1
|
Lundie-Brown J, Puletti F, Philpott A, Azzarelli R. Cell fate acquisition and reprogramming by the proneural transcription factor ASCL1. Open Biol 2025; 15:250018. [PMID: 40527452 DOI: 10.1098/rsob.250018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 06/19/2025] Open
Abstract
ASCL1 is a key member of the proneural basic helix-loop-helix (bHLH) transcription factor (TF) family and it plays diverse roles in nervous system development and maintenance. ASCL1 is also one of the most studied bHLH TFs in the field of somatic cell reprogramming, as it can reconfigure the chromatin of the cell of origin to impose a neuronal identity. However, the ability of ASCL1 to drive neuronal fate does not come without exceptions, as there are cell types that are refractory to ASCL1-mediated reprogramming, and there are developmental contexts where ASCL1 does not drive neurogenesis but supports the generation of other lineages. ASCL1 has also emerged as an important player in cancers like neuroblastoma and glioblastoma, underscoring the clinical need for a robust understanding of how ASCL1 controls cell identity. In this review, we revisit the foundational studies that established ASCL1 as a critical regulator of neuronal differentiation and incorporate recent advances in our understanding of ASCL1 post-translational regulation and transcriptional control. By integrating these perspectives, this review provides a comprehensive overview of the diverse roles of ASCL1 in development, reprogramming and cancer, offering insights into its molecular functions and therapeutic potential.
Collapse
Affiliation(s)
| | - Francesca Puletti
- UK Dementia Research Institute, University College London, London, UK
| | - Anna Philpott
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Roberta Azzarelli
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
2
|
Alhesain M, Alzu’bi A, Sankar N, Smith C, Kerwin J, Laws R, Lindsay S, Clowry GJ. Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei. Front Neuroanat 2025; 19:1530236. [PMID: 39990522 PMCID: PMC11842364 DOI: 10.3389/fnana.2025.1530236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded. Methods This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers. Results In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors ZIC4, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with ZIC4 expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ SOX14+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene CNTNAP2 to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2. Conclusion In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.
Collapse
Affiliation(s)
- Maznah Alhesain
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| | - Ayman Alzu’bi
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
- Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Niveditha Sankar
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Charles Smith
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Janet Kerwin
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lindsay
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Gavin J. Clowry
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Bertacchi M, Maharaux G, Loubat A, Jung M, Studer M. FGF8-mediated gene regulation affects regional identity in human cerebral organoids. eLife 2024; 13:e98096. [PMID: 39485283 PMCID: PMC11581432 DOI: 10.7554/elife.98096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.
Collapse
Affiliation(s)
- Michele Bertacchi
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Gwendoline Maharaux
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Agnès Loubat
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| | - Matthieu Jung
- GenomEast platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Michèle Studer
- Univ. Côte d’Azur (UniCA), CNRS, Inserm, Institut de Biologie Valrose (iBV)NiceFrance
| |
Collapse
|
4
|
Guo R, Han D, Song X, Gao Y, Li Z, Li X, Yang Z, Xu Z. Context-dependent regulation of Notch signaling in glial development and tumorigenesis. SCIENCE ADVANCES 2023; 9:eadi2167. [PMID: 37948517 PMCID: PMC10637744 DOI: 10.1126/sciadv.adi2167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
In the mammalian brain, Notch signaling maintains the cortical stem cell pool and regulates the glial cell fate choice and differentiation. However, the function of Notch in regulating glial development and its involvement in tumorigenesis have not been well understood. Here, we show that Notch inactivation by genetic deletion of Rbpj in stem cells decreases astrocytes but increases oligodendrocytes with altered internal states. Inhibiting Notch in glial progenitors does not affect cell generation but instead accelerates the growth of Notch-deprived oligodendrocyte progenitor cells (OPCs) and OPC-related glioma. We also identified a cross-talk between oligodendrocytes and astrocytes, with premyelinating oligodendrocytes secreting BMP4, which is repressed by Notch, to up-regulate GFAP expression in adjacent astrocytes. Moreover, Notch inactivation in stem cells causes a glioma subtype shift from astroglia-associated to OPC-correlated patterns and vice versa. Our study reveals Notch's context-dependent function, promoting astrocytes and astroglia-associated glioma in stem cells and repressing OPCs and related glioma in glial progenitors.
