1
|
Garces E, Slota K, Stewart MW, Guzman MP, Werninck NM, Castillo PR. Age-Related Macular Degeneration and Circadian Preference. Clin Ophthalmol 2025; 19:899-905. [PMID: 40099236 PMCID: PMC11912916 DOI: 10.2147/opth.s487389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of blindness in developed nations. Within the retina, a subset of cells, called melanopsin-containing intrinsically photosensitive retinal ganglion cells, are implicated in circadian rhythms, prompting a search for a potential connection between circadian behavior and AMD. Our objective was to compare the chronotype (ie, preference for morning or evening activity) of individuals with AMD to that of those without ocular conditions. Patients and Methods The Horne-Östberg Morningness-Eveningness questionnaire was administered to previously screened patients with wet AMD who received bilateral anti-vascular endothelial growth factor eye injections (study participants) as well as those without eye pathology (controls). Thirty-one study participants and 19 controls completed the survey and were included in the analysis. We used Wilcoxon rank sum test and Fisher exact test for continuous and categorical variables respectively. Results Study participants had a higher median age compared to controls (83 vs 75, P<0.001). No significant difference in body mass index was observed between respondents. While the disparity in survey responses between study participants and controls was generally not statistically significant, more study participants struggled with attending exercises between 7:00 and 8:00 in the morning compared to controls (45% vs 21%, P=0.02). Additionally, fewer study participants expressed the need to sleep before 10:15 pm compared to controls (55% vs 63%, P=0.04). Study participants tended to have a delayed sleep-wake cycle. Conclusion In this pilot study, study participants encountered greater challenges with morning exercise compared to controls. Nonetheless, there was no significant difference in chronotype between study participants and controls. The study could serve as a foundation for more extensive research exploring the interplay between vision loss and circadian rhythms.
Collapse
Affiliation(s)
- Estefany Garces
- Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | | | - Michael W Stewart
- Division of Ophthalmology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | | | - Natalia M Werninck
- Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Pablo R Castillo
- Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| |
Collapse
|
2
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Negm WA, Bahaa MM, Metawee ME, El-Saber Batiha G. Blunted Melatonin Circadian Rhythm in Parkinson's Disease: Express Bewilderment. Neurotox Res 2024; 42:38. [PMID: 39177895 DOI: 10.1007/s12640-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/17/2023] [Accepted: 07/28/2024] [Indexed: 08/24/2024]
Abstract
Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, Taif, 21944, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mostafa E Metawee
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Histology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, P.O. Box 14132, AlBeheira, Damanhour, Egypt.
| |
Collapse
|
3
|
Dittmar M, Stark T, Wedell S. Circadian Rhythm of Distal Skin Temperature in Healthy Older and Young Women and Its Relationship with Sleep-Wake Rhythm and Environmental Factors under Natural Living Conditions. Geriatrics (Basel) 2024; 9:102. [PMID: 39195132 DOI: 10.3390/geriatrics9040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known about the healthy aging of the circadian timing system under natural living conditions. This study explores changes in the circadian rhythm of distal skin temperature (DST) with aging and relates these changes to sleep-wake timing and environmental influences. DST, sleep-wake timing, 24-h light exposure, and physical activity were measured and averaged over seven consecutive days using temperature sensors, actigraphy with a light meter, and sleep diaries in 35 healthy older women (60-79 years) and 30 young women (20-34 years). Circadian rhythm characteristics, describing strength (amplitude) and timing (acrophase) of the DST rhythm, were calculated using cosinor analysis. The older adults displayed an 18-19% smaller amplitude and a 66-73 min earlier acrophase (peak time) for DST rhythm than the young adults, indicating a weaker and phase-advanced DST rhythm. The phase advance for DST was not due to an earlier evening increase, but to a shorter nocturnal plateau period. Daytime light exposure inversely affected strength (amplitude) but not phasing of the DST rhythm in older adults. The DST rhythm was 3.5 times more advanced than the sleep-wake rhythm, showing an altered phase relationship (phase angle) between both rhythms with aging. The phase angle was more heterogeneous among older adults, showing differential aging. The phase advance for DST rhythm and the altered and heterogeneous phase relationship between DST and sleep-wake rhythms were not related to ambient light exposure and the physical activity of older adults. This suggests that healthy aging of the circadian system might be due to endogenous mechanisms such as an internal rearrangement rather than external influences.
