1
|
Juszczak GR, Stankiewicz AM, Starzyński RR, Ogłuszka M, Jaszczyk A. Effect of Corticosterone on Gene Expression in the Context of Global Hippocampal Transcription. Int J Mol Sci 2025; 26:4889. [PMID: 40430058 PMCID: PMC12112531 DOI: 10.3390/ijms26104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
The composition of genomic mediators of glucocorticoid actions in the brain remains elusive because of low-statistical-power experiments and the associated transcriptomic data with very low consistency. The problem is further exaggerated by the underrepresentation of chronic experiments and the interpretation of differentially expressed genes without understanding their contribution to the total transcriptomic activity. To fill existing gaps in knowledge, we have performed a large transcriptomic experiment, testing the effects of prolonged treatment with corticosterone on the hippocampal transcriptome (RNA sequencing). The experiment showed that prolonged treatment with corticosterone induced a set of transcriptomic effects that were replicable across treatment durations, including genes relevant for human PTSD (Opalin, Pllp, Ttyh2, Lpar1) and prolonged stress in animals (Cnp, Fam163a, Fcrls, Tmem125). Some of the affected genes are specific for oligodendrocytes, neurons, astrocytes, immune cells, the vascular system, and brain ventricles, indicating that glucocorticoids may affect all central nervous system components. The data also showed that the largest changes in expression of corticosterone-responsive genes are restricted to genes with a relatively low expression level and small contribution to the overall pool of mRNAs in the hippocampus. As a result, even a large change in the number of affected genes leads to a small change in the number of newly synthesized mRNA copies. This means, in turn, that the transcriptomic changes induced by corticosterone have low-cost effects on the brain. This specificity of transcriptomic responses also poses a challenge for the interpretation of data and constitutes a potential source of reporting bias in past studies. Therefore, there is a need for further research on products of gene expression, both at the transcriptomic and proteomic levels, during stress conditions.
Collapse
Affiliation(s)
- Grzegorz R. Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland;
| | - Adrian M. Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland;
| |
Collapse
|
2
|
Goel F, Kumar D, Sharma A. Impact of corticoid receptors on Alzheimer's disease: a neuroendocrine perspective. Inflammopharmacology 2025; 33:2641-2656. [PMID: 40249479 DOI: 10.1007/s10787-025-01734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has been strongly associated with changes in corticoid receptor function and HPA axis dysregulation. This review gives an overview of the complex role of GC and MC receptors in AD, especially how chronic exposure to elevated cortisol contributes to hippocampal degeneration, oxidative stress, and cognitive decline. Specific emphasis lies with cortisol, brought to the attention of neurotoxicity, and relates it to Cushing syndrome with chronic hyper-cortisolism simulating cognitive and structural impairments seen in AD. The impact of HPA axis over-activity in AD pathology is presented, demonstrating its contribution to neuro-inflammation and possible utilization as a biomarker for disease progression. This review further includes pharmacological strategies that modulate corticoid receptors for the reduction of GC-induced neurotoxicity and includes selective GR antagonists and MR agonists. Lifestyle modifications, which modulate HPA activity, are the other non-pharmacological approach to managing AD. Finally, novel drugs and interventions targeting the regulation of GC, anti-inflammatory pathways, as well as attenuation of oxidative stress are emerging strategies. Such a strategy implies that it is possible that receptor activity balance can delay or arrest AD progression.
Collapse
Affiliation(s)
- Falguni Goel
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, India.
| | - Daksh Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, India
| | - Anushka Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology (MIET), Meerut, India
| |
Collapse
|
3
|
Paul SN, De Visser A, Motta F, Rivers CA, Pooley JR, Lightman SL, Meijer OC. Patterns of corticosterone exposure affect the subcellular localisation of mineralocorticoid and glucocorticoid receptor complexes and gene expression. Steroids 2025; 214:109524. [PMID: 39490722 DOI: 10.1016/j.steroids.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Mineralocorticoid (MR) and glucocorticoid receptors (GR) act as transcription factors and major mediators of glucocorticoid signalling, with pivotal roles in regulating the stress response and hormonal signalling, mood, cognition and memory. The MR and GR share many target genes, have a high degree of homology in their DNA binding (DBD) and ligand binding domain (LBD) but differ considerably in the N-terminal domain (NTD). Using Proximity Ligation Assay (PLA) we quantitatively assessed MR-GR complex subcellular localisation and transcriptional regulation in murine neuroblastoma (N2A) cells stimulated by constant or pulsatile corticosterone (CORT) patterns. We observe that continuous receptor activation by CORT caused localisation at the periphery of the cell nucleus. Truncation of the receptor Ligand Binding Domain (LBD) led to a stronger localisation of MR-GR complexes at the periphery of the cell nuclei. This was also observed for GR immunofluorescence (IF), while in cells expressing only MR or GR the mRNA response to pulsatile hormone treatment was substantially attenuated. However, there was no clearcut correlation between the spatial distribution of MR-GR complexes and the mRNA levels of target genes. Overall, our findings suggest that longer presence in the cell nucleus favors more peripheral nuclear localisation.
