1
|
Weis KE, Thompson LM, Streifer M, Guardado I, Flaws JA, Gore AC, Raetzman LT. Pre- and postnatal developmental exposure to the polychlorinated biphenyl mixture aroclor 1221 alters female rat pituitary gonadotropins and estrogen receptor alpha levels. Reprod Toxicol 2023; 118:108388. [PMID: 37127253 PMCID: PMC10228234 DOI: 10.1016/j.reprotox.2023.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHβ gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHβ expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Isabella Guardado
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois College of Veterinary Medicine, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
2
|
Mittal N, Minasyan A, Romaneschi N, Hakimian JK, Gonzalez-Fernandez G, Albert R, Desai N, Mendez IA, Schallert T, Ostlund SB, Walwyn W. Beta-arrestin 1 regulation of reward-motivated behaviors and glutamatergic function. PLoS One 2017; 12:e0185796. [PMID: 28973019 PMCID: PMC5626489 DOI: 10.1371/journal.pone.0185796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
The two highly homologous non-visual arrestins, beta-arrestin 1 and 2, are ubiquitously expressed in the central nervous system, yet knowledge of their disparate roles is limited. While beta-arrestin 2 (βarr2) has been implicated in several aspects of reward-related learning and behavior, very little is known about the behavioral function of beta-arrestin 1 (βarr1). Using mice lacking βarr1, we focused on the role of this scaffolding and signal transduction protein in reward-motivated behaviors and in striatal glutamatergic function. We found that βarr1 KO mice were both slower in acquiring cocaine self-administration and in extinguishing this behavior. They also showed deficits in learning tasks supported by a natural food reward, suggesting a general alteration in reward processing. We then examined glutamatergic synaptic strength in WT and KO medium spiny neurons (MSNs) of the Nucleus Accumbens (NAc) shell in naïve animals, and from those that underwent cocaine self-administration. An increase in the AMPA/NMDA (A/N) ratio and a relative lack of GluN2B-enriched NMDARs was found in naïve KO vs WT MSNs. Applying Lim Domain Kinase (LIMK1), the kinase that phosphorylates and inactivates cofilin, to these cells, showed that both βarr1 and LIMK regulate the A/N ratio and GluN2B-NMDARs. Cocaine self-administration increased the A/N ratio and GluN2B-NMDARs in WT MSNs and, although the A/N ratio also increased in KO MSNs, this was accompanied by fewer GluN2B-NMDARs and an appearance of calcium-permeable AMPARs. Finally, to examine the consequences of reduced basal GluN2B-NMDARs in reward-processing seen in KO mice, we chronically infused ifenprodil, a GluN2B antagonist, into the NAc shell of WT mice. This intervention substantially reduced food-motivated behavior. Together these findings identify a previously unknown role of βarr1 in regulating specific reward-motivated behaviors and glutamatergic function.
Collapse
Affiliation(s)
- Nitish Mittal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| | - Ani Minasyan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Nicole Romaneschi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Joshua K. Hakimian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Gabriel Gonzalez-Fernandez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Ralph Albert
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Nina Desai
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Ian A. Mendez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Timothy Schallert
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, UCI Center for Addiction Neuroscience, School of Biological Sciences, University of California Irvine, Irvine, United States of America
| | - Wendy Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Naugle MM, Lozano SA, Guarraci FA, Lindsey LF, Kim JE, Morrison JH, Janssen WG, Yin W, Gore AC. Age and Long-Term Hormone Treatment Effects on the Ultrastructural Morphology of the Median Eminence of Female Rhesus Macaques. Neuroendocrinology 2016; 103:650-64. [PMID: 26536204 PMCID: PMC4860175 DOI: 10.1159/000442015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022]
Abstract
The median eminence (ME) of the hypothalamus comprises the hypothalamic nerve terminals, glia (especially tanycytes) and the portal capillary vasculature that transports hypothalamic neurohormones to the anterior pituitary gland. The ultrastructure of the ME is dynamically regulated by hormones and undergoes organizational changes during development and reproductive cycles in adult females, but relatively little is known about the ME during aging, especially in nonhuman primates. Therefore, we used a novel transmission scanning electron microscopy technique to examine the cytoarchitecture of the ME of young and aged female rhesus macaques in a preclinical monkey model of menopausal hormone treatments. Rhesus macaques were ovariectomized and treated for 2 years with vehicle, estradiol (E2), or estradiol + progesterone (E2 + P4). While the overall cytoarchitecture of the ME underwent relatively few changes with age and hormones, changes to some features of neural and glial components near the portal capillaries were observed. Specifically, large neuroterminal size was greater in aged compared to young adult animals, an effect that was mitigated or reversed by E2 alone but not by E2 + P4 treatment. Overall glial size and the density and tissue fraction of the largest subset of glia were greater in aged monkeys, and in some cases reversed by E2 treatment. Mitochondrial size was decreased by E2, but not E2 + P4, only in aged macaques. These results contrast substantially with work in rodents, suggesting that the ME of aging macaques is less vulnerable to age-related disorganization, and that the effects of E2 on monkeys' ME are age specific.