Collapse
Affiliation(s)
- Manuela Dittmar
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Tina Stark
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stefanie Wedell
- Department of Human Biology, Zoological Institute, Christian-Albrechts-University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
4
|
Yan Y, Su L, Huang S, He Q, Lu J, Luo H, Xu K, Yang G, Huang S, Chi H. Circadian rhythms and breast cancer: unraveling the biological clock's role in tumor microenvironment and ageing. Front Immunol 2024; 15:1444426. [PMID: 39139571 PMCID: PMC11319165 DOI: 10.3389/fimmu.2024.1444426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Breast cancer (BC) is one of the most common and fatal malignancies among women worldwide. Circadian rhythms have emerged in recent studies as being involved in the pathogenesis of breast cancer. In this paper, we reviewed the molecular mechanisms by which the dysregulation of the circadian genes impacts the development of BC, focusing on the critical clock genes, brain and muscle ARNT-like protein 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK). We discussed how the circadian rhythm disruption (CRD) changes the tumor microenvironment (TME), immune responses, inflammation, and angiogenesis. The CRD compromises immune surveillance and features and activities of immune effectors, including CD8+ T cells and tumor-associated macrophages, that are important in an effective anti-tumor response. Meanwhile, in this review, we discuss bidirectional interactions: age and circadian rhythms, aging further increases the risk of breast cancer through reduced vasoactive intestinal polypeptide (VIP), affecting suprachiasmatic nucleus (SCN) synchronization, reduced ability to repair damaged DNA, and weakened immunity. These complex interplays open new avenues toward targeted therapies by the combination of clock drugs with chronotherapy to potentiate the immune response while reducing tumor progression for better breast cancer outcomes. This review tries to cover the broad area of emerging knowledge on the tumor-immune nexus affected by the circadian rhythm in breast cancer.
Collapse
Affiliation(s)
- Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shanshan Huang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qihui He
- Department of Paediatrics, Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Masliukov PM. Functional properties of aged hypothalamic cells. VITAMINS AND HORMONES 2024; 127:207-243. [PMID: 39864942 DOI: 10.1016/bs.vh.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus, in addition to controlling the main body's vital functions, is also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular pathways, including Ca2+ signaling and neuronal excitability in the brain. Intrinsic electrophysiological properties of individual neurons and synaptic transmission between cells is disrupted in the central nervous system of old animals. However, changes in neuronal excitability and excitation/inhibition balance with aging are specific to the type of neurons, brain region, and species. Glia-neuron interactions play a significant role in the brain and undergo remodeling accompanied by advanced loss of function with aging. In the current review, I have summarized the current understanding of the changes in the brain and especially in the hypothalamus with aging.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia.
| |
Collapse
|
6
|
Buijink MR, van Weeghel M, Harms A, Murli DS, Meijer JH, Hankemeier T, Michel S, Kervezee L. Loss of temporal coherence in the circadian metabolome across multiple tissues during ageing in mice. Eur J Neurosci 2024; 60:3843-3857. [PMID: 38802069 DOI: 10.1111/ejn.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Circadian clock function declines with ageing, which can aggravate ageing-related diseases such as type 2 diabetes and neurodegenerative disorders. Understanding age-related changes in the circadian system at a systemic level can contribute to the development of strategies to promote healthy ageing. The goal of this study was to investigate the impact of ageing on 24-h rhythms in amine metabolites across four tissues in young (2 months of age) and old (22-25 months of age) mice using a targeted metabolomics approach. Liver, plasma, the suprachiasmatic nucleus (SCN; the location of the central circadian clock in the hypothalamus) and the paraventricular nucleus (PVN; a downstream target of the SCN) were collected from young and old mice every 4 h during a 24-h period (n = 6-7 mice per group). Differential rhythmicity analysis revealed that ageing impacts 24-h rhythms in the amine metabolome in a tissue-specific manner. Most profound changes were observed in the liver, in which rhythmicity was lost in 60% of the metabolites in aged mice. Furthermore, we found strong correlations in metabolite levels between the liver and plasma and between the SCN and the PVN in young mice. These correlations were almost completely abolished in old mice. These results indicate that ageing is accompanied by a severe loss of the circadian coordination between tissues and by disturbed rhythmicity of metabolic processes. The tissue-specific impact of ageing may help to differentiate mechanisms of ageing-related disorders in the brain versus peripheral tissues and thereby contribute to the development of potential therapies for these disorders.
