show toxic effects, suggesting the promising therapeutic potential of this compound.
Collapse
Affiliation(s)
- Alessandra Dos Santos
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil
| | - Daniel Schuch da Silva
- Program in Biochemistry and Bioprospecting, Laboratory of Chemistry Applied to Bioactives, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/N, Pelotas, RS, Brazil
| | - Tayná Amaral Veleda
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Julia Eisenhart de Mello
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Rejane Giacomelli Tavares
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Program in Biochemistry and Bioprospecting, Laboratory of Biomarkers, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, S/N, Pelotas, RS, Brazil
| | - Wilson Cunico
- Program in Biochemistry and Bioprospecting, Laboratory of Chemistry Applied to Bioactives, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Program in Biochemistry and Bioprospection, Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus, Pelotas, RS, Brazil.
| |
Collapse
|
26
|
Suttapitugsakul S, Stavenhagen K, Donskaya S, Bennett DA, Mealer RG, Seyfried NT, Cummings RD. Glycoproteomics Landscape of Asymptomatic and Symptomatic Human Alzheimer's Disease Brain. Mol Cell Proteomics 2022; 21:100433. [PMID: 36309312 PMCID: PMC9706167 DOI: 10.1016/j.mcpro.2022.100433] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Molecular changes in the brain of individuals afflicted with Alzheimer's disease (AD) are an intense area of study. Little is known about the role of protein abundance and posttranslational modifications in AD progression and treatment, in particular large-scale intact N-linked glycoproteomics analysis. To elucidate the N-glycoproteome landscape, we developed an approach based on multi-lectin affinity enrichment, hydrophilic interaction chromatography, and LC-MS-based glycoproteomics. We analyzed brain tissue from 10 persons with no cognitive impairment or AD, 10 with asymptomatic AD, and 10 with symptomatic AD, detecting over 300 glycoproteins and 1900 glycoforms across the samples. The majority of glycoproteins have N-glycans that are high-mannosidic or complex chains that are fucosylated and bisected. The Man5 N-glycan was found to occur most frequently at >20% of the total glycoforms. Unlike the glycoproteomes of other tissues, sialylation is a minor feature of the brain N-glycoproteome, occurring at <9% among the glycoforms. We observed AD-associated differences in the number of antennae, frequency of fucosylation, bisection, and other monosaccharides at individual glycosylation sites among samples from our three groups. Further analysis revealed glycosylation differences in subcellular compartments across disease stage, including glycoproteins in the lysosome frequently modified with paucimannosidic glycans. These results illustrate the N-glycoproteomics landscape across the spectrum of AD clinical and pathologic severity and will facilitate a deeper understanding of progression and treatment development.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sofia Donskaya
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
27
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
28
|
Tena J, Maezawa I, Barboza M, Wong M, Zhu C, Alvarez MR, Jin LW, Zivkovic AM, Lebrilla CB. Regio-Specific N-Glycome and N-Glycoproteome Map of the Elderly Human Brain With and Without Alzheimer's Disease. Mol Cell Proteomics 2022; 21:100427. [PMID: 36252735 PMCID: PMC9674923 DOI: 10.1016/j.mcpro.2022.100427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The proteins in the cell membrane of the brain are modified by glycans in highly interactive regions. The glycans and glycoproteins are involved in cell-cell interactions that are of fundamental importance to the brain. In this study, the comprehensive N-glycome and N-glycoproteome of the brain were determined in 11 functional brain regions, some of them known to be affected with the progression of Alzheimer's disease. N-glycans throughout the regions were generally highly branched and highly sialofucosylated. Regional variations were also found with regard to the glycan types including high mannose and complex-type structures. Glycoproteomic analysis identified the proteins that differed in glycosylation in the various regions. To obtain the broader representation of glycan compositions, four subjects with two in their 70s and two in their 90s representing two Alzheimer's disease subjects, one hippocampal sclerosis subject, and one subject with no cognitive impairment were analyzed. The four subjects were all glycomically mapped across 11 brain regions. Marked differences in the glycomic and glycoproteomic profiles were observed between the samples.
