1
|
Pushchina EV, Pimenova EA, Kapustyanov IA, Bykova ME. Ultrastructural Study and Immunohistochemical Characteristics of Mesencephalic Tegmentum in Juvenile Chum Salmon ( Oncorhynchus keta) Brain After Acute Traumatic Injury. Int J Mol Sci 2025; 26:644. [PMID: 39859360 PMCID: PMC11765592 DOI: 10.3390/ijms26020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them. Neurons of three size types with a high metabolic rate, characterized by the presence of numerous mitochondria, polyribosomes, Golgi apparatus, and cytoplasmic inclusions (vacuoles, lipid droplets, and dense bodies), were distinguished. It was found that large interneurons of the NFLM formed contacts with protoplasmic astrocytes. Excitatory synaptic structures were identified in the tegmentum and their detailed characteristic are provided for the first time. Microglia-like cells were found in the NIII. The ultrastructural characteristics of neurogenic zones of the tegmentum of juvenile chum salmon were also determined for the first time. In the neurogenic zones of the tegmentum, adult-type neural stem progenitor cells (aNSPCs) corresponding to cells of types III and IVa Danio rerio. In the neurogenic zones of the tegmentum, neuroepithelial-like cells (NECs) corresponding to cells previously described from the zebrafish cerebellum were found and characterized. In the tegmentum of juvenile chum salmon, patterns of paracrine neurosecretion were observed and their ultrastructural characteristics were recorded. Patterns of apoptosis in large neurons of the tegmentum were examined by TEM. Using immunohistochemical (IHC) labeling of the brain lipid-binding protein (BLBP) and aromatase B (AroB), patterns of their expression in the tegmentum of intact animals and in the post-traumatic period after acute injury to the medulla oblongata were characterized. The response to brainstem injury in chum salmon was found to activate multiple signaling pathways, which significantly increases the BLBP and AroB expression in various regions of the tegmentum and valvula cerebelli. However, post-traumatic patterns of BLBP and AroB localizations are not the same. In addition to a general increase in BLBP expression in the tegmental parenchyma, BLBP overexpression was observed in the rostro-lateral tegmental neurogenic zone (RLTNZ), while AroB expression in the RLTNZ was completely absent. Another difference was the peripheral overexpression of AroB and the formation of dense reactive clusters in the ventro-medial zone of the tegmentum. Thus, in the post-traumatic period, various pathways were activated whose components were putative candidates for inducers of the "astrocyte-like" response in the juvenile chum salmon brain that are similar to those present in the mammalian brain. In this case, BLBP acted as a factor enhancing the differentiation of both radial glia and neurons. Estradiol from AroB+ astrocytes exerted paracrine neuroprotective effects through the potential inhibition of inflammatory processes. These results indicate a new role for neuronal aromatization as a mechanism preventing the development of neuroinflammation. Moreover, our findings support the hypothesis that BLBP is a factor enhancing neuronal and glial differentiation in the post-traumatic period in the chum salmon brain.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.P.); (I.A.K.); (M.E.B.)
