1
|
D Dos Santos D, B Gardinal MV, R Ruiz TF, Florêncio-Silva R, R Vidal M, R Falleiros-Júnior L, R Taboga S, B Franceschini-Vicentini I, A Vicentini C. Exploring the ventricular morphology of the heart of Brycon amazonicus (Agassiz, 1829) (Teleostei, Characiformes). Morphologie 2025; 109:100944. [PMID: 39708664 DOI: 10.1016/j.morpho.2024.100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Brycon amazonicus, a fish species widely distributed along freshwater rivers in Latin America, is important in maintaining ecological balance. Although some morphological/physiological aspects of B. amazonicus have been reported, the cardiac histomorphology of this species remains poorly understood. Therefore, this study aimed to describe the heart, emphasizing coronary distribution and ventricular myoarchitecture, correlating its structure with its functional activity. Ten adult specimens were anesthetized and perfused with Trident® ink to highlight the coronary branching. Subsequently, the animals were euthanized to collect the hearts, which were collected and processed for histological and histochemical techniques and scanning electron microscopy. We observed that the heart of B. amazonicus has a pyramidal ventricle, mixed myocardium, and coronary vessels restricted to the compact layer, according to classifications in the literature. The compact layer comprises two types of muscle bundles, arranged in longitudinal and circular orientations. The coronary circulation, which originates in the lateral cephalic region, starts from the heart and extends to the ventricular myocardium. Therefore, B. amazonicus has a cardiac morphology similar to that of other teleost species already described in the literature, expanding information on the Characiformes group. The description obtained of the heart of this species may contribute to further studies that seek a better understanding of the ecophysiology and evolution of teleost fish in the freshwaters of the Neotropical region.
Collapse
Affiliation(s)
- Diego D Dos Santos
- Department of Morphology and Genetics, Histology and Structural Biology Laboratory, Federal University of São Paulo (Unifesp), Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil; Department of Biological Sciences, Sao Paulo State University (Unesp), Bauru, SP, Brazil
| | - Mario V B Gardinal
- Institute of Biosciences, Zoology Sector, Botucatu, Sao Paulo State University (Unesp), Sao Paulo, SP, Brazil; Department of Biological Sciences, Sao Paulo State University (Unesp), Bauru, SP, Brazil
| | - Thalles F R Ruiz
- Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Biological Sciences, Sao Paulo State University (Unesp), Bauru, SP, Brazil
| | - Rinaldo Florêncio-Silva
- Department of Morphology and Genetics, Histology and Structural Biology Laboratory, Federal University of São Paulo (Unifesp), Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| | - Mateus R Vidal
- Institute of Biosciences, Zoology Sector, Botucatu, Sao Paulo State University (Unesp), Sao Paulo, SP, Brazil; Department of Biological Sciences, Sao Paulo State University (Unesp), Bauru, SP, Brazil
| | - Luiz R Falleiros-Júnior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Sao Paulo State University (Unesp), Sao, SP, Brazil
| | - Sebartião R Taboga
- Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), Sao Paulo State University (Unesp), Sao, SP, Brazil
| | - Irene B Franceschini-Vicentini
- Unesp Aquaculture Center, Sao Paulo State University (Unesp), Jaboticabal, SP, Brazil; Department of Biological Sciences, Sao Paulo State University (Unesp), Bauru, SP, Brazil
| | - Carlos A Vicentini
- Unesp Aquaculture Center, Sao Paulo State University (Unesp), Jaboticabal, SP, Brazil; Department of Biological Sciences, Sao Paulo State University (Unesp), Bauru, SP, Brazil
| |
Collapse
|
2
|
López-Unzu MA, Teresa Soto-Navarrete M, Sans-Coma V, Fernández B, Carmen Durán A. The myoarchitecture of the vertebrate cardiac ventricles: evolution and classification. J Exp Biol 2024; 227:jeb247441. [PMID: 39392075 DOI: 10.1242/jeb.247441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The ventricle of the vertebrate heart is the main segment of the cardiac outflow region. Compared with other cardiac components, it shows remarkable histomorphological variation among different animal groups. This variation is especially apparent in the myocardium, which is generally classified into three main types: trabeculated, compact and mixed. The trabeculated or 'spongy' myocardium is characterized by the existence of trabeculae and deep recesses or intertrabecular spaces, lined by the endocardium. The compact type is composed of condensed myocardial fibers, with almost no trabeculated layer. The mixed type consists of an outer compact layer and an inner trabeculated layer. Among vertebrates, fishes show a great diversity of myocardial types. On this basis, the ventricular myoarchitecture has been categorized into four groups of varying complexity. This classification is made according to (i) the proportion of the two types of myocardium, trabeculated versus compact, and (ii) the vascularization of the heart wall. Here, we review the morphogenetic mechanisms that give rise to the different ventricular myoarchitecture in gnathostomes (i.e. jawed vertebrates) with special emphasis on the diversity of the ventricular myocardium throughout the phylogeny of ancient actinopterygians and teleosts. Finally, we propose that the classification of the ventricular myoarchitecture should be reconsidered, given that the degrees of myocardial compactness on which the current classification system is based do not constitute discrete states, but an anatomical continuum.