Collapse
Affiliation(s)
- Jennyfer Tena
- Department of Chemistry, University of California, Davis, California, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA,UC Davis MIND Institute, Sacramento, California, USA
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, California, USA,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, California, USA
| | - Chenghao Zhu
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | | | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA,UC Davis MIND Institute, Sacramento, California, USA
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, California, USA,For correspondence: Carlito B. Lebrilla
| |
Collapse
|
29
|
N-glycans Profiling in Pilocarpine Induced Status Epilepticus in Immature Rats. EUROPEAN PHARMACEUTICAL JOURNAL 2022. [DOI: 10.2478/afpuc-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Status epilepticus (SE) is a common neurological emergency in children and a well-known epileptogenic insult. Neonates are extremely susceptible to seizures in the neonatal period due to the higher vulnerability. Neonatal SE is associated with significant mortality and morbidity. There is an evident need for attention on neonatal SE in research due to the incredibly limited diagnostic and treatment options in current neonatology, and its serious long-term consequences. The aim of the present study was to characterize the glycoprofiles in the pilocarpine-induced SE model in immature rats to assess the overall N-glycans composition. To induce lithium-pilocarpine (Li-Pilo) SE male Wistar rat pups were pretreated with lithium chloride (127 mg/kg, n=11) on the 11th postnatal day. After 24 hours, the lithium pre-treated pups were administered either with pilocarpine intraperitoneally (i.p.) (35 kg/g, n=6) or saline (n=5) in the control group (Control). On the 19th postnatal day, serum was collected and the analytical procedures were done by mass spectrometry (MS) analytics on matrix-assisted laser desorption/ionization in combination with a time-of-flight detector (MALDI-TOF/MS). Analyzed data were processed by FlexAnalysis (Bruker Daltonics) and GlycoWorkbench software. There were 21 N-glycans that were identified, appointed, and sorted with special emphasis on their structure. We have demonstrated the significant changes in terms of N-glycans sialylation in Li-Pilo compared to the Control. We also observed some other remodelation trends in different portions of relative intenstities of N-glycan clusters according to their glycan type. Our preliminary findings have laid the foundation for additional investigation into glycosylation alterations in the SE in immature rats.
Collapse
|
30
|
Azevedo R, Jacquemin C, Villain N, Fenaille F, Lamari F, Becher F. Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells 2022; 11:1279. [PMID: 35455959 PMCID: PMC9031030 DOI: 10.3390/cells11081279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders that challenge modern medicine. A deeper understanding of the pathogenesis underlying neurodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden. Specifically, post-translational modifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs and in the context of biomarker discovery has improved and opened venues for analyzing more complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the most important and recent breakthroughs in MS-based biomarker discovery.
Collapse
Affiliation(s)
- Rita Azevedo
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Chloé Jacquemin
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Nicolas Villain
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
- Institut du Cerveau (ICM), Pitié-Salpêtrière Hospital, 75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, AP-HP Sorbonne Université, CEDEX 13, 75651 Paris, France
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Foudil Lamari
- Department of Metabolic Biochemistry (AP-HP Sorbonne), Pitié-Salpêtrière Hospital, CEDEX 13, 75651 Paris, France;
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| |
Collapse
|
31
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
32
|
Role and therapeutic implications of protein glycosylation in neuroinflammation. Trends Mol Med 2022; 28:270-289. [PMID: 35120836 DOI: 10.1016/j.molmed.2022.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The importance of glycosylation (post-translational attachment of glycan residues to proteins) in the context of neuroinflammation is only now beginning to be understood. Although the glycome is challenging to investigate due to its complexity, this field is gaining interest because of the emergence of novel analytical methods. These investigations offer the possibility of further understanding the molecular signature of disorders with underlying neuroinflammatory cascades. In this review, we portray the clinically relevant trends in glyconeurobiology and suggest glyco-related paths that could be targeted therapeutically to decrease neuroinflammation. A combinatorial insight from glycobiology and neurology can be harnessed to better understand neuroinflammatory-related conditions to identify relevant molecular targets.