| | | | | | | |
Collapse
|
2
|
Talwalkar A, Haden G, Duncan KA. Chondroitin sulfate proteoglycans mRNA expression and degradation in the zebra finch following traumatic brain injury. J Chem Neuroanat 2024; 138:102418. [PMID: 38621597 DOI: 10.1016/j.jchemneu.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. From minutes to months following damage, injury can result in a complex pathophysiology that can lead to temporary or permanent deficits including an array of neurodegenerative symptoms. These changes can include behavioral dysregulation, memory dysfunctions, and mood changes including depression. The nature and severity of impairments resulting from TBIs vary widely given the range of injury type, location, and extent of brain tissue involved. In response to the injury, the brain induces structural and functional changes to promote repair and minimize injury size. Despite its high prevalence, effective treatment strategies for TBI are limited. PNNs are part of the neuronal extracellular matrix (ECM) that mediate synaptic stabilization in the adult brain and thus neuroplasticity. They are associated mostly with inhibitory GABAergic interneurons and are thought to be responsible for maintaining the excitatory/inhibitory balance of the brain. The major structural components of PNNs include multiple chondroitin sulfate proteoglycans (CSPGs) as well as other structural proteins. Here we examine the effects of injury on CSPG expression, specifically around the changes in the side change moieties. To investigate CSPG expression following injury, adult male and female zebra finches received either a bilateral penetrating, or no injury and qPCR analysis and immunohistochemistry for components of the CSPGs were examined at 1- or 7-days post-injury. Next, to determine if CSPGs and thus PNNs should be a target for therapeutic intervention, CSPG side chains were degraded at the time of injury with chondroitinase ABC (ChABC) CSPGs moieties were examined. Additionally, GABA receptor mRNA and aromatase mRNA expression was quantified following CSPG degradation as they have been implicated in neuronal survival and neurogenesis. Our data indicate the CSPG moieties change following injury, potentially allowing for a brief period of synaptic reorganization, and that treatments that target CSPG side chains are successful in further targeting this brief critical period by decreasing GABA mRNA receptor expression, but also decreasing aromatase expression.
Collapse
Affiliation(s)
- Adam Talwalkar
- Program in Biochemistry, Vassar College, Poughkeepsie, NY 12604, USA
| | - Gage Haden
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kelli A Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA; Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
3
|
Stennette KA, Godwin JR. Estrogenic influences on agonistic behavior in teleost fishes. Horm Behav 2024; 161:105519. [PMID: 38452611 DOI: 10.1016/j.yhbeh.2024.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Teleost fishes show an extraordinary diversity of sexual patterns, social structures, and sociosexual behaviors. Sex steroid hormones are key modulators of social behaviors in teleosts as in other vertebrates and act on sex steroid receptor-containing brain nuclei that form the evolutionarily conserved vertebrate social behavior network (SBN). Fishes also display important differences relative to tetrapod vertebrates that make them particularly well-suited to study the physiological mechanisms modulating social behavior. Specifically, fishes exhibit high levels of brain aromatization and have what has been proposed to be a lifelong, steroid hormone dependent plasticity in the neural substrates mediating sociosexual behavior. In this review, we examine how estrogenic signaling modulates sociosexual behaviors in teleosts with a particular focus on agonistic behavior. Estrogens have been shown to mediate agonistic behaviors in a broad range of fishes, from sexually monomorphic gonochoristic species to highly dimorphic sex changers with alternate reproductive phenotypes. These similarities across such diverse taxa contribute to a growing body of evidence that estrogens play a crucial role in the modulation of aggression in vertebrates. As analytical techniques and genomic tools rapidly advance, methods such as LC-MS/MS, snRNAseq, and CRISPR-based mutagenesis show great promise to further elucidate the mechanistic basis of estrogenic effects on social behavior in the diverse teleost lineage.