Collapse
Affiliation(s)
| | - Sateria A. Lozano
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - Fay A. Guarraci
- Department of Psychology, Southwestern University, Georgetown, TX
| | - Larry F. Lindsey
- Center for Learning and Memory, University of Texas at Austin, Austin, TX
| | - Ji E. Kim
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - John H. Morrison
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - William G.M. Janssen
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Weiling Yin
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
| | - Andrea C. Gore
- Institute for Neuroscience, University of Texas at Austin, Austin, TX
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX
- Correspondence: Andrea C Gore, PhD, The University of Texas at Austin, 107 West Dean Keeton, C0875, Austin, TX, 78712, USA, ; Tel: +1-512-471-3669; Fax: +1-512-471-5002
| |
Collapse
|
4
|
|
5
|
Yin W, Sun Z, Mendenhall JM, Walker DM, Riha PD, Bezner KS, Gore AC. Expression of Vesicular Glutamate Transporter 2 (vGluT2) on Large Dense-Core Vesicles within GnRH Neuroterminals of Aging Female Rats. PLoS One 2015; 10:e0129633. [PMID: 26053743 PMCID: PMC4459826 DOI: 10.1371/journal.pone.0129633] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/10/2015] [Indexed: 11/20/2022] Open
Abstract
The pulsatile release of GnRH is crucial for normal reproductive physiology across the life cycle, a process that is regulated by hypothalamic neurotransmitters. GnRH terminals co-express the vesicular glutamate transporter 2 (vGluT2) as a marker of a glutamatergic phenotype. The current study sought to elucidate the relationship between glutamate and GnRH nerve terminals in the median eminence—the site of GnRH release into the portal capillary vasculature. We also determined whether this co-expression may change during reproductive senescence, and if steroid hormones, which affect responsiveness of GnRH neurons to glutamate, may alter the co-expression pattern. Female Sprague-Dawley rats were ovariectomized at young adult, middle-aged and old ages (~4, 11, and 22 months, respectively) and treated four weeks later with sequential vehicle + vehicle (VEH + VEH), estradiol + vehicle (E2 + VEH), or estradiol + progesterone (E2+P4). Rats were perfused 24 hours after the second hormone treatment. Confocal microscopy was used to determine colocalization of GnRH and vGluT2 immunofluorescence in the median eminence. Post-embedding immunogold labeling of GnRH and vGluT2, and a serial electron microscopy (EM) technique were used to determine the cellular interaction between GnRH terminals and glutamate signaling. Confocal analysis showed that GnRH and vGluT2 immunofluorescent puncta were extensively colocalized in the median eminence and that their density declined with age but was unaffected by short-term hormone treatment. EM results showed that vGluT2 immunoreactivity was extensively associated with large dense-core vesicles, suggesting a unique glutamatergic signaling pathway in GnRH terminals. Our results provide novel subcellular information about the intimate relationship between GnRH terminals and glutamate in the median eminence.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Zengrong Sun
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - John M. Mendenhall
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Deena M. Walker
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Penny D. Riha
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Kelsey S. Bezner
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ezzat A, Pereira A, Clarke IJ. Kisspeptin is a component of the pulse generator for GnRH secretion in female sheep but not the pulse generator. Endocrinology 2015; 156:1828-37. [PMID: 25710282 DOI: 10.1210/en.2014-1756] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We tested the hypothesis that kisspeptin cells constitute the "pulse generator" for GnRH secretion. In ewes, we determined whether iv administered kisspeptin elicits a secretory pulse of LH in anaesthetized, sex-steroid suppressed ovariectomized ewes. A response was seen in both anaesthetized and conscious animals, which was not associated with induction of c-Fos labeling in GnRH cells, supporting the notion that kisspeptin acts on the neurosecretory GnRH terminals. Response was lower in the anaesthetized animals, suggesting that some nonkisspeptin elements may be involved in GnRH responses. Microinjection of kisspeptin (100 nmol) into the median eminence of conscious ewes elicited a pulse of LH, indicating that kisspeptin acts at this level to cause GnRH secretion. To determine which cells are activated at the time of GnRH secretion, we blood sampled 18 ewes during the luteal phase of the estrous cycle and harvested brains after 3 hours. Three of these ewes displayed a pulse of LH within 30 minutes of euthanasia. An increase in c-Fos labeling was seen in kisspeptin and glutamate cells of the arcuate nucleus but not in GnRH neurons, preoptic kisspeptin neurons, or preoptic glutamate neurons. Immunohistochemistry in 4 hypothalami showed that 72% of arcuate kisspeptin cells receive glutamatergic input. These data support the concept that the kisspeptin cells of the arcuate nucleus drive pulsatile secretion of GnRH at the level of the median eminence, but this may involve "upstream" input from glutamate cells. We conclude that the pulse generator for GnRH secretion involves more than 1 element.