Collapse
|
33
|
Towards Mapping of the Human Brain N-Glycome with Standardized Graphitic Carbon Chromatography. Biomolecules 2022; 12:biom12010085. [PMID: 35053234 PMCID: PMC8774104 DOI: 10.3390/biom12010085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
The brain N-glycome is known to be crucial for many biological functions, including its involvement in neuronal diseases. Although large structural studies of brain N-glycans were recently carried out, a comprehensive isomer-specific structural analysis has still not been achieved, as indicated by the recent discovery of novel structures with galactosylated bisecting GlcNAc. Here, we present a detailed, isomer-specific analysis of the human brain N-glycome based on standardized porous graphitic carbon (PGC)-LC-MS/MS. To achieve this goal, we biosynthesized glycans with substitutions typically occurring in the brain N-glycome and acquired their normalized retention times. Comparison of these values with the standardized retention times of neutral and desialylated N-glycan fractions of the human brain led to unambiguous isomer specific assignment of most major peaks. Profound differences in the glycan structures between naturally neutral and desialylated glycans were found. The neutral and sialylated N-glycans derive from diverging biosynthetic pathways and are biosynthetically finished end products, rather than just partially processed intermediates. The focus on structural glycomics defined the structure of human brain N-glycans, amongst these are HNK-1 containing glycans, a bisecting sialyl-lactose and structures with fucose and N-acetylgalactosamine on the same arm, the so-called LDNF epitope often associated with parasitic worms.
Collapse
|
34
|
Lin T, van Husen LS, Yu Y, Tjernberg LO, Schedin-Weiss S. OUP accepted manuscript. Glycobiology 2022; 32:506-517. [PMID: 35275192 PMCID: PMC9132248 DOI: 10.1093/glycob/cwac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tong Lin
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, J9:20, Visionsgatan 4, Stockholm 171 64, Sweden
| | - Lea S van Husen
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, J9:20, Visionsgatan 4, Stockholm 171 64, Sweden
| | - Yang Yu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, J9:20, Visionsgatan 4, Stockholm 171 64, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, J9:20, Visionsgatan 4, Stockholm 171 64, Sweden
| | - Sophia Schedin-Weiss
- Corresponding author: Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, J9:20, Visionsgatan 4, Stockholm 171 64, Sweden.
| |
Collapse
|
35
|
N. ARC, Cornejo V, Guevara-Morales JM, Echeverri-Peña OY. Advances and Challenges in Classical Galactosemia. Pathophysiology and Treatment. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2022. [DOI: 10.1590/2326-4594-jiems-2021-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Helm J, Grünwald-Gruber C, Thader A, Urteil J, Führer J, Stenitzer D, Maresch D, Neumann L, Pabst M, Altmann F. Bisecting Lewis X in Hybrid-Type N-Glycans of Human Brain Revealed by Deep Structural Glycomics. Anal Chem 2021; 93:15175-15182. [PMID: 34723506 PMCID: PMC8600501 DOI: 10.1021/acs.analchem.1c03793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The importance of
protein glycosylation in the biomedical field
requires methods that not only quantitate structures by their monosaccharide
composition, but also resolve and identify the many isomers expressed
by mammalian cells. The art of unambiguous identification of isomeric
structures in complex mixtures, however, did not yet catch up with
the fast pace of advance of high-throughput glycomics. Here, we present
a strategy for deducing structures with the help of a deci-minute
accurate retention time library for porous graphitic carbon chromatography
with mass spectrometric detection. We implemented the concept for
the fundamental N-glycan type consisting of five
hexoses, four N-acetylhexosamines and one fucose
residue. Nearly all of the 40 biosynthetized isomers occupied unique
elution positions. This result demonstrates the unique isomer selectivity
of porous graphitic carbon. With the help of a rather tightly spaced
grid of isotope-labeled internal N-glycan, standard
retention times were transposed to a standard chromatogram. Application
of this approach to animal and human brain N-glycans
immediately identified the majority of structures as being of the
bisected type. Most notably, it exposed hybrid-type glycans with galactosylated
and even Lewis X containing bisected N-acetylglucosamine,
which have not yet been discovered in a natural source. Thus, the
time grid approach implemented herein facilitated discovery of the
still missing pieces of the N-glycome in our most
noble organ and suggests itself—in conjunction with collision
induced dissociation—as a starting point for the overdue development
of isomer-specific deep structural glycomics.