Collapse
Affiliation(s)
- Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
4
|
Wang J, Pratap UP, Lu Y, Sareddy GR, Tekmal RR, Vadlamudi RK, Brann DW. Development and Characterization of Inducible Astrocyte-Specific Aromatase Knockout Mice. BIOLOGY 2023; 12:621. [PMID: 37106821 PMCID: PMC10135694 DOI: 10.3390/biology12040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
17β-estradiol (E2) is produced in the brain as a neurosteroid, in addition to being an endocrine signal in the periphery. The current animal models for studying brain-derived E2 include global and conditional non-inducible knockout mouse models. The aim of this study was to develop a tamoxifen (TMX)-inducible astrocyte-specific aromatase knockout mouse line (GFAP-ARO-iKO mice) to specifically deplete the E2 synthesis enzymes and aromatase in astrocytes after their development in adult mice. The characterization of the GFAP-ARO-iKO mice revealed a specific and robust depletion in the aromatase expressions of their astrocytes and a significant decrease in their hippocampal E2 levels after a GCI. The GFAP-ARO-iKO animals were alive and fertile and had a normal general brain anatomy, with a normal astrocyte shape, intensity, and distribution. In the hippocampus, after a GCI, the GFAP-ARO-iKO animals showed a major deficiency in their reactive astrogliosis, a dramatically increased neuronal loss, and increased microglial activation. These findings indicate that astrocyte-derived E2 (ADE2) regulates the ischemic induction of reactive astrogliosis and microglial activation and is neuroprotective in the ischemic brain. The GFAP-ARO-iKO mouse models thus provide an important new model to help elucidate the roles and functions of ADE2 in the brain.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA
| | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX 78229, USA
| | - Darrell W. Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Saldanha CJ. Spatial and temporal specificity of neuroestradiol provision in the songbird. J Neuroendocrinol 2023; 35:e13192. [PMID: 35983989 PMCID: PMC9889572 DOI: 10.1111/jne.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023]
Abstract
Steroid hormones are often synthesized in multiple tissues, affect several different targets, and modulate numerous physiological endpoints. The mechanisms by which this modulation is achieved with temporal and spatial specificity remain unclear. 17β-estradiol for example, is made in several peripheral tissues and in the brain, where it affects a diverse set of behaviors. How is estradiol delivered to the right target, at the right time, and at the right concentration? In the last two decades, we have learned that aromatase (estrogen-synthase) can be induced in astrocytes following damage to the brain and is expressed at central synapses. Both mechanisms of estrogen provision confer spatial and temporal specificity on a lipophilic neurohormone with potential access to all cells and tissues. In this review, I trace the progress in our understanding of astrocytic and synaptic aromatization. I discuss the incidence, regulation, and functions of neuroestradiol provision by aromatization, first in astrocytes and then at synapses. Finally, I focus on a relatively novel hypothesis about the role of neuroestradiol in the orchestration of species-specific behaviors.
Collapse
Affiliation(s)
- Colin J Saldanha
- Departments of Neuroscience and Psychology, and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| |
Collapse
|
6
|
Anti-Inflammatory Actions of G-Protein-Coupled Estrogen Receptor 1 (GPER) and Brain-Derived Estrogen Following Cerebral Ischemia in Ovariectomized Rats. BIOLOGY 2023; 12:biology12010099. [PMID: 36671793 PMCID: PMC9855882 DOI: 10.3390/biology12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Global cerebral ischemia can elicit rapid innate neuroprotective mechanisms that protect against delayed neuronal death. Brain-derived 17β-estradiol (BDE2), an endogenous neuroprotectant, is synthesized from testosterone by the enzyme aromatase (Aro) and is upregulated by brain ischemia and inflammation. Our recent study revealed that G1, a specific G-protein-coupled estrogen receptor 1 (GPER) agonist, exerts anti-inflammatory and anti-apoptotic roles after global cerebral ischemia (GCI). Herein, we aimed to elucidate whether G1 modulates the early inflammatory process and the potential underlying mechanisms in the ovariectomized rat hippocampal CA1 region. G1 was found to markedly reduce pro-inflammatory (iNOS, MHCII, and CD68) and to enhance anti-inflammatory (CD206, Arginase 1, IL1RA, PPARγ, and BDNF) markers after 1 and 3 days of reperfusion after GCI. Intriguingly, the neuroprotection of G1 was blocked by the Aro inhibitor, letrozole. Conversely, the GPER antagonist, G36, inhibited Aro-BDE2 signaling and exacerbated neuronal damage. As a whole, this work demonstrates a novel anti-inflammatory role of GPER, involving a synergistic mediation with BDE2 during the early stage of GCI.
Collapse
|
7
|
Saldanha CJ. Glial estradiol synthesis after brain injury. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 21:100298. [PMID: 35274063 PMCID: PMC8903152 DOI: 10.1016/j.coemr.2021.100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glial cells are important contributors to the hormonal milieu of the brain, particularly following damage. In birds and mammals, neural injury induces the expression of aromatase in astroglia at and around the site of damage. This review describes the progression of our understanding about the incidence, regulation, and function of estrogens synthesized in glia. Following a quick discussion of the landmark studies that first demonstrated steroidogenesis in glia, I go on to describe how the inflammatory response following perturbation of the brain results in the transcription of aromatase and the resultant rise in local estradiol. I end with several unanswered questions, the answers to which may reveal the precise manner in which neurosteroids protect the brain from injury, both prior to and immediately following injury.