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul-IBYDA, 29004 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares-CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29590 Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul-IBYDA, 29004 Málaga, Spain
| |
Collapse
|
3
|
Vaykshnorayte MA, Vityazev VA, Azarov JE. Seasonal changes of electrophysiological heterogeneities in the rainbow trout ventricular myocardium. Curr Res Physiol 2022; 5:93-98. [PMID: 35198999 PMCID: PMC8844795 DOI: 10.1016/j.crphys.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/09/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Thermal adaptation in fish is accompanied by morphological and electrophysiological changes in the myocardium. Little is known regarding seasonal changes of spatiotemporal organization of ventricular excitation and repolarization processes. We aimed to evaluate transmural and apicobasal heterogeneity of depolarization and repolarization characteristics in the rainbow trout in-situ ventricular myocardium in summer and winter conditions. Methods The experiments were done in summer-acclimatized (SA, 18°C, n = 8) and winter-acclimatized (WA, 3°C, n = 8) rainbow trout (Oncorhynchus mykiss). 24 unipolar electrograms were recorded with 3 plunge needle electrodes (eight lead terminals each) impaled into the ventricular wall. Activation time (AT), end of repolarization time (RT), and activation-repolarization interval (ARI, a surrogate for action potential duration) were determined as dV/dt min during QRS-complex, dV/dt max during T-wave, and RT-AT difference, respectively. Results The SA fish demonstrated relatively flat apicobasal and transmural AT and ARI profiles. In the WA animals, ATs and ARIs were longer as compared to SA animals (p≤0.001), ARIs were shorter in the compact layer than in the spongy layer (p≤0.050), and within the compact layer, the apical region had shorter ATs and longer ARIs as compared to the basal region (p≤0.050). In multiple linear regression analysis, ARI duration was associated with RR-interval and AT in SA and WA animals. The WA animals additionally demonstrated an independent association of ARIs with spatial localization across the ventricle. Conclusion Cold conditions led to the spatial redistribution of repolarization durations in the rainbow trout ventricle and the formation of repolarization gradients typically observed in mammalian myocardium. Spatiotemporal electrophysiological pattern is essential for cardiac function. A role of this pattern is unclear, specifically in seasonal changes in fish. Transmural repolarization gradients develop in cold conditions in rainbow trout.
Collapse
|
4
|
Olejnickova V, Kolesova H, Bartos M, Sedmera D, Gregorovicova M. The Tale-Tell Heart: Evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum). Dev Dyn 2021; 251:1004-1014. [PMID: 34423892 DOI: 10.1002/dvdy.413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND During amphibian metamorphosis, the crucial moment lies in the rearrangement of the heart, reflecting the changes in circulatory demands. However, little is known about the exact shifts linked with this rearrangement. Here, we demonstrate such myocardial changes in axolotl (Ambystoma mexicanum) from the morphological and physiological point of view. RESULTS Micro-CT and histological analysis showed changes in ventricular trabeculae organization, completion of the atrial septum and its connection to the atrioventricular valve. Based on Myosin Heavy Chain and Smooth Muscle Actin expression we distinguished metamorphosis-induced changes in myocardial differentiation at the ventricular trabeculae and atrioventricular canal. Using optical mapping, faster speed of conduction through the atrioventricular canal was demonstrated in metamorphic animals. No differences between the groups were observed in the heart rates, ventricular activation times, and activation patterns. CONCLUSIONS Transition from aquatic to terrestrial life-style is reflected in the heart morphology and function. Rebuilding of the axolotl heart during metamorphosis was connected with reorganization of ventricular trabeculae, completion of the atrial septum and its connection to the atrioventricular valve, and acceleration of AV conduction.