Collapse
Affiliation(s)
- Johannes Helm
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Thader
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Jonathan Urteil
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johannes Führer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - David Stenitzer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Laura Neumann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
37
|
Hanrieder J. Preface: Mass spectrometry in Alzheimer disease: This is the Preface for the special issue "Mass Spectrometry in Alzheimer Disease". J Neurochem 2021; 159:207-210. [PMID: 34665876 DOI: 10.1111/jnc.15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
This preface introduces the content of the special issue on 'Mass Spectrometry in Alzheimer Disease'. Here, an overview is provided on how mass spectrometry is contributing to a broader understanding of AD pathobiology. Mass spectrometry has become a major technology in biomedical analysis and research. This includes biochemical and clinical studies that aim to detail our understanding of Alzheimer disease pathogenesis and pathobiology (AD). In this special issue, key experts in the field present exciting developments and applications of MS in the context of studying AD pathology. These studies span from basic biochemical and neuropathological studies, over advanced metabolomics- and proteomics, towards comprehensive biomarker studies, as well as more recently, in situ mass spectrometry-based imaging (MSI). Together, these studies highlight the key relevance of current and emerging MS technologies to detect, delineate and understand principle pathogenic mechanisms underlying AD.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
38
|
Bright F, Katzeff JS, Hodges JR, Piguet O, Kril JJ, Halliday GM, Kim WS. Glycoprotein Pathways Altered in Frontotemporal Dementia With Autoimmune Disease. Front Immunol 2021; 12:736260. [PMID: 34539672 PMCID: PMC8440893 DOI: 10.3389/fimmu.2021.736260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a younger onset form of neurodegeneration initiated in the frontal and/or temporal lobes with a slow clinical onset but rapid progression. bvFTD is highly complex biologically with different pathological signatures and genetic variants that can exhibit a spectrum of overlapping clinical manifestations. Although the role of innate immunity has been extensively investigated in bvFTD, the involvement of adaptive immunity in bvFTD pathogenesis is poorly understood. We analyzed blood serum proteomics to identify proteins that are associated with autoimmune disease in bvFTD. Eleven proteins (increased: ATP5B, CALML5, COLEC11, FCGBP, PLEK, PLXND1; decreased: APOB, ATP8B1, FAM20C, LOXL3, TIMD4) were significantly altered in bvFTD with autoimmune disease compared to those without autoimmune disease. The majority of these proteins were enriched for glycoprotein-associated proteins and pathways, suggesting that the glycome is targeted in bvFTD with autoimmune disease.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jared S Katzeff
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Woojin Scott Kim
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Treacy EP, Vencken S, Bosch AM, Gautschi M, Rubio‐Gozalbo E, Dawson C, Nerney D, Colhoun HO, Shakerdi L, Pastores GM, O'Flaherty R, Saldova R. Abnormal N-glycan fucosylation, galactosylation, and sialylation of IgG in adults with classical galactosemia, influence of dietary galactose intake. JIMD Rep 2021; 61:76-88. [PMID: 34485021 PMCID: PMC8411110 DOI: 10.1002/jmd2.12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Classical galactosemia (CG) (OMIM #230400) is a rare disorder of carbohydrate metabolism, due to deficiency of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological, and female infertility remains poorly understood. OBJECTIVES This study investigated (a) the association between specific IgG N-glycosylation biomarkers (glycan peaks and grouped traits) and CG patients (n = 95) identified from the GalNet Network, using hydrophilic interaction ultraperformance liquid chromatography and (b) a further analysis of a GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) with correlation with glycan features with patient Full Scale Intelligence Quotient (FSIQ), and (c) with galactose intake. RESULTS A very significant decrease in galactosylation and sialylation and an increase in core fucosylation was noted in CG patients vs controls (P < .005). Bisected glycans were decreased in the severe GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) (P < .05). Logistic regression models incorporating IgG glycan traits distinguished CG patients from controls. Incremental dietary galactose intake correlated positively with FSIQ for the p.Gln188Arg homozygous CG cohort (P < .005) for a dietary galactose intake of 500 to 1000 mg/d. Significant improvements in profiles with increased galactose intake were noted for monosialylated, monogalactosylated, and monoantennary glycans. CONCLUSION These results suggest that N-glycosylation abnormalities persist in CG patients on dietary galactose restriction which may be modifiable to a degree by dietary galactose intake.