Collapse
Affiliation(s)
- Susana N Paul
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Anna De Visser
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Federica Motta
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Caroline A Rivers
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John R Pooley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
4
|
Johnson TA, Fettweis G, Wagh K, Ceacero-Heras D, Krishnamurthy M, Sánchez de Medina F, Martínez-Augustin O, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor. Proc Natl Acad Sci U S A 2024; 121:e2413737121. [PMID: 39541347 PMCID: PMC11588051 DOI: 10.1073/pnas.2413737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR coexpression on MR genome-wide transcriptional responses and chromatin binding upon activation by aldosterone and glucocorticoids, both physiological ligands of this receptor. Transcriptional responses of MR in the absence of GR result in fewer regulated genes. In contrast, coexpression of GR potentiates MR-mediated transcription, particularly in response to aldosterone, both in cell lines and in the more physiologically relevant model of mouse colon organoids. MR chromatin binding is altered by GR coexpression in a locus- and ligand-specific way. Single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that coexpression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Department of Physics, University of Maryland, College Park, MD20742
| | - Diego Ceacero-Heras
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada18071, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna38200, Spain
| |
Collapse
|
5
|
Zerillo L, Polvere I, Stilo R, Vito P, Rinaldi M, Zotti T, Costagliola C. Diverse effects of synthetic glucocorticoid species on cell viability and stress response of neuroblastoma cells. Neuroscience 2024; 554:1-10. [PMID: 39002754 DOI: 10.1016/j.neuroscience.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Glucocorticoids (GCs) are widely used as powerful anti-inflammatory and immunosuppressive therapeutics in multiple pathological conditions. However, compelling evidence indicates that they might promote neurodegeneration by altering mitochondrial homeostatic processes. Although the effect of dexamethasone on cell survival and homeostasis has been widely investigated, the effect of other glucocorticoids needs to be explored in more detail. In this report, we have compared the neurotoxicity induced by dexamethasone, prednisolone, betamethasone, and hydrocortisone in cultured neuroblastoma cells, through the analysis of several parameters such as cell viability, ER stress, oxidative stress, and mitochondrial fusion and fission markers. Interestingly, we have found that synthetic glucocorticoids may impact neuronal viability by affecting different cellular responses, suggesting that their therapeutic use should be consciously decided after careful consideration of benefits and detrimental effects.
Collapse
Affiliation(s)
- Lucrezia Zerillo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | | | - Romania Stilo
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Pasquale Vito
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy; Genus Biotech, University of Sannio, Benevento, 82100, Italy
| | - Michele Rinaldi
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy.
| | - Tiziana Zotti
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy.
| | - Ciro Costagliola
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
6
|
Joëls M, Karst H, Tasker JG. The emerging role of rapid corticosteroid actions on excitatory and inhibitory synaptic signaling in the brain. Front Neuroendocrinol 2024; 74:101146. [PMID: 39004314 DOI: 10.1016/j.yfrne.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- University Medical Center Groningen, University of Groningen, the Netherlands; University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Henk Karst
- University Medical Center Utrecht, Utrecht University, the Netherlands; SILS-CNS. University of Amsterdam, the Netherlands.
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, and Southeast Louisiana Veterans Affairs Healthcare System, New Orleans, USA.