Collapse
Affiliation(s)
- Veronika Olejnickova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Hana Kolesova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Martin Bartos
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,First Faculty of Medicine, Institute of Dental Medicine, Charles University, Prague, Czech Republic
| | - David Sedmera
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Martina Gregorovicova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| |
Collapse
|
5
|
Morgenroth D, McArley T, Gräns A, Axelsson M, Sandblom E, Ekström A. Coronary blood flow influences tolerance to environmental extremes in fish. J Exp Biol 2021; 224:jeb.239970. [PMID: 33688058 DOI: 10.1242/jeb.239970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Approximately half of all fishes have, in addition to the luminal venous O2 supply, a coronary circulation supplying the heart with fully oxygenated blood. Yet, it is not fully understood how coronary O2 delivery affects tolerance to environmental extremes such as warming and hypoxia. Hypoxia reduces arterial oxygenation, while warming increases overall tissue O2 demand. Thus, as both stressors are associated with reduced venous O2 supply to the heart, we hypothesised that coronary flow benefits hypoxia and warming tolerance. To test this hypothesis, we blocked coronary blood flow (via surgical coronary ligation) in rainbow trout (Oncorhynchus mykiss) and assessed how in vivo cardiorespiratory performance and whole-animal tolerance to acute hypoxia and warming was affected. While coronary ligation reduced routine stroke volume relative to trout with intact coronaries, cardiac output was maintained by an increase in heart rate. However, in hypoxia, coronary-ligated trout were unable to increase stroke volume to maintain cardiac output when bradycardia developed, which was associated with a slightly reduced hypoxia tolerance. Moreover, during acute warming, coronary ligation caused cardiac function to collapse at lower temperatures and reduced overall heat tolerance relative to trout with intact coronary arteries. We also found a positive relationship between individual hypoxia and heat tolerance across treatment groups, and tolerance to both environmental stressors was positively correlated with cardiac performance. Collectively, our findings show that coronary perfusion improves cardiac O2 supply and therefore cardiovascular function at environmental extremes, which benefits tolerance to natural and anthropogenically induced environmental perturbations.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
6
|
Development of the ventricular myocardial trabeculae in Scyliorhinus canicula (Chondrichthyes): evolutionary implications. Sci Rep 2020; 10:14434. [PMID: 32879349 PMCID: PMC7468296 DOI: 10.1038/s41598-020-71318-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
The development of the ventricular myocardial trabeculae occurs in three steps: emergence, trabeculation and remodeling. The whole process has been described in vertebrates with two different myocardial structural types, spongy (zebrafish) and compact (chicken and mouse). In this context, two alternative mechanisms of myocardial trabeculae emergence have been identified: (1) in chicken and mouse, the endocardial cells invade the two-layered myocardium; (2) in zebrafish, cardiomyocytes from the monolayered myocardium invaginate towards the endocardium. Currently, the process has not been studied in detail in vertebrates having a mixed type of ventricular myocardium, with an inner trabecular and an outer compact layer, which is presumptively the most primitive morphology in gnathostomes. We studied the formation of the mixed ventricular myocardium in the lesser spotted dogfish (Scyliorhinus canicula, Elasmobranchii), using light, scanning and transmission electron microscopy. Our results show that early formation of the mixed ventricular myocardium, specifically the emergence and the trabeculation steps, is driven by an endocardial invasion of the myocardium. The mechanism of trabeculation of the mixed ventricular myocardium in chondrichthyans is the one that best reproduces how this developmental process has been established from the beginning of the gnathostome radiation. The process has been apparently preserved throughout the entire group of sarcopterygians, including birds and mammals. In contrast, teleosts, at least those possessing a mostly spongy ventricular myocardium, seem to have introduced notable changes in their myocardial trabeculae development.