Collapse
Affiliation(s)
- Eileen P. Treacy
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
- Department of PaediatricsTrinity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | | | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersEmma Children's Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Matthias Gautschi
- Department of Paediatrics and Institute of Clinical ChemistryInselspital, University Hospital BernBernSwitzerland
| | - Estela Rubio‐Gozalbo
- Department of Pediatrics/Laboratory of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Charlotte Dawson
- Department of EndocrinologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Darragh Nerney
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Hugh Owen Colhoun
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
| | - Loai Shakerdi
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Gregory M. Pastores
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- Department of ChemistryMaynooth UniversityKildareIreland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin (UCD)DublinIreland
| |
Collapse
|
40
|
Gaunitz S, Tjernberg LO, Schedin-Weiss S. What Can N-glycomics and N-glycoproteomics of Cerebrospinal Fluid Tell Us about Alzheimer Disease? Biomolecules 2021; 11:858. [PMID: 34207636 PMCID: PMC8226827 DOI: 10.3390/biom11060858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Proteomics-large-scale studies of proteins-has over the last decade gained an enormous interest for studies aimed at revealing proteins and pathways involved in disease. To fully understand biological and pathological processes it is crucial to also include post-translational modifications in the "omics". To this end, glycomics (identification and quantification of glycans enzymatically or chemically released from proteins) and glycoproteomics (identification and quantification of peptides/proteins with the glycans still attached) is gaining interest. The study of protein glycosylation requires a workflow that involves an array of sample preparation and analysis steps that needs to be carefully considered. Herein, we briefly touch upon important steps such as sample preparation and preconcentration, glycan release, glycan derivatization and quantification and advances in mass spectrometry that today are the work-horse for glycomics and glycoproteomics studies. Several proteins related to Alzheimer disease pathogenesis have altered protein glycosylation, and recent glycomics studies have shown differences in cerebrospinal fluid as well as in brain tissue in Alzheimer disease as compared to controls. In this review, we discuss these techniques and how they have been used to shed light on Alzheimer disease and to find glycan biomarkers in cerebrospinal fluid.
Collapse
Affiliation(s)
- Stefan Gaunitz
- Department of Clinical Chemistry, Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Lars O. Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden;
| |
Collapse
|
41
|
Rebelo AL, Gubinelli F, Roost P, Jan C, Brouillet E, Van Camp N, Drake RR, Saldova R, Pandit A. Complete spatial characterisation of N-glycosylation upon striatal neuroinflammation in the rodent brain. J Neuroinflammation 2021; 18:116. [PMID: 33993882 PMCID: PMC8127229 DOI: 10.1186/s12974-021-02163-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is an underlying pathology of all neurological conditions, the understanding of which is still being comprehended. A specific molecular pathway that has been overlooked in neuroinflammation is glycosylation (i.e., post-translational addition of glycans to the protein structure). N-glycosylation is a specific type of glycosylation with a cardinal role in the central nervous system (CNS), which is highlighted by congenital glycosylation diseases that result in neuropathological symptoms such as epilepsy and mental retardation. Changes in N-glycosylation can ultimately affect glycoproteins' functions, which will have an impact on cell machinery. Therefore, characterisation of N-glycosylation alterations in a neuroinflammatory scenario can provide a potential target for future therapies. METHODS With that aim, the unilateral intrastriatal injection of lipopolysaccharide (LPS) in the adult rat brain was used as a model of neuroinflammation. In vivo and post-mortem, quantitative and spatial characterisation of both neuroinflammation and N-glycome was performed at 1-week post-injection of LPS. These aspects were investigated through a multifaceted approach based on positron emission tomography (PET), quantitative histology, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), liquid chromatography and matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI). RESULTS In the brain region showing LPS-induced neuroinflammation, a significant decrease in the abundance of sialylated and core fucosylated structures was seen (approximately 7.5% and 8.5%, respectively), whereas oligomannose N-glycans were significantly increased (13.5%). This was confirmed by MALDI-MSI, which provided a high-resolution spatial distribution of N-glycans, allowing precise comparison between normal and diseased brain hemispheres. CONCLUSIONS Together, our data show for the first time the complete profiling of N-glycomic changes in a well-characterised animal model of neuroinflammation. These data represent a pioneering step to identify critical targets that may modulate neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Francesco Gubinelli
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Pauline Roost
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nadja Van Camp
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, USA
| | - Radka Saldova
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), University College Dublin, Dublin, Ireland
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
42
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|