Collapse
Affiliation(s)
- M Renate Buijink
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel van Weeghel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Devika S Murli
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Kervezee
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Matsui M, Ishii K, Suzuki K, Togashi K. Chronotype and emotional/behavioral problems mediate the association between leisure screen time and academic achievement in children. Chronobiol Int 2024; 41:513-520. [PMID: 38380819 DOI: 10.1080/07420528.2024.2320231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Leisure screen time is associated with poor academic achievement; however, the mechanism underlying this relationship is unclear. Chronotypes and emotional/behavioral problems may be linked to this association. This study aimed to examine the associations between leisure screen time, chronotype, emotional/behavioral problems, and academic achievement using mediation analysis. A total of 113 children aged 9-12 years participated in this study. All participants were assessed for leisure screen time, chronotype, emotional/behavioral problems, and academic achievement. Leisure screen time was evaluated using a self-reported questionnaire. Chronotypes were measured using The Japanese Children's Chronotype Questionnaire, and the morningness/eveningness (M/E) score was calculated. Emotional/behavioral problems were assessed using The Japanese Strengths and Difficulties Questionnaire, and the total difficulties score (TDS) was calculated. Academic achievement was assessed by the homeroom teacher for each of the seven school subjects. Partial correlation analysis adjusted for grade, sex, and sleep duration indicated that leisure screen time was associated with M/E scores and academic achievement (p < 0.05). There was a positive association between M/E score and TDS (p < 0.05) and a negative association between TDS and academic achievement (p < 0.05). A mediation analysis adjusted for grade, sex, and sleep duration was performed. There was a significant total effect of leisure screen time on academic achievement (p < 0.05). Additionally, the M/E score and TDS significantly mediated the association between leisure screen time and academic achievement (p < 0.05). Our findings suggest that the serial path between chronotype and emotional/behavioral problems weakly but significantly mediates the association of leisure screen time with academic achievement.
Collapse
Affiliation(s)
- Masahiro Matsui
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kaori Ishii
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Koya Suzuki
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| | | |
Collapse
|
8
|
Chandramouli M, Basavanna V, Ningaiah S. A scenario of unhealthy life cycle: The role of circadian rhythms in health. Aging Med (Milton) 2024; 7:231-238. [PMID: 38725697 PMCID: PMC11077335 DOI: 10.1002/agm2.12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Circadian rhythms are oscillations in physiology and behavior caused by the circadian regulator. Cryptochromes, Periods, and Bmal1 are circadian clock genes that have been linked to aging and cancer. Human pathologies alter circadian clock gene expression, and transgenic rats with clock gene defects progress to cancer and age prematurely. In the growth of age-linked pathologies and carcinogenesis, cell proliferation and genome integrity play critical roles. The relationship concerning the cell cycle regulation and circadian clock is discussed in this article. The circadian clock controls the behavior and countenance of many main cell cycle and cell cycle check-point proteins, and cell cycle-associated proteins, in turn, control the activity and expression of circadian clock proteins. The circadian clock can be reset by DNA disruption, providing a molecular mechanism for mutual control amid the cell cycle and the clock. This circadian clock-dependent regulation of cell proliferation, composed with other circadian clock-dependent physiological functions including metabolism control, genotoxic and oxidative stress response, and DNA repair, unlocks new avenues for studying the processes of aging and carcinogenesis.
Collapse
Affiliation(s)
- Manasa Chandramouli
- Department of Chemistry, Vidyavardhaka College of EngineeringVisvesvaraya Technological UniversityMysoreKarnatakaIndia
| | - Vrushabendra Basavanna
- Department of Chemistry, Vidyavardhaka College of EngineeringVisvesvaraya Technological UniversityMysoreKarnatakaIndia
| | - Srikantamurthy Ningaiah
- Department of Chemistry, Vidyavardhaka College of EngineeringVisvesvaraya Technological UniversityMysoreKarnatakaIndia
| |
Collapse
|
9
|
Li W, Tiedt S, Lawrence JH, Harrington ME, Musiek ES, Lo EH. Circadian Biology and the Neurovascular Unit. Circ Res 2024; 134:748-769. [PMID: 38484026 DOI: 10.1161/circresaha.124.323514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany (S.T.)