Collapse
|
7
|
López-Unzu MA, Durán AC, Soto-Navarrete MT, Sans-Coma V, Fernández B. Differential expression of myosin heavy chain isoforms in cardiac segments of gnathostome vertebrates and its evolutionary implications. Front Zool 2019; 16:18. [PMID: 31198434 PMCID: PMC6558913 DOI: 10.1186/s12983-019-0318-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/20/2019] [Indexed: 01/18/2023] Open
Abstract
Background Immunohistochemical studies of hearts from the lesser spotted dogfish, Scyliorhinus canicula (Chondrichthyes) revealed that the pan-myosin heavy chain (pan-MyHC) antibody MF20 homogeneously labels all the myocardium, while the pan-MyHC antibody A4.1025 labels the myocardium of the inflow (sinus venosus and atrium) but not the outflow (ventricle and conus arteriosus) cardiac segments, as opposed to other vertebrates. We hypothesized that the conventional pattern of cardiac MyHC isoform distribution present in most vertebrates, i.e. MYH6 in the inflow and MYH7 in the outflow segments, has evolved from a primitive pattern that persists in Chondrichthyes. In order to test this hypothesis, we conducted protein detection techniques to identify the MyHC isoforms expressed in adult dogfish cardiac segments and to assess the pan-MyHC antibodies reactivity against the cardiac segments of representative species from different vertebrate groups. Results Western and slot blot results confirmed the specificity of MF20 and A4.1025 for MyHC in dogfish and their differential reactivity against distinct myocardial segments. HPLC-ESI-MS/MS and ESI-Quadrupole-Orbitrap revealed abundance of MYH6 and MYH2 in the inflow and of MYH7 and MYH7B in the outflow segments. Immunoprecipitation showed higher affinity of A4.1025 for MYH2 and MYH6 than for MYH7 and almost no affinity for MYH7B. Immunohistochemistry showed that A4.1025 signals are restricted to the inflow myocardial segments of elasmobranchs, homogeneous in all myocardial segments of teleosts and acipenseriforms, and low in the ventricle of polypteriforms. Conclusions The cardiac inflow and outflow segments of the dogfish show predominance of fast- and slow-twitch MyHC isoforms respectively, what can be considered a synapomorphy of gnathostomes. The myocardium of the dogfish contains two isomyosins (MYH2 and MYH7B) not expressed in the adult heart of other vertebrates. We propose that these isomyosins lost their function in cardiac contraction during the evolution of gnathostomes, the later acquiring a regulatory role in myogenesis through its intronic miRNA. Loss of MYH2 and MYH7B expression in the heart possibly occurred before the origin of Osteichthyes, being the latter reacquired in polypteriforms. We raise the hypothesis that the slow tonic MYH7B facilitates the peristaltic contraction of the conus arteriosus of fish with a primitive cardiac anatomical design and of the vertebrate embryo.
Collapse
Affiliation(s)
- Miguel A López-Unzu
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - María Teresa Soto-Navarrete
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Valentín Sans-Coma
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- 1Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, España.,2Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain.,CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| |
Collapse
|
8
|
Buzete Gardinal MV, Rocha Ruiz TF, Estevan Moron S, Oba Yoshioka ET, Uribe Gonçalves L, Franceschini Vicentini IB, Vicentini CA. Heart structure in the Amazonian teleost Arapaima gigas (Osteoglossiformes, Arapaimidae). J Anat 2019; 234:327-337. [PMID: 30515794 PMCID: PMC6365477 DOI: 10.1111/joa.12919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 12/01/2022] Open
Abstract
The fish heart ventricle has varied morphology and may have a specific morpho-functional design in species adapted to extreme environmental conditions. In general, the Amazonian ichthyofauna undergoes constant variations in water temperature, pH and oxygen saturation, which makes these species useful for investigations of cardiac morphology. Arapaima gigas, a member of the ancient teleost group Osteoglossomorpha, is one of the largest freshwater fish in the world. This species has a specific heart metabolism that uses fat as the main fuel when O2 supplies are abundant but also can change to glycogen fermentation when O2 content is limiting. However, no information is available regarding its heart morphology. Here, we describe the heart of A. gigas, with emphasis on the ventricular anatomy and myoarchitecture. Specimens of A. gigas weighing between 0.3 and 4040 g were grouped into three developmental stages. The hearts were collected and the anatomy analyzed with a stereomicroscope, ultrastructure with a scanning electron microscope, and histology using toluidine blue, Masson's trichrome and Sirius red stains. The ventricle undergoes morphological changes throughout its development, from the initial saccular shape with a fully trabeculated myocardium and coronary vessel restricted to the subepicardium (Type I) (group 1) to a pyramidal shape with mixed myocardium and coronary vessels that penetrate only to the level of the compact layer (Type II) (groups 2 and 3). The trabeculated myocardium has a distinct net-like organization in all the specimens, differing from that described for other teleosts. This arrangement delimits lacunae with a similar shape and distribution, which seems to allow a more uniform blood distribution through this myocardial layer.