| |
Collapse
|
7
|
Koning ASCAM, van der Meulen M, Schaap D, Satoer DD, Vinkers CH, van Rossum EFC, van Furth WR, Pereira AM, Meijer OC, Dekkers OM. Neuropsychiatric Adverse Effects of Synthetic Glucocorticoids: A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab 2024; 109:e1442-e1451. [PMID: 38038629 PMCID: PMC11099480 DOI: 10.1210/clinem/dgad701] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
CONTEXT Synthetic glucocorticoids are widely used to treat patients with a broad range of diseases. While efficacious, glucocorticoids can be accompanied by neuropsychiatric adverse effects. OBJECTIVE This systematic review and meta-analysis assesses and quantifies the proportion of different neuropsychiatric adverse effects in patients using synthetic glucocorticoids. METHODS Six electronic databases were searched to identify potentially relevant studies. Randomized controlled trials, cohort studies, and cross-sectional studies assessing psychiatric side effects of glucocorticoids measured with validated questionnaires were eligible. Risk of bias was assessed with RoB 2, ROBINS-I, and AXIS appraisal tool. For proportions of neuropsychiatric outcomes, we pooled proportions, and when possible, differences in questionnaire scores between glucocorticoid users and nonusers were expressed as standardized mean differences (SMD). Data were pooled in a random-effects logistic regression model. RESULTS We included 49 studies with heterogeneity in study populations, type, dose, and duration of glucocorticoids. For glucocorticoid users, meta-analysis showed a proportion of 22% for depression (95% CI, 14%-33%), 11% for mania (2%-46%), 8% for anxiety (2%-25%), 16% for delirium (6%-36%), and 52% for behavioral changes (42%-61%). Questionnaire scores for depression (SMD of 0.80 [95% CI 0.35-1.26]), and mania (0.78 [0.14-1.42]) were higher than in controls, indicating more depressive and manic symptoms following glucocorticoid use. CONCLUSION The heterogeneity of glucocorticoid use is reflected in the available studies. Despite this heterogeneity, the proportion of neuropsychiatric adverse effects in glucocorticoid users is high. The most substantial associations with glucocorticoid use were found for depression and mania. Upon starting glucocorticoid treatment, awareness of possible psychiatric side effects is essential. More structured studies on incidence and potential pathways of neuropsychiatric side effects of prescribed glucocorticoids are clearly needed.
Collapse
Affiliation(s)
- Anne-Sophie C A M Koning
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Merel van der Meulen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Daphne Schaap
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Djaina D Satoer
- Department of Neurosurgery, Erasmus MC—University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry and Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Academic Working Place Depression, GGZ InGeest, Oldenaller 1, 1081 HJ Amsterdam, The Netherlands
- Amsterdam Neuroscience (Mood, Anxiety, Psychosis, Stress & Sleep Program) and Amsterdam Public Health (Mental Health Program) Research Institutes, Amsterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wouter R van Furth
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and Haga Teaching Hospitals, Leiden and The Hague, The Netherlands
| | - Alberto M Pereira
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Olaf M Dekkers
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Privitera M, von Ziegler LM, Floriou-Servou A, Duss SN, Zhang R, Waag R, Leimbacher S, Sturman O, Roessler FK, Heylen A, Vermeiren Y, Van Dam D, De Deyn PP, Germain PL, Bohacek J. Noradrenaline release from the locus coeruleus shapes stress-induced hippocampal gene expression. eLife 2024; 12:RP88559. [PMID: 38477670 DOI: 10.7554/elife.88559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Exposure to an acute stressor triggers a complex cascade of neurochemical events in the brain. However, deciphering their individual impact on stress-induced molecular changes remains a major challenge. Here, we combine RNA sequencing with selective pharmacological, chemogenetic, and optogenetic manipulations to isolate the contribution of the locus coeruleus-noradrenaline (LC-NA) system to the acute stress response in mice. We reveal that NA release during stress exposure regulates a large and reproducible set of genes in the dorsal and ventral hippocampus via β-adrenergic receptors. For a smaller subset of these genes, we show that NA release triggered by LC stimulation is sufficient to mimic the stress-induced transcriptional response. We observe these effects in both sexes, and independent of the pattern and frequency of LC activation. Using a retrograde optogenetic approach, we demonstrate that hippocampus-projecting LC neurons directly regulate hippocampal gene expression. Overall, a highly selective set of astrocyte-enriched genes emerges as key targets of LC-NA activation, most prominently several subunits of protein phosphatase 1 (Ppp1r3c, Ppp1r3d, Ppp1r3g) and type II iodothyronine deiodinase (Dio2). These results highlight the importance of astrocytic energy metabolism and thyroid hormone signaling in LC-mediated hippocampal function and offer new molecular targets for understanding how NA impacts brain function in health and disease.