| | - Jennifer H Lawrence
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Mary E Harrington
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Neuroscience Program, Smith College, Northampton, MA (M.E.H.)
| | - Erik S Musiek
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| |
Collapse
|
10
|
van Beurden AW, Tersteeg MMH, Michel S, van Veldhoven JPD, IJzerman AP, Rohling JHT, Meijer JH. Small-molecule CEM3 strengthens single-cell oscillators in the suprachiasmatic nucleus. FASEB J 2024; 38:e23348. [PMID: 38084798 DOI: 10.1096/fj.202300597rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.
Collapse
Affiliation(s)
- Anouk W van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mayke M H Tersteeg
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaco P D van Veldhoven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jos H T Rohling
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Huang Y, Zhang Y, Braun R. A minimal model of peripheral clocks reveals differential circadian re-entrainment in aging. CHAOS (WOODBURY, N.Y.) 2023; 33:093104. [PMID: 37669108 PMCID: PMC10482494 DOI: 10.1063/5.0157524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023]
Abstract
The mammalian circadian system comprises a network of endogenous oscillators, spanning from the central clock in the brain to peripheral clocks in other organs. These clocks are tightly coordinated to orchestrate rhythmic physiological and behavioral functions. Dysregulation of these rhythms is a hallmark of aging, yet it remains unclear how age-related changes lead to more easily disrupted circadian rhythms. Using a two-population model of coupled oscillators that integrates the central clock and the peripheral clocks, we derive simple mean-field equations that can capture many aspects of the rich behavior found in the mammalian circadian system. We focus on three age-associated effects that have been posited to contribute to circadian misalignment: attenuated input from the sympathetic pathway, reduced responsiveness to light, and a decline in the expression of neurotransmitters. We find that the first two factors can significantly impede re-entrainment of the clocks following perturbation, while a weaker coupling within the central clock does not affect the recovery rate. Moreover, using our minimal model, we demonstrate the potential of using the feed-fast cycle as an effective intervention to accelerate circadian re-entrainment. These results highlight the importance of peripheral clocks in regulating the circadian rhythm and provide fresh insights into the complex interplay between aging and the resilience of the circadian system.
Collapse
Affiliation(s)
- Yitong Huang
- Author to whom correspondence should be addressed:
| | - Yuanzhao Zhang
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
| | | |
Collapse
|
12
|
Eto T, Higuchi S. Review on age-related differences in non-visual effects of light: melatonin suppression, circadian phase shift and pupillary light reflex in children to older adults. J Physiol Anthropol 2023; 42:11. [PMID: 37355647 DOI: 10.1186/s40101-023-00328-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Physiological effects of light exposure in humans are diverse. Among them, the circadian rhythm phase shift effect in order to maintain a 24-h cycle of the biological clock is referred to as non-visual effects of light collectively with melatonin suppression and pupillary light reflex. The non-visual effects of light may differ depending on age, and clarifying age-related differences in the non-visual effects of light is important for providing appropriate light environments for people of different ages. Therefore, in various research fields, including physiological anthropology, many studies on the effects of age on non-visual functions have been carried out in older people, children and adolescents by comparing the effects with young adults. However, whether the non-visual effects of light vary depending on age and, if so, what factors contribute to the differences have remained unclear. In this review, results of past and recent studies on age-related differences in the non-visual effects of light are presented and discussed in order to provide clues for answering the question of whether non-visual effects of light actually vary depending on age. Some studies, especially studies focusing on older people, have shown age-related differences in non-visual functions including differences in melatonin suppression, circadian phase shift and pupillary light reflex, while other studies have shown no differences. Studies showing age-related differences in the non-visual effects of light have suspected senile constriction and crystalline lens opacity as factors contributing to the differences, while studies showing no age-related differences have suspected the presence of a compensatory mechanism. Some studies in children and adolescents have shown that children's non-visual functions may be highly sensitive to light, but the studies comparing with other age groups seem to have been limited. In order to study age-related differences in non-visual effects in detail, comparative studies should be conducted using subjects having a wide range of ages and with as much control as possible for intensity, wavelength component, duration, circadian timing, illumination method of light exposure, and other factors (mydriasis or non-mydriasis, cataracts or not in the older adults, etc.).