Collapse
Affiliation(s)
- Mario Vitor Buzete Gardinal
- Aquaculture Center of UNESP (CAUNESP)JaboticabalSPBrazil
- Department of Biological SciencesSchool of SciencesSão Paulo State University ‘Júlio de Mesquita Filho’ (UNESP)BauruSPBrazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biological SciencesSchool of SciencesSão Paulo State University ‘Júlio de Mesquita Filho’ (UNESP)BauruSPBrazil
| | | | | | - Ligia Uribe Gonçalves
- National Institute of Amazonian Research (INPA)Coordination of Technology and InnovationManausAMBrazil
| | | | - Carlos Alberto Vicentini
- Department of Biological SciencesSchool of SciencesSão Paulo State University ‘Júlio de Mesquita Filho’ (UNESP)BauruSPBrazil
| |
Collapse
|
9
|
Lorenzale M, Fernández B, Durán AC, López-Unzu MA, Sans-Coma V. The valves of the cardiac outflow tract of the starry ray, Raja asterias (Chondrichthyes; Rajiformes): Anatomical, histological and evolutionary aspects. Anat Histol Embryol 2018; 48:40-45. [PMID: 30378144 DOI: 10.1111/ahe.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/24/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
The cardiac outflow tract of chondrichthyans is composed of the myocardial conus arteriosus, equipped with valves at its luminal side, and the bulbus arteriosus devoid of myocardium. Knowledge of the histomorphology of the conal valves is scarce despite their importance in preventing blood backflow to the heart. Current information on the subject refers to a single shark species. The present report is the first to describe the structure of the conal valves of a batoid species, namely, Raja asterias. Hearts from seven starry rays were examined using scanning electron microscopy and histochemical techniques for light microscopy. In all hearts, the conus showed four transverse rows of three pocket-like valves each. Each valve was composed of a leaflet and its supporting sinus. The leaflet had a stout central body, rich in glycosaminoglycans, which contained fibroblasts, collagen and elastin. The central body was surrounded by two thin fibrous layers, outer and inner, formed mainly by collagen. The valves of the anterior row, which were the largest of the valvular system, were attached proximally to the conus arteriosus and distally to the bulbus arteriosus, and not to the ventral aorta as previously reported for chondrichthyans. The arrangement of the anterior valves in the starry ray is an anatomical pattern that apparently has been preserved throughout the evolution of vertebrates.
Collapse
Affiliation(s)
- Miguel Lorenzale
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain
| | - Borja Fernández
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain.,CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| | - Ana Carmen Durán
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Miguel A López-Unzu
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Valentín Sans-Coma
- Department of Animal Biology, Faculty of Science, University of Málaga, Málaga, Spain.,Biomedical Research Institute of Málaga (IBIMA), University of Málaga, Málaga, Spain
| |
Collapse
|
10
|
Hirasaki Y, Tomita T, Yanagisawa M, Ueda K, Sato K, Okabe M. Heart Anatomy of Rhincodon typus: Three-Dimensional X-Ray Computed Tomography of Plastinated Specimens. Anat Rec (Hoboken) 2018; 301:1801-1808. [PMID: 30288958 DOI: 10.1002/ar.23902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/09/2022]
Abstract
In this study, we examined the structure of the heart of the whale shark, Rhincodon typus, using a plastination technique and three-dimensional X-ray computer tomography (3DCT). Inspection of the atrium revealed a symmetric distribution of the pectinate muscles attached to the commissures of the sino-atrial valve, suggesting some functional advantages. The majority of the ventricular wall comprised spongiosa, and compacta accounted for only ~3% of the entire thickness. There were three major fiber orientations in the spongiosa: the fibers on the endocardial side formed trabeculae that were aligned with the blood flow tract, whereas those on the epicardial side formed a circular pattern around the flow tract. Transmural myofibers connected the inner and outer layers in the spongiosa, which may serve as an intraventricular conduction pathway. Plastination and 3DCT is a powerful combination that allowed for multifaceted visualization of the internal structure of rare heart specimens in a nondestructive manner. Anat Rec, 301:1801-1808, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Hirasaki
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Taketeru Tomita
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| | - Makio Yanagisawa
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| | - Keiichi Ueda