Collapse
Affiliation(s)
- Ahmed Ezzat
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
7
|
Kermath BA, Riha PD, Woller MJ, Wolfe A, Gore AC. Hypothalamic molecular changes underlying natural reproductive senescence in the female rat. Endocrinology 2014; 155:3597-609. [PMID: 24914937 PMCID: PMC4138577 DOI: 10.1210/en.2014-1017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The role of the hypothalamus in female reproductive senescence is unclear. Here we identified novel molecular neuroendocrine changes during the natural progression from regular reproductive cycles to acyclicity in middle-aged female rats, comparable with the perimenopausal progression in women. Expression of 48 neuroendocrine genes was quantified within three hypothalamic regions: the anteroventral periventricular nucleus, the site of steroid positive feedback onto GnRH neurons; the arcuate nucleus (ARC), the site of negative feedback and pulsatile GnRH release; and the median eminence (ME), the site of GnRH secretion. Surprisingly, the majority of changes occurred in the ARC and ME, with few effects in anteroventral periventricular nucleus. The overall pattern was increased mRNA levels with chronological age and decreases with reproductive cycle status in middle-aged rats. Affected genes included transcription factors (Stat5b, Arnt, Ahr), sex steroid hormone receptors (Esr1, Esr2, Pgr, Ar), steroidogenic enzymes (Sts, Hsd17b8), growth factors (Igf1, Tgfa), and neuropeptides (Kiss1, Tac2, Gnrh1). Bionetwork analysis revealed region-specific correlations between genes and hormones. Immunohistochemical analyses of kisspeptin and estrogen receptor-α in the ARC demonstrated age-related decreases in kisspeptin cell numbers as well as kisspeptin-estrogen receptor-α dual-labeled cells. Taken together, these results identify unexpectedly strong roles for the ME and ARC during reproductive decline and highlight fundamental differences between middle-aged rats with regular cycles and all other groups. Our data provide evidence of decreased excitatory stimulation and altered hormone feedback with aging and suggest novel neuroendocrine pathways that warrant future study. Furthermore, these changes may impact other neuroendocrine systems that undergo functional declines with age.
Collapse
Affiliation(s)
- Bailey A Kermath
- Institute for Neuroscience (B.A.K., A.C.G.), Division of Pharmacology and Toxicology (P.D.R., A.C.G.), and Institute for Cell and Molecular Biology (A.C.G.), The University of Texas at Austin, Austin, Texas 78712; Department of Biology (M.J.W.), University of Wisconsin-Whitewater, Whitewater, Wisconsin 53190; and Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore Maryland 21287
| | | | | | | | | |
Collapse
|
8
|
Naugle MM, Gore AC. GnRH neurons of young and aged female rhesus monkeys co-express GPER but are unaffected by long-term hormone replacement. Neuroendocrinology 2014; 100:334-46. [PMID: 25428637 PMCID: PMC4329056 DOI: 10.1159/000369820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022]
Abstract
Menopause is caused by changes in the function of the hypothalamic-pituitary-gonadal axis that controls reproduction. Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus orchestrate the activity of this axis and are regulated by hormonal feedback loops. The mechanisms by which GnRH responds to the primary regulatory sex steroid hormone, estradiol (E2), are still poorly understood in the context of menopause. Our goal was to determine whether the G protein-coupled estrogen receptor (GPER) is co-expressed in adult primate GnRH neurons and whether this changes with aging and/or E2 treatment. We used immunofluorescence double-labeling to characterize the co-expression of GPER in GnRH perikarya and terminals in the hypothalamus. Young and aged rhesus macaques were ovariectomized and given long-term (~2-year) hormone treatments (E2, E2 + progesterone, or vehicle) selected to mimic currently prescribed hormone replacement therapies used for the alleviation of menopausal symptoms in women. We found that about half of GnRH perikarya co-expressed GPER, while only about 12% of GnRH processes and terminals in the median eminence (ME) were double-labeled. Additionally, many GPER-labeled processes were in direct contact with GnRH neurons, often wrapped around the perikarya and processes and in close proximity in the ME. These results extend prior work by showing robust co-localization of GPER in GnRH in a clinically relevant model, and they support the possibility that GPER-mediated E2 regulation of GnRH occurs both in the soma and terminals in nonhuman primates.
Collapse
Affiliation(s)
- Michelle M. Naugle
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712
| | - Andrea C. Gore
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712
- Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, 78712
- Correspondence: Andrea C Gore, PhD, The University of Texas at Austin, 107 West Dean Keeton, C0875, Austin, TX, 78712, USA, ; Tel: +1-512-471-3669; Fax: +1-512-471-5002
| |
Collapse
|