Collapse
Affiliation(s)
- Colin J Saldanha
- Dept of Neuroscience and Center for Behavioral Neuroscience, American University, 4400 Massachusetts Avenue NW, Washington DC 20016
| |
Collapse
|
8
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Chowen JA, Garcia-Segura LM. Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging. Mech Ageing Dev 2021; 196:111473. [PMID: 33766745 DOI: 10.1016/j.mad.2021.111473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Diseases and aging-associated alterations of the nervous system often show sex-specific characteristics. Glial cells play a major role in the endogenous homeostatic response of neural tissue, and sex differences in the glial transcriptome and function have been described. Therefore, the possible role of these cells in the generation of sex differences in pathological alterations of the nervous system is reviewed here. Studies have shown that glia react to pathological insults with sex-specific neuroprotective and regenerative effects. At least three factors determine this sex-specific response of glia: sex chromosome genes, gonadal hormones and neuroactive steroid hormone metabolites. The sex chromosome complement determines differences in the transcriptional responses in glia after brain injury, while gonadal hormones and their metabolites activate sex-specific neuroprotective mechanisms in these cells. Since the sex-specific neuroprotective and regenerative activity of glial cells causes sex differences in the pathological alterations of the nervous system, glia may represent a relevant target for sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, and IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain.
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Loggini A, Tangonan R, El Ammar F, Mansour A, Kramer CL, Lazaridis C, Goldenberg FD. Neuroendocrine Dysfunction in the Acute Setting of Penetrating Brain Injury: A Systematic Review. World Neurosurg 2021; 147:172-180.e1. [PMID: 33346052 DOI: 10.1016/j.wneu.2020.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Data on neuroendocrine dysfunction (NED) in the acute setting of penetrating brain injury (PBI) are scarce, and the clinical approach to diagnosis and treatment remains extrapolated from the literature on blunt head trauma. METHODS Three databases were searched (PubMed, Scopus, and Cochrane). Risk of bias was computed using the Newcastle-Ottawa Scale, or the methodological quality of case series and case reports, as indicated. This systematic review was registered in PROSPERO (42020172163). RESULTS Six relevant studies involving 58 patients with PBI were included. Two studies were prospective cohort analyses, whereas 4 were case reports. The onset of NED was acute in all studies, by the first postinjury day. Risk factors for NED included worse injury severity and the presence of cerebral edema on imaging. Dysfunction of the anterior hypophysis involved the hypothalamic-pituitary-thyroid axis, treated with hormonal replacement, and hypocortisolism, treated with hydrocortisone. The prevalence of central diabetes insipidus was up to 41%. Most patients showed persistent NED months after injury. In separate reports, diabetes insipidus and hypocortisolism showed an association with higher mortality. The available literature for this review is poor, and the studies included had overall low quality with high risk of bias. CONCLUSIONS NED seems to be prevalent in the acute phase of PBI, equally involving both anterior and posterior hypophysis. Despite a potential association between NED and mortality, data on the optimal management of NED are limited. This situation defines the need for prospective studies to better characterize the clinical features and optimal therapeutic interventions for NED in PBI.