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Gardinal MVB, Faccioli CK, Chedid RA, Mori RH, Vicentini IBF, Vicentini CA. Myocardium Arrangement and Coronary Vessel Distribution in the Ventricle of Three Neotropical Freshwater Teleosts. Zoolog Sci 2018; 35:360-366. [PMID: 30079830 DOI: 10.2108/zs180022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ventricle of the fish heart is a chamber that exhibits great morphological and vascular variability among species. However, although the Neotropical region has the greatest taxonomic and functional diversity in freshwater fish, many considerations have been formed without previous knowledge of the ventricular morphology of these fishes. Thus, the purpose of the present study was to describe the anatomy, myoarchitecture, and distribution of coronary vessels in the ventricle of three species belonging to two representative groups from this geographical area, Leporinus elongatus, Hoplias malabaricus (Characiformes) and Pterodoras granulosus (Siluriformes), using gross anatomy and light microscopy. The species L. elongatus and H. malabaricus presented a pyramidal ventricle associated to a mixed myocardium, formed by compact and spongy layers. The mixed myocardium was also observed in P. granulosus, but associated with a sac-like ventricle. The compact layer of the species studied was formed by muscular bundles in longitudinal and circular disposition. The spongy layer constituted most of the ventricular myocardium and was formed by a complex network of trabecular sheets presenting muscle fibers also in longitudinal and circular disposition. Coronary vessels were present in the three species and were observed primarily on the surface of the bulbus arteriosus, later branching on the ventricular surface and penetrating the myocardium only at the compact layer level. These characteristics allow classification of the ventricles studied as type II. Although the type I ventricle is the most common type in teleosts, it is important to emphasize that this type has not been observed in any Neotropical freshwater teleosts studied to date.
Collapse
Affiliation(s)
- Mario Vitor Buzete Gardinal
- 1 Department of Biological Sciences, School of Sciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), 14-01 Luís Edmundo Carrijo Coube Avenue, Bauru, SP 17033-360, Brazil.,2 Aquaculture Center of UNESP (CAUNESP), Professor Paulo Donato Castellane Access Street, Jaboticabal, SP 14884-900, Brazil
| | - Claudemir Kuhn Faccioli
- 3 Institute of Biomedical Sciences, Uberlândia Federal University (UFU), 1720 Pará Avenue, Uberlândia, MG 38400-902, Brazil
| | - Renata Alari Chedid
- 2 Aquaculture Center of UNESP (CAUNESP), Professor Paulo Donato Castellane Access Street, Jaboticabal, SP 14884-900, Brazil
| | - Ricardo Hideo Mori
- 2 Aquaculture Center of UNESP (CAUNESP), Professor Paulo Donato Castellane Access Street, Jaboticabal, SP 14884-900, Brazil
| | - Irene Bastos Franceschini Vicentini
- 1 Department of Biological Sciences, School of Sciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), 14-01 Luís Edmundo Carrijo Coube Avenue, Bauru, SP 17033-360, Brazil.,2 Aquaculture Center of UNESP (CAUNESP), Professor Paulo Donato Castellane Access Street, Jaboticabal, SP 14884-900, Brazil
| | - Carlos Alberto Vicentini
- 1 Department of Biological Sciences, School of Sciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), 14-01 Luís Edmundo Carrijo Coube Avenue, Bauru, SP 17033-360, Brazil.,2 Aquaculture Center of UNESP (CAUNESP), Professor Paulo Donato Castellane Access Street, Jaboticabal, SP 14884-900, Brazil
| |
Collapse
|
12
|
Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V. The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biol Rev Camb Philos Soc 2018; 93:1604-1619. [DOI: 10.1111/brv.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Lorenzale
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| | - Miguel A. López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Cristina Rodríguez
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Ana C. Durán
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| |
Collapse
|
13
|
Martínez-Vargas J, Ventura J, Machuca Á, Muñoz-Muñoz F, Fernández MC, Soto-Navarrete MT, Durán AC, Fernández B. Cardiac, mandibular and thymic phenotypical association indicates that cranial neural crest underlies bicuspid aortic valve formation in hamsters. PLoS One 2017; 12:e0183556. [PMID: 28953926 PMCID: PMC5617148 DOI: 10.1371/journal.pone.0183556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most prevalent human congenital cardiac malformation. It may appear isolated, associated with other cardiovascular malformations, or forming part of syndromes. Cranial neural crest (NC) defects are supposed to be the cause of the spectrum of disorders associated with syndromic BAV. Experimental studies with an inbred hamster model of isolated BAV showed that alterations in the migration or differentiation of the cardiac NC cells in the embryonic cardiac outflow tract are most probably responsible for the