Collapse
Affiliation(s)
| | | | | | - Yanjing Gao
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenmeiyu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaosu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Alhesain M, Ronan H, LeBeau FEN, Clowry GJ. Expression of the schizophrenia associated gene FEZ1 in the early developing fetal human forebrain. Front Neurosci 2023; 17:1249973. [PMID: 37746155 PMCID: PMC10514365 DOI: 10.3389/fnins.2023.1249973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The protein fasciculation and elongation zeta-1 (FEZ1) is involved in axon outgrowth but potentially interacts with various proteins with roles ranging from intracellular transport to transcription regulation. Gene association and other studies have identified FEZ1 as being directly, or indirectly, implicated in schizophrenia susceptibility. To explore potential roles in normal early human forebrain neurodevelopment, we mapped FEZ1 expression by region and cell type. Methods All tissues were provided with maternal consent and ethical approval by the Human Developmental Biology Resource. RNAseq data were obtained from previously published sources. Thin paraffin sections from 8 to 21 post-conceptional weeks (PCW) samples were used for RNAScope in situ hybridization and immunohistochemistry against FEZ1 mRNA and protein, and other marker proteins. Results Tissue RNAseq revealed that FEZ1 is highly expressed in the human cerebral cortex between 7.5-17 PCW and single cell RNAseq at 17-18 PCW confirmed its expression in all neuroectoderm derived cells. The highest levels were found in more mature glutamatergic neurons, the lowest in GABAergic neurons and dividing progenitors. In the thalamus, single cell RNAseq similarly confirmed expression in multiple cell types. In cerebral cortex sections at 8-10 PCW, strong expression of mRNA and protein appeared confined to post-mitotic neurons, with low expression seen in progenitor zones. Protein expression was observed in some axon tracts by 16-19 PCW. However, in sub-cortical regions, FEZ1 was highly expressed in progenitor zones at early developmental stages, showing lower expression in post-mitotic cells. Discussion FEZ1 has different expression patterns and potentially diverse functions in discrete forebrain regions during prenatal human development.
Collapse
Affiliation(s)
| | | | | | - Gavin J. Clowry
- Centre for Transformative Research in Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Păun O, Tan YX, Patel H, Strohbuecker S, Ghanate A, Cobolli-Gigli C, Llorian Sopena M, Gerontogianni L, Goldstone R, Ang SL, Guillemot F, Dias C. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev 2023; 37:218-242. [PMID: 36931659 PMCID: PMC10111863 DOI: 10.1101/gad.350269.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
Collapse
Affiliation(s)
- Oana Păun
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Yu Xuan Tan
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Avinash Ghanate
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Clementina Cobolli-Gigli
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lina Gerontogianni
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Siew-Lan Ang
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Cristina Dias
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
- Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
7
|
Junaković A, Kopić J, Duque A, Rakic P, Krsnik Ž, Kostović I. Laminar dynamics of deep projection neurons and mode of subplate formation are hallmarks of histogenetic subdivisions of the human cingulate cortex before onset of arealization. Brain Struct Funct 2023; 228:613-633. [PMID: 36592215 PMCID: PMC9944618 DOI: 10.1007/s00429-022-02606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
The cingulate gyrus, as a prominent part of the human limbic lobe, is involved in the integration and regulation of complex emotional, executive, motivational, and cognitive functions, attributed to several functional regions along the anteroposterior axis. In contrast to increasing knowledge of cingulate function in the adult brain, our knowledge of cingulate development is based primarily on classical neuroembryological studies. We aimed to reveal the laminar and cellular development of the various cingulate regions during the critical period from 7.5 to 15 postconceptional weeks (PCW) before the formation of Brodmann type arealization, employing diverse molecular markers on serial histological sections of postmortem human fetal brains. The study was performed by analysis of: (1) deep projection neuron (DPN) markers laminar dynamics, (2) all transient laminar compartments, and (3) characteristic subplate (SP) formation-expansion phase. We found that DPN markers labeling an incipient cortical plate (CP) were the first sign of regional differentiation of the dorsal isocortical and ventral mesocortical belt. Remarkably, increased width of the fibrillar marginal zone (MZ) towards the limbus, in parallel with the narrowing of CP containing DPN, as well as the diminishment of subventricular zone (SVZ) were reliable landmarks of early mesocortical differentiation. Finally, the SP formation pattern was shown to be a crucial event in the isocortical cingulate portion, given that the mesocortical belt is characterized by an incomplete CP delamination and absence of SP expansion. In conclusion, laminar DPN markers dynamics, together with the SVZ size and mode of SP formation indicate regional belt-like cingulate cortex differentiation before the corpus callosum expansion and several months before Brodmann type arealization.