Collapse
Affiliation(s)
- Andrea Loggini
- Neuroscience Intensive Care Unit, Department of Neurology, University of Chicago Medical Center, Chicago, Illinois, USA.
| | - Ruth Tangonan
- Neuroscience Intensive Care Unit, Department of Neurology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Faten El Ammar
- Neuroscience Intensive Care Unit, Department of Neurology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Ali Mansour
- Neuroscience Intensive Care Unit, Department of Neurology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Christopher L Kramer
- Neuroscience Intensive Care Unit, Department of Neurology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Christos Lazaridis
- Neuroscience Intensive Care Unit, Department of Neurology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Fernando D Goldenberg
- Neuroscience Intensive Care Unit, Department of Neurology, University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
11
|
Saldanha CJ. Estrogen as a Neuroprotectant in Both Sexes: Stories From the Bird Brain. Front Neurol 2020; 11:497. [PMID: 32655477 PMCID: PMC7324752 DOI: 10.3389/fneur.2020.00497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogens such as estradiol (E2) are potent effectors of neural structure and function via peripheral and central synthesis. In the zebra finch (Taeniopygia guttata), neural E2 synthesis is among the highest reported in homeotherms due to the abundant constitutive expression of aromatase (E-synthase) in discrete neuronal pools across the forebrain. Following penetrating or concussive trauma, E2 synthesis increases even further via the induced expression of aromatase in reactive astrocytes around the site of damage. Injury-associated astrocytic aromatization occurs in the brains of both sexes regardless of the site of injury and can remain elevated for weeks following trauma. Interestingly, penetrating injury induces astrocytic aromatase more rapidly in females compared to males, but this sex difference is not detectable 24 h posttrauma. Indeed, unilateral penetrating injury can increase E2 content 4-fold relative to the contralateral uninjured hemisphere, suggesting that glial aromatization may be a powerful source of neural E2 available to circuits. Glial aromatization is neuroprotective as inhibition of injury-induced aromatase increases neuroinflammation, gliosis, necrosis, apoptosis, and infarct size. These effects are ameliorated upon replacement with E2, suggesting that the songbird may have evolved a rapidly responsive neurosteroidogenic system to protect vulnerable brain circuits. The precise signals that induce aromatase expression in astrocytes include elements of the inflammatory cascade and underscore the sentinel role of the innate immune system as a crucial effector of trauma-associated E2 provision in the vertebrate brain. This review will describe the inductive signals of astroglial aromatase and the neuroprotective role for glial E2 synthesis in the adult songbird brains of both sexes.
Collapse
Affiliation(s)
- Colin J Saldanha
- Departments of Neuroscience, Biology, Psychology & The Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
12
|
Arndtsen C, Ballon J, Blackshear K, Corbett CB, Lee K, Peyer J, Holloway KS, Duncan KA. Atypical gene expression of neuroinflammatory and steroid related genes following injury in the photoperiodic Japanese quail. Gen Comp Endocrinol 2020; 288:113361. [PMID: 31830471 DOI: 10.1016/j.ygcen.2019.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Clara Arndtsen
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Jason Ballon
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Katie Blackshear
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Cali B Corbett
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kenneth Lee
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Jordan Peyer
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kevin S Holloway
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA; Psychological Science, Vassar College, Poughkeepsie, NY 12604, USA
| | - Kelli A Duncan
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY 12604, USA; Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
13
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
14
|
Brocca ME, Garcia-Segura LM. Non-reproductive Functions of Aromatase in the Central Nervous System Under Physiological and Pathological Conditions. Cell Mol Neurobiol 2019; 39:473-481. [PMID: 30084008 PMCID: PMC11469900 DOI: 10.1007/s10571-018-0607-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
The modulation of brain function and behavior by steroid hormones was classically associated with their secretion by peripheral endocrine glands. The discovery that the brain expresses the enzyme aromatase, which produces estradiol from testosterone, expanded this traditional concept. One of the best-studied roles of brain estradiol synthesis is the control of reproductive behavior. In addition, there is increasing evidence that estradiol from neural origin is also involved in a variety of non-reproductive functions. These include the regulation of neurogenesis, neuronal development, synaptic transmission, and plasticity in brain regions not directly related with the control of reproduction. Central aromatase is also involved in the modulation of cognition, mood, and non-reproductive behaviors. Furthermore, under pathological conditions aromatase is upregulated in the central nervous system. This upregulation represents a neuroprotective and likely also a reparative response by increasing local estradiol levels in order to maintain the homeostasis of the neural tissue. In this paper, we review the non-reproductive functions of neural aromatase and neural-derived estradiol under physiological and pathological conditions. We also consider the existence of sex differences in the role of the enzyme in both contexts.