development of this congenital valvular defect. We hypothesize that isolated BAV is not the result of local, but of early alterations in the behavior of the NC cells, thus also affecting other cranial NC-derived structures. Therefore, we tested whether morphological variation of the aortic valve is linked to phenotypic variation of the mandible and the thymus in the hamster model of isolated BAV, compared to a control strain. Our results show significant differences in the size and shape of the mandible as well as in the cellular composition of the thymus between the two strains, and in mandible shape regarding the morphology of the aortic valve. Given that both the mandible and the thymus are cranial NC derivatives, and that the cardiac NC belongs to the cephalic domain, we propose that the causal defect leading to isolated BAV during embryonic development is not restricted to local alterations of the cardiac NC cells in the cardiac outflow tract, but it is of pleiotropic or polytopic nature. Our results suggest that isolated BAV may be the forme fruste of a polytopic syndrome involving the cranial NC in the hamster model and in a proportion of affected patients.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- * E-mail:
| | - Ángela Machuca
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - María Carmen Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | | | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| |
Collapse
|
14
|
Lorenzale M, López-Unzu MA, Fernández MC, Durán AC, Fernández B, Soto-Navarrete MT, Sans-Coma V. Anatomical, histochemical and immunohistochemical characterisation of the cardiac outflow tract of the silver arowana, Osteoglossum bicirrhosum (Teleostei: Osteoglossiformes). ZOOLOGY 2017; 120:15-23. [DOI: 10.1016/j.zool.2016.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022]
|
15
|
Cox GK, Brill RW, Bonaro KA, Farrell AP. Determinants of coronary blood flow in sandbar sharks, Carcharhinus plumbeus. J Comp Physiol B 2016; 187:315-327. [PMID: 27678513 DOI: 10.1007/s00360-016-1033-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
Abstract
The coronary circulation first appeared in the chordate lineage in cartilaginous fishes where, as in birds and mammals but unlike most teleost fishes, it supplies arterial blood to the entire myocardium. Despite the pivotal position of elasmobranch fishes in the evolution of the coronary circulation, the determinants of coronary blood flow have never been investigated in this group. Elasmobranch fishes are of special interest because of the morphological arrangement of their cardiomyocytes. Unlike teleosts, the majority of the ventricular myocardium in elasmobranch fishes is distant to the venous blood returning to the heart (i.e., the luminal blood). Also, the majority of the myocardium is in close association with the coronary circulation. To determine the relative contribution of the coronary and luminal blood supplies to cardiovascular function in sandbar sharks, Carcharhinus plumbeus, we measured coronary blood flow while manipulating cardiovascular status using acetylcholine and adrenaline. By exploring inter- and intra-individual variation in cardiovascular variables, we show that coronary blood flow is directly related to heart rate (R 2 = 0.6; P < 0.001), as it is in mammalian hearts. Since coronary blood flow is inversely related to coronary resistance both in vivo and in vitro, we suggest that in elasmobranch fishes, changes in heart rate mediate changes in coronary vascular resistance, which adjust coronary blood flow appropriately.
Collapse
Affiliation(s)
- Georgina K Cox
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Richard W Brill
- National Marine Fisheries Service, Northeast Fisheries Science Center, James J. Howard Marine Sciences Laboratory, Highlands, NJ, USA
| | | | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Cox GK, Kennedy GE, Farrell AP. Morphological arrangement of the coronary vasculature in a shark (Squalus sucklei) and a teleost (Oncorhynchus mykiss). J Morphol 2016; 277:896-905. [DOI: 10.1002/jmor.20543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/21/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Georgina K. Cox
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada
| | - Gemma E. Kennedy
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada
| | - Anthony P. Farrell
- Department of Zoology; University of British Columbia; Vancouver British Columbia Canada
- Faculty of Land and Food Systems; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
17
|
Jensen B, Elfwing M, Elsey RM, Wang T, Crossley DA. Coronary blood flow in the anesthetized American alligator ( Alligator mississippiensis ). Comp Biochem Physiol A Mol Integr Physiol 2016; 191:44-52. [DOI: 10.1016/j.cbpa.2015.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/06/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022]
|