Collapse
Affiliation(s)
- Taisuke Eto
- Research Fellow of the Japan Society for the Promotion of Science, Kodaira, Japan
- Department of Sleep-Wake Disorders, National Center of Neurology and Psychiatry, National Institute of Mental Health, Kodaira, Japan
| | - Shigekazu Higuchi
- Department of Human Life Design and Science, Faculty of Design, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
13
|
Olde Engberink AHO, de Torres Gutiérrez P, Chiosso A, Das A, Meijer JH, Michel S. Aging affects GABAergic function and calcium homeostasis in the mammalian central clock. Front Neurosci 2023; 17:1178457. [PMID: 37260848 PMCID: PMC10229097 DOI: 10.3389/fnins.2023.1178457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Aging impairs the function of the central circadian clock in mammals, the suprachiasmatic nucleus (SCN), leading to a reduction in the output signal. The weaker timing signal from the SCN results in a decline in rhythm strength in many physiological functions, including sleep-wake patterns. Accumulating evidence suggests that the reduced amplitude of the SCN signal is caused by a decreased synchrony among the SCN neurons. The present study was aimed to investigate the hypothesis that the excitation/inhibition (E/I) balance plays a role in synchronization within the network. Methods Using calcium (Ca2+) imaging, the polarity of Ca2+ transients in response to GABA stimulation in SCN slices of old mice (20-24 months) and young controls was studied. Results We found that the amount of GABAergic excitation was increased, and that concordantly the E/I balance was higher in SCN slices of old mice when compared to young controls. Moreover, we showed an effect of aging on the baseline intracellular Ca2+ concentration, with higher Ca2+ levels in SCN neurons of old mice, indicating an alteration in Ca2+ homeostasis in the aged SCN. We conclude that the change in GABAergic function, and possibly the Ca2+ homeostasis, in SCN neurons may contribute to the altered synchrony within the aged SCN network.
Collapse
|
14
|
Skapetze L, Owino S, Lo EH, Arai K, Merrow M, Harrington M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol Dis 2023; 181:106120. [PMID: 37044366 DOI: 10.1016/j.nbd.2023.106120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.
Collapse
Affiliation(s)
- Lea Skapetze
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sharon Owino
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America.
| |
Collapse
|
15
|
Pamplona R, Jové M, Gómez J, Barja G. Whole organism aging: Parabiosis, inflammaging, epigenetics, and peripheral and central aging clocks. The ARS of aging. Exp Gerontol 2023; 174:112137. [PMID: 36871903 DOI: 10.1016/j.exger.2023.112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The strong interest shown in the study of the causes of aging in recent decades has uncovered many mechanisms that could contribute to the rate of aging. These include mitochondrial ROS production, DNA modification and repair, lipid peroxidation-induced membrane fatty acid unsaturation, autophagy, telomere shortening rate, apoptosis, proteostasis, senescent cells, and most likely there are many others waiting to be discovered. However, all these well-known mechanisms work only or mainly at the cellular level. Although it is known that organs within a single individual do not age at exactly the same rate, there is a well-defined species longevity. Therefore, loose coordination of aging rate among the different cells and tissues is needed to ensure species lifespan. In this article we focus on less known extracellular, systemic, and whole organism level mechanisms that could loosely coordinate aging of the whole individual to keep it within the margins of its species longevity. We discuss heterochronic parabiosis experiments, systemic factors distributed through the vascular system like DAMPs, mitochondrial DNA and its fragments, TF-like vascular proteins, and inflammaging, as well as epigenetic and proposed aging clocks situated at different levels of organization from individual cells to the brain. These interorgan systems can help to determine species longevity as a further adaptation to the ecosystem.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), E25198 Lleida, Spain
| | - José Gómez
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Rey Juan Carlos University, E28933 Móstoles, Madrid, Spain
| | - Gustavo Barja
- Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040 Madrid, Spain.
| |
Collapse
|
16
|
Circle(s) of Life: The Circadian Clock from Birth to Death. BIOLOGY 2023; 12:biology12030383. [PMID: 36979075 PMCID: PMC10045474 DOI: 10.3390/biology12030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles in environmental demands driven by the planet’s rotation around its axis. Interactions with the environment change over the course of a lifetime, and so does regulation of the circadian clock system. In this review, we summarize how circadian clocks develop in humans and experimental rodents during embryonic development, how they mature after birth and what changes occur during puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of reproductive systems as major organizers of life segments and life span. We discuss differences in sexes and outline potential areas for future research. Finally, potential options for medical applications of lifespan chronobiology are discussed.