Collapse
Affiliation(s)
- Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Lukas M von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Runzhong Zhang
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Sebastian Leimbacher
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| | - Fabienne K Roessler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annelies Heylen
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Center, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Pierre-Luc Germain
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Switzerland, Zurich, Switzerland
| |
Collapse
|
9
|
Koning ASCAM, Booij SH, Meijer OC, Riese H, Giltay EJ. Temporal associations between salivary cortisol and emotions in clinically depressed individuals and matched controls: A dynamic time warp analysis. Psychoneuroendocrinology 2023; 158:106394. [PMID: 37774658 DOI: 10.1016/j.psyneuen.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Depression can be understood as a complex dynamic system where depressive symptoms interact with one another. Cortisol is suggested to play a major role in the pathophysiology of depression, but knowledge on the temporal interplay between cortisol and depressive symptoms is scarce. We aimed to analyze the temporal connectivity between salivary cortisol and momentary affective states in depressed individuals and controls. Thirty pair-matched depressed and non-depressed participants completed questionnaires on momentary positive (PA) and negative (NA) affect and collected saliva three times a day for 30 days. The association between cortisol and affect was analyzed by dynamic time warp (DTW) analyses. These analyses involved lag-1 backward to lag-1 forward undirected analyses and lag-0 and lag-1 forward directed analyses. Large inter- and intra-individual variability in the networks were found. At the group level, with undirected analysis PA and NA were connected in the networks in depressed individuals and in controls. Directed analyses indicated that increases in cortisol preceded specific NA items in controls, but tended to follow upon specific affect items increase in depressed individuals. To conclude, at group level, changes in cortisol levels in individuals diagnosed with a depression may be a result of changes in affect, rather than a cause.
Collapse
Affiliation(s)
- Anne-Sophie C A M Koning
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne H Booij
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Groningen, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Harriëtte Riese
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Groningen, The Netherlands
| | - Erik J Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Department of Biomedical Sciences, University of Antwerp, Belgium.
| |
Collapse
|
10
|
Fadel L, Dacic M, Fonda V, Sokolsky BA, Quagliarini F, Rogatsky I, Uhlenhaut NH. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023; 251:108531. [PMID: 37717739 PMCID: PMC10841922 DOI: 10.1016/j.pharmthera.2023.108531] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Glucocorticoids (GCs) are a class of steroid hormones that regulate key physiological processes such as metabolism, immune function, and stress responses. The effects of GCs are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor that activates or represses the expression of hundreds to thousands of genes in a tissue- and physiological state-specific manner. The activity of GR is modulated by numerous coregulator proteins that interact with GR in response to different stimuli assembling into a multitude of DNA-protein complexes and facilitate the integration of these signals, helping GR to communicate with basal transcriptional machinery and chromatin. Here, we provide a brief overview of the physiological and molecular functions of GR, and discuss the roles of GR coregulators in the immune system, key metabolic tissues and the central nervous system. We also present an analysis of the GR interactome in different cells and tissues, which suggests tissue-specific utilization of GR coregulators, despite widespread functions shared by some of them.
Collapse
Affiliation(s)
- Lina Fadel
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Vlera Fonda
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Baila A Sokolsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Fabiana Quagliarini
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology IDE, Helmholtz Munich, Ingolstaedter Landstr. 1, 857649 Neuherberg, Germany; Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor11 Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
11
|
Khom S, Borgonetti V, Vozella V, Kirson D, Rodriguez L, Gandhi P, Bianchi PC, Snyder A, Vlkolinsky R, Bajo M, Oleata CS, Ciccocioppo R, Roberto M. Glucocorticoid receptors regulate central amygdala GABAergic synapses in Marchigian-Sardinian alcohol-preferring rats. Neurobiol Stress 2023; 25:100547. [PMID: 37547774 PMCID: PMC10401345 DOI: 10.1016/j.ynstr.2023.100547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/29/2023] [Indexed: 08/08/2023] Open
Abstract
Impairments in the function of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced glucocorticoid receptor (GR) activity in the central amygdala (CeA) are critical mechanisms in the pathogenesis of alcohol use disorder (AUD). The GR antagonist mifepristone attenuates craving in AUD patients, alcohol consumption in AUD models, and decreases CeA γ-aminobutyric acid (GABA) transmission in alcohol-dependent rats. Previous studies suggest elevated GR activity in the CeA of male alcohol-preferring Marchigian-Sardinian (msP) rats, but its contribution to heightened CeA GABA transmission driving their characteristic post-dependent phenotype is largely unknown. We determined Nr3c1 (the gene encoding GR) gene transcription in the CeA in male and female msP and Wistar rats using in situ hybridization and studied acute effects of mifepristone (10 μM) and its interaction with ethanol (44 mM) on pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs) and electrically evoked inhibitory postsynaptic potentials (eIPSPs) in the CeA using ex vivo slice electrophysiology. Female rats of both genotypes expressed more CeA GRs than males, suggesting a sexually dimorphic GR regulation of CeA activity. Mifepristone reduced sIPSC frequencies (GABA release) and eIPSP amplitudes in msP rats of both sexes, but not in their Wistar counterparts; however, it did not prevent acute ethanol-induced increase in CeA GABA transmission in male rats. In msP rats, GR regulates CeA GABAergic signaling under basal conditions, indicative of intrinsically active GR. Thus, enhanced GR function in the CeA represents a key mechanism contributing to maladaptive behaviors associated with AUD.