Collapse
Affiliation(s)
- Maria Elvira Brocca
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Cook S, Hung V, Duncan KA. Crosstalk between Estrogen Withdrawal and NFκB Signaling following Penetrating Brain Injury. Neuroimmunomodulation 2018; 25:193-200. [PMID: 30423555 DOI: 10.1159/000493506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Characterized by neuroinflammation, traumatic brain injury (TBI) induces neuropathological changes and cognitive deficits. Estrogens are neuroprotective by increasing cell survival and this increase is mediated by a decrease in neuroinflammation. To further explore the relationship between estrogens, brain injury, and neuroinflammation, we examined the expression of the IKK/NFκB complex. The IKK/NFκB complex is a pleiotropic regulator of many cellular signaling pathways linked to inflammation, as well as three major cytokines (IL-1β, IL-6, and TNF-α). We hypothesized that NFκB expression would be upregulated following injury and that this increase would be exacerbated when circulating estrogens were decreased with fadrozole (aromatase inhibitor). METHODS Using adult zebra finches, we first determined the expression of major components of the NFκB complex (NFκB, IκB-α, and IκB-β) following injury using qPCR. Next, male and female finches were collected at 2 time points (2 or 24 h after injury) and brain tissue was analyzed to determine whether NFκB expression was differentially expressed in males and females at either time point. Finally, we examined how the expression of NFκB changed when estrogen levels were decreased immediately after injury. RESULTS Our study documented an increase in the expression of the major components of the NFκB complex (NFκB, IκB-α, and IκB-β) following injury. Decreasing estrogen levels resulted in a surprising decrease in the NFκB complex studied here. DISCUSSION These data further expand the model of how estrogens and other steroid hormones interact with the inflammatory pathways following injury and may prove beneficial when developing therapies for treatment of TBI.
Collapse
Affiliation(s)
- Samarah Cook
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA
| | - Vanessa Hung
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA
| | - Kelli A Duncan
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, New York, USA,
- Department of Biology, Vassar College, Poughkeepsie, New York, USA,
| |
Collapse
|
16
|
Pedersen AL, Saldanha CJ. Reciprocal interactions between prostaglandin E2- and estradiol-dependent signaling pathways in the injured zebra finch brain. J Neuroinflammation 2017; 14:262. [PMID: 29284502 PMCID: PMC5747085 DOI: 10.1186/s12974-017-1040-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
Background Astrocytic aromatization and consequent increases in estradiol are neuroprotective in the injured brain. In zebra finches, cyclooxygenase-activity is necessary for injury-induced aromatase expression, and increased central estradiol lowers neuroinflammation. The mechanisms underlying these influences are unknown. Here, we document injury-induced, cyclooxygenase-dependent increases in glial aromatase expression and replicate previous work in our lab showing increases in central prostaglandin E2 and estradiol following brain damage. Further, we describe injury-dependent changes in E-prostanoid and estrogen receptor expression and reveal the necessity of E-prostanoid and estrogen receptors in the injury-dependent, reciprocal interactions of neuroinflammatory and neurosteroidogenic pathways. Methods Adult male and female birds were shams or received bilateral injections of the appropriate drug or vehicle into contralateral telencephalic lobes. Results Injuries sustained in the presence of indomethacin (a cyclooxygenase inhibitor) had fewer aromatase-expressing reactive astrocytes relative to injuries injected with vehicle suggesting that cyclooxygenase activity is necessary for the induction of glial aromatase around the site of damage. Injured hemispheres had higher prostaglandin E2 and estradiol content relative to shams. Importantly, injured hemispheres injected with E-prostanoid- or estrogen receptor-antagonists showed elevated prostaglandin E2 and estradiol, respectively, but lower prostaglandin E2 or estradiol-dependent downstream activity (protein kinase A or phosphoinositide-3-kinase mRNA) suggesting that receptor antagonism did not affect injury-induced prostaglandin E2 or estradiol, but inhibited the effects of these ligands. Antagonism of E-prostanoid receptors 3 or 4 prevented injury-induced increases in neural estradiol in males and females, respectively, albeit this apparent sex-difference needs to be tested more stringently. Further, estrogen receptor-α, but not estrogen receptor-β antagonism, exaggerated neural prostaglandin E2 levels relative to the contralateral lobe in both sexes. Conclusion These data suggest injury-induced, sex-specific prostaglandin E2-dependent estradiol synthesis, and estrogen receptor-α dependent decreases in neuroinflammation in the vertebrate brain.