Collapse
|
17
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
18
|
Delorme TC, Srikanta SB, Fisk AS, Cloutier MÈ, Sato M, Pothecary CA, Merz C, Foster RG, Brown SA, Peirson SN, Cermakian N, Banks GT. Chronic Exposure to Dim Light at Night or Irregular Lighting Conditions Impact Circadian Behavior, Motor Coordination, and Neuronal Morphology. Front Neurosci 2022; 16:855154. [PMID: 35495037 PMCID: PMC9043330 DOI: 10.3389/fnins.2022.855154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
Mistimed exposure to light has been demonstrated to negatively affect multiple aspects of physiology and behavior. Here we analyzed the effects of chronic exposure to abnormal lighting conditions in mice. We exposed mice for 1 year to either: a standard light/dark cycle, a “light-pollution” condition in which low levels of light were present in the dark phase of the circadian cycle (dim light at night, DLAN), or altered light cycles in which the length of the weekday and weekend light phase differed by 6 h (“social jetlag”). Mice exhibited several circadian activity phenotypes, as well as changes in motor function, associated particularly with the DLAN condition. Our data suggest that these phenotypes might be due to changes outside the core clock. Dendritic spine changes in other brain regions raise the possibility that these phenotypes are mediated by changes in neuronal coordination outside of the clock. Given the prevalence of artificial light exposure in the modern world, further work is required to establish whether these negative effects are observed in humans as well.
Collapse
Affiliation(s)
- Tara C. Delorme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Shashank B. Srikanta
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Angus S. Fisk
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Marie-Ève Cloutier
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Miho Sato
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Carina A. Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Chantal Merz
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Russell G. Foster
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Stuart N. Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Nicolas Cermakian
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
- *Correspondence: Nicolas Cermakian,
| | - Gareth T. Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
- Gareth T. Banks,
| |
Collapse
|
19
|
Nguyen DL, Hutson AN, Zhang Y, Daniels SD, Peard AR, Tabuchi M. Age-Related Unstructured Spike Patterns and Molecular Localization in Drosophila Circadian Neurons. Front Physiol 2022; 13:845236. [PMID: 35356078 PMCID: PMC8959858 DOI: 10.3389/fphys.2022.845236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 01/02/2023] Open
Abstract
Aging decreases sleep quality by disrupting the molecular machinery that regulates the circadian rhythm. However, we do not fully understand the mechanism that underlies this process. In Drosophila, sleep quality is regulated by precisely timed patterns of spontaneous firing activity in posterior DN1 (DN1p) circadian clock neurons. How aging affects the physiological function of DN1p neurons is unknown. In this study, we found that aging altered functional parameters related to neural excitability and disrupted patterned spike sequences in DN1p neurons during nighttime. We also characterized age-associated changes in intrinsic membrane properties related to spike frequency adaptations and synaptic properties, which may account for the unstructured spike patterns in aged DN1p neurons. Because Slowpoke binding protein (SLOB) and the Na+/K+ ATPase β subunit (NaKβ) regulate clock-dependent spiking patterns in circadian networks, we compared the subcellular organization of these factors between young and aged DN1p neurons. Young DN1p neurons showed circadian cycling of HA-tagged SLOB and myc-tagged NaKβ targeting the plasma membrane, whereas aged DN1p neurons showed significantly disrupted subcellular localization patterns of both factors. The distribution of SLOB and NaKβ signals also showed greater variability in young vs. aged DN1p neurons, suggesting aging leads to a loss of actively formed heterogeneity for these factors. These findings showed that aging disrupts precisely structured molecular patterns that regulate structured neural activity in the circadian network, leading to age-associated declines in sleep quality. Thus, it is possible to speculate that a recovery of unstructured neural activity in aging clock neurons could help to rescue age-related poor sleep quality.