Collapse
Affiliation(s)
- Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna, A 1090, Austria
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Larry Rodriguez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pauravi Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula Cristina Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil
| | - Angela Snyder
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christopher S. Oleata
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Johnson TA, Fettweis G, Wagh K, Almeida-Prieto B, Krishnamurthy M, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The Glucocorticoid Receptor is Required for Efficient Aldosterone-Induced Transcription by the Mineralocorticoid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525745. [PMID: 36789429 PMCID: PMC9928040 DOI: 10.1101/2023.01.26.525745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR co-expression on MR genome-wide chromatin binding and transcriptional responses to aldosterone and glucocorticoids, both physiological ligands of this receptor. Our data show that GR co-expression alters MR genome-wide binding to consensus DNA sequences in a locus- and ligand-specific way. MR binding to consensus DNA sequences is affected by GR. Transcriptional responses of MR in the absence of GR are weak and show poor correlation with chromatin binding. In contrast, co-expression of GR potentiates MR-mediated transcription, particularly in response to aldosterone. Finally, single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that co-expression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
13
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
14
|
Ju LS, Morey TE, Seubert CN, Martynyuk AE. Intergenerational Perioperative Neurocognitive Disorder. BIOLOGY 2023; 12:biology12040567. [PMID: 37106766 PMCID: PMC10135810 DOI: 10.3390/biology12040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Accelerated neurocognitive decline after general anesthesia/surgery, also known as perioperative neurocognitive disorder (PND), is a widely recognized public health problem that may affect millions of patients each year. Advanced age, with its increasing prevalence of heightened stress, inflammation, and neurodegenerative alterations, is a consistent contributing factor to the development of PND. Although a strong homeostatic reserve in young adults makes them more resilient to PND, animal data suggest that young adults with pathophysiological conditions characterized by excessive stress and inflammation may be vulnerable to PND, and this altered phenotype may be passed to future offspring (intergenerational PND). The purpose of this narrative review of data in the literature and the authors' own experimental findings in rodents is to draw attention to the possibility of intergenerational PND, a new phenomenon which, if confirmed in humans, may unravel a big new population that may be affected by parental PND. In particular, we discuss the roles of stress, inflammation, and epigenetic alterations in the development of PND. We also discuss experimental findings that demonstrate the effects of surgery, traumatic brain injury, and the general anesthetic sevoflurane that interact to induce persistent dysregulation of the stress response system, inflammation markers, and behavior in young adult male rats and in their future offspring who have neither trauma nor anesthetic exposure (i.e., an animal model of intergenerational PND).
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Timothy E Morey
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Christoph N Seubert
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Anatoly E Martynyuk
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
- Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Martini P, Mingardi J, Carini G, Mattevi S, Ndoj E, La Via L, Magri C, Gennarelli M, Russo I, Popoli M, Musazzi L, Barbon A. Transcriptional Profiling of Rat Prefrontal Cortex after Acute Inescapable Footshock Stress. Genes (Basel) 2023; 14:genes14030740. [PMID: 36981011 PMCID: PMC10048409 DOI: 10.3390/genes14030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after. While no substantial changes were observed at the single gene level immediately after the stress session, gene set enrichment analysis showed alterations in neuronal pathways associated with glia development, glia-neuron networking, and synaptic function. Furthermore, we found alterations in the expression of gene sets regulated by specific transcription factors that could represent master regulators of the acute stress response. Of note, these pathways and transcriptional programs are activated during the early stress response (immediately after FS) and are already turned off after 2 h-while at 24 h, the transcriptional profile is largely unaffected. Overall, our analysis provided a transcriptional landscape of the early changes triggered by acute unavoidable FS stress in the PFC of rats, suggesting that the transcriptional wave is fast and mild, but probably enough to activate a cellular response to acute stress.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jessica Mingardi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elona Ndoj
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
16
|
Melcangi RC. Editorial. J Neuroendocrinol 2023; 35:e13244. [PMID: 36881597 DOI: 10.1111/jne.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|