Collapse
Affiliation(s)
- Alyssa L Pedersen
- Department of Biology, Program in Behavior, Cognition and Neuroscience, and the Center for Behavioral Neuroscience, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA
| | - Colin J Saldanha
- Department of Biology, Program in Behavior, Cognition and Neuroscience, and the Center for Behavioral Neuroscience, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA.
| |
Collapse
|
17
|
Ikeda MZ, Krentzel AA, Oliver TJ, Scarpa GB, Remage-Healey L. Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata). J Comp Neurol 2017; 525:3636-3652. [PMID: 28758205 PMCID: PMC6035364 DOI: 10.1002/cne.24292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023]
Abstract
A fast, neuromodulatory role for estrogen signaling has been reported in many regions of the vertebrate brain. Regional differences in the cellular distribution of aromatase (estrogen synthase) in several species suggest that mechanisms for neuroestrogen signaling differ between and even within brain regions. A more comprehensive understanding of neuroestrogen signaling depends on characterizing the cellular identities of neurons that express aromatase. Calcium-binding proteins such as parvalbumin and calbindin are molecular markers for interneuron subtypes, and are co-expressed with aromatase in human temporal cortex. Songbirds like the zebra finch have become important models to understand the brain synthesis of steroids like estrogens and the implications for neurobiology and behavior. Here, we investigated the regional differences in cytoarchitecture and cellular identities of aromatase-expressing neurons in the auditory and sensorimotor forebrain of zebra finches. Aromatase was co-expressed with parvalbumin in the caudomedial nidopallium (NCM) and HVC shelf (proper name) but not in the caudolateral nidopallium (NCL) or hippocampus. By contrast, calbindin was not co-expressed with aromatase in any region investigated. Notably, aromatase-expressing neurons were found in dense somato-somatic clusters, suggesting a coordinated release of local neuroestrogens from clustered neurons. Aromatase clusters were also more abundant and tightly packed in the NCM of males as compared to females. Overall, this study provides new insights into neuroestrogen regulation at the network level, and extends previous findings from human cortex by identifying a subset of aromatase neurons as putative inhibitory interneurons.
Collapse
Affiliation(s)
- Maaya Z Ikeda
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Amanda A Krentzel
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Tessa J Oliver
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Garrett B Scarpa
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Luke Remage-Healey
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
18
|
Activation of the peripheral immune system regulates neuronal aromatase in the adult zebra finch brain. Sci Rep 2017; 7:10191. [PMID: 28860515 PMCID: PMC5579002 DOI: 10.1038/s41598-017-10573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022] Open
Abstract
Estradiol provision via neural aromatization decreases neuro-inflammation and –degeneration, but almost nothing is known about the interactions between the peripheral immune system and brain aromatase. Given the vulnerability of the CNS we reasoned that brain aromatization may protect circuits from the threats of peripheral infection; perhaps shielding cells that are less resilient from the degeneration associated with peripheral infection or trauma. Lipopolysaccharide (LPS) or vehicle was administered peripherally to adult zebra finches and sickness behavior was recorded 2 or 24 hours later. The central transcription of cytokines and aromatase was measured, as were telencephalic aromatase activity and immunoreactive aromatase (24 hour time point only). Two hours post LPS, sickness-like behaviors increased, the transcription of IL-1β was higher in both sexes, and TNFα was elevated in females. 24 hours post-LPS, the behavior of LPS birds was similar to controls, and cytokines had returned to baseline, but aromatase mRNA and activity were elevated in both sexes. Immunocytochemistry revealed greater numbers of aromatase-expressing neurons in LPS birds. These data suggest that the activation of the immune system via peripheral endotoxin increases neuronal aromatase; a mechanism that may rapidly generate a potent anti-neuroinflammatory steroid in response to peripheral activation of the immune system.
Collapse
|
19
|
Pedersen AL, Brownrout JL, Saldanha CJ. Central Administration of Indomethacin Mitigates the Injury-Induced Upregulation of Aromatase Expression and Estradiol Content in the Zebra Finch Brain. Endocrinology 2017; 158:2585-2592. [PMID: 28575175 PMCID: PMC5551551 DOI: 10.1210/en.2017-00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
Injury to the vertebrate brain causes neuroinflammation, characterized in part by increases in prostaglandins. In rodents and songbirds, brain injury also induces the transcription and translation of aromatase in reactive astrocytes around the site of damage. Interestingly, this induction is more rapid in female zebra finches relative to males. Induced aromatization is neuroprotective, as inhibition of aromatase and estrogen replacement, increases and decreases the extent of damage, respectively. Although the consequences of induced astrocytic aromatization are intensely studied, little is known about what factors induce aromatase. Inflammation is sufficient to induce astrocytic aromatase suggesting that the link between inflammation and aromatase expression may be causal. To test this hypothesis, adult male and female zebra finches received bilateral mechanical injuries through which either the cyclooxygenase (COX)-1/2 inhibitor indomethacin or vehicle was administered into contralateral hemispheres. Subjects were killed either 6 or 24 hours after injury. In both sexes, an enzyme immunoassay for prostaglandin E2 (PGE2) revealed that indomethacin decreased PGE2 relative to the contralateral hemisphere at both time points, suggesting that the dose and mode of administration used were successful in affecting neuroinflammation locally. Indomethacin reduced aromatase expression and 17β-estradiol (E2) content at 6 hours but not 24 hours following injury in females. However, in males, the inhibitory effect of indomethacin on aromatase and E2 was apparent at 24 but not 6 hours after treatment. These data suggest that COX activity, perhaps via consequent prostaglandin secretion, may induce aromatase expression and central E2, an effect that is detectable in temporally distinct patterns between sexes.
Collapse
Affiliation(s)
- Alyssa L. Pedersen
- Department of Biology, Behavior, Cognition, and Neuroscience Program, and the Center for Behavioral Neuroscience, American University, Washington, DC 20016
| | - Jenna L. Brownrout
- Department of Biology, Behavior, Cognition, and Neuroscience Program, and the Center for Behavioral Neuroscience, American University, Washington, DC 20016
| | - Colin J. Saldanha
- Department of Biology, Behavior, Cognition, and Neuroscience Program, and the Center for Behavioral Neuroscience, American University, Washington, DC 20016
| |
Collapse
|
20
|
Blackshear K, Giessner S, Hayden JP, Duncan KA. Exogenous progesterone is neuroprotective following injury to the male zebra finch brain. J Neurosci Res 2017; 96:545-555. [DOI: 10.1002/jnr.24060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Affiliation(s)
| | - Stephanie Giessner
- Neuroscience and Behavior Program; Vassar College; Poughkeepsie New York USA 12604
| | - John P. Hayden
- Department of Biology; Vassar College; Poughkeepsie New York USA 12604
| | - Kelli A. Duncan
- Neuroscience and Behavior Program; Vassar College; Poughkeepsie New York USA 12604
- Department of Biology; Vassar College; Poughkeepsie New York USA 12604
| |
Collapse
|
21
|
Expression of glial CBP in steroid mediated neuroprotection in male and female zebra finches. J Chem Neuroanat 2017; 79:32-37. [DOI: 10.1016/j.jchemneu.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
|