Collapse
Affiliation(s)
- Alisa Junaković
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Janja Kopić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Alvaro Duque
- School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Pasko Rakic
- School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Željka Krsnik
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
8
|
Alzu'bi A, Sankar N, Crosier M, Kerwin J, Clowry GJ. Tyramide signal amplification coupled with multiple immunolabeling and RNAScope in situ hybridization in formaldehyde-fixed paraffin-embedded human fetal brain. J Anat 2022; 241:33-41. [PMID: 35224745 PMCID: PMC9178390 DOI: 10.1111/joa.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Several strategies have been recently introduced to improve the practicality of multiple immunolabeling and RNA in situ hybridization protocols. Tyramide signal amplification (TSA) is a powerful method used to improve the detection sensitivity of immunohistochemistry. RNAScope is a novel commercially available in situ hybridization assay for the detection of RNA expression. In this work, we describe the use of TSA and RNAScope in situ hybridization as extremely sensitive and specific methods for the evaluation of protein and RNA expression in formaldehyde-fixed paraffin-embedded human fetal brain sections. These two techniques, when properly optimized, were highly compatible with routine formaldehyde-fixed paraffin-embedded tissue that preserves the best morphological characteristics of delicate fetal brain samples, enabling an unparalleled ability to simultaneously visualize the expression of multiple protein and mRNA of genes that are sparsely expressed in the human fetal telencephalon.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Department of Basic Medical SciencesYarmouk UniversityIrbidJordan
| | - Niveditha Sankar
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Present address:
Department of Biomedical Sciences, School of MedicineUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Moira Crosier
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Human Developmental Biology ResourceNewcastle UniversityNewcastle upon TyneUK
| | - Janet Kerwin
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
- Human Developmental Biology ResourceNewcastle UniversityNewcastle upon TyneUK
| | - Gavin J. Clowry
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
9
|
Sun J, Ha N, Liu Z, Bian Q, Wang X. A Neural Crest-specific Overexpression Mouse Model Reveals the Transcriptional Regulatory Effects of Dlx2 During Maxillary Process Development. Front Physiol 2022; 13:855959. [PMID: 35514355 PMCID: PMC9070692 DOI: 10.3389/fphys.2022.855959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Craniofacial morphogenesis is a complex process that requires precise regulation of cell proliferation, migration, and differentiation. Perturbations of this process cause a series of craniofacial deformities. Dlx2 is a critical transcription factor that regulates the development of the first branchial arch. However, the transcriptional regulatory functions of Dlx2 during craniofacial development have been poorly understood due to the lack of animal models in which the Dlx2 level can be precisely modulated. In this study, we constructed a Rosa26 site-directed Dlx2 gene knock-in mouse model Rosa26 CAG-LSL-Dlx2-3xFlag for conditionally overexpressing Dlx2. By breeding with wnt1 cre mice, we obtained wnt1 cre ; Rosa26 Dlx2/- mice, in which Dlx2 is overexpressed in neural crest lineage at approximately three times the endogenous level. The wnt1 cre ; Rosa26 Dlx2/- mice exhibited consistent phenotypes that include cleft palate across generations and individual animals. Using this model, we demonstrated that Dlx2 caused cleft palate by affecting maxillary growth and uplift in the early-stage development of maxillary prominences. By performing bulk RNA-sequencing, we demonstrated that Dlx2 overexpression induced significant changes in many genes associated with critical developmental pathways. In summary, our novel mouse model provides a reliable and consistent system for investigating Dlx2 functions during development and for elucidating the gene regulatory networks underlying craniofacial development.
Collapse
Affiliation(s)
- Jian Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - NaYoung Ha
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhixu Liu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qian Bian
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Xi J, Xu Y, Guo Z, Li J, Wu Y, Sun Q, Wang Y, Chen M, Zhu S, Bian S, Kang J. LncRNA SOX1-OT V1 acts as a decoy of HDAC10 to promote SOX1-dependent hESC neuronal differentiation. EMBO Rep 2022; 23:e53015. [PMID: 34927789 PMCID: PMC8811645 DOI: 10.15252/embr.202153015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are abundantly expressed in the nervous system, but their regulatory roles in neuronal differentiation are poorly understood. Using a human embryonic stem cell (hESC)-based 2D neural differentiation approach and a 3D cerebral organoid system, we show that SOX1-OT variant 1 (SOX1-OT V1), a SOX1 overlapping noncoding RNA, plays essential roles in both dorsal cortical neuron differentiation and ventral GABAergic neuron differentiation by facilitating SOX1 expression. SOX1-OT V1 physically interacts with HDAC10 through its 5' region, acts as a decoy to block HDAC10 binding to the SOX1 promoter, and thus maintains histone acetylation levels at the SOX1 promoter. SOX1 in turn activates ASCL1 expression and promotes neuronal differentiation. Taken together, we identify a SOX1-OT V1/HDAC10-SOX1-ASCL1 axis, which promotes neurogenesis, highlighting a role for lncRNAs in hESC neuronal differentiation.
Collapse
Affiliation(s)
- Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhenming Guo
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yuxi Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Mengxia Chen
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shan Bian
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
11
|
Ma L, Du Y, Hui Y, Li N, Fan B, Zhang X, Li X, Hong W, Wu Z, Zhang S, Zhou