Collapse
|
20
|
Sreeharsha N, Naveen NR, Anitha P, Goudanavar PS, Ramkanth S, Fattepur S, Telsang M, Habeebuddin M, Anwer MK. Development of Nanocrystal Compressed Minitablets for Chronotherapeutic Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15030311. [PMID: 35337109 PMCID: PMC8950040 DOI: 10.3390/ph15030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
The present work aimed to develop a chronotherapeutic system of valsartan (VS) using nanocrystal formulation to improve dissolution. VS nanocrystals (VS-NC) were fabricated using modified anti-solvent precipitation by employing a Box−Behnken design to optimize various process variables. Based on the desirability approach, a formulation containing 2.5% poloxamer, a freezing temperature of −25 °C, and 24 h of freeze-drying time can fulfill the optimized formulation’s requirements to result in a particle size of 219.68 nm, 0.201 polydispersity index, and zeta potential of −38.26 mV. Optimized VS-NC formulation was compressed (VNM) and coated subsequently with ethyl cellulose and HPMC E 5. At the same time, fast dissolving tablets of VS were designed, and the best formulation was loaded with VNM into a capsule size 1 (average fill weight—400−500 mg, lock length—19.30 mm, external diameter: Cap—6.91 mm; Body—6.63 mm). The final tab in cap (tablet-in-capsule) system was studied for in vitro dissolution profile to confirm the chronotherapeutic release of VS. As required, a bi-pulse release of VS was identified with a lag time of 5 h. The accelerated stability studies confirmed no significant changes in the dissolution profiles of the tab in cap system (f2 similarity profile: >90). To conclude, the tab in cap system was successfully developed to induce a dual pulsatile release, which will ensure bedtime dosing with release after a lag-time to match with early morning circadian spikes.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, Karnataka, India
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Posina Anitha
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet 516126, Andhra Pradesh, India;
| | - Prakash S. Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
| | - Sundarapandian Ramkanth
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore 641032, Tamilnadu, India;
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammed Habeebuddin
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Alkharj 11942, Saudi Arabia;
| |
Collapse
|
21
|
Constantin AM, Mihu CM, Boşca AB, Melincovici CS, Mărginean MV, Jianu EM, Ştefan RA, Alexandru BC, Moldovan IM, Şovrea AS, Sufleţel RT. Short histological kaleidoscope - recent findings in histology. Part I. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:7-29. [PMID: 36074664 PMCID: PMC9593135 DOI: 10.47162/rjme.63.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This article is a review of new advances in histology, concerning either classification or structure of different tissular elements (basement membrane, hemidesmosomes, urothelium, glandular epithelia, adipose tissue, astrocytes), and various organs' constituents (blood-brain barrier, human dental cementum, tubarial salivary glands, hepatic stellate cells, pineal gland, fibroblasts of renal interstitium, Leydig testicular cells, ovarian hilar cells), as well as novel biotechnological techniques (tissue engineering in angiogenesis), recently introduced.
Collapse
Affiliation(s)
- Anne Marie Constantin
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Neurodegenerative diseases encompass a large group of conditions that are clinically and pathologically diverse yet are linked by a shared pathology of misfolded proteins. The accumulation of insoluble aggregates is accompanied by a progressive loss of vulnerable neurons. For some patients, the symptoms are motor focused (ataxias), while others experience cognitive and psychiatric symptoms (dementias). Among the shared symptoms of neurodegenerative diseases is a disruption of the sleep/wake cycle that occurs early in the trajectory of the disease and may be a risk factor for disease development. In many cases, the disruption in the timing of sleep and other rhythmic physiological markers immediately raises the possibility of neurodegeneration-driven disruption of the circadian timing system. The aim of this Review is to summarize the evidence supporting the hypothesis that circadian disruption is a core symptom within neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, and to discuss the latest progress in this field. The Review discusses evidence that neurodegenerative processes may disrupt the structure and function of the circadian system and describes circadian-based interventions as well as timed drug treatments that may improve a wide range of symptoms associated with neurodegenerative disorders. It also identifies key gaps in our knowledge.
Collapse
|
23
|
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021; 157:73-94. [PMID: 33370457 PMCID: PMC8048448 DOI: 10.1111/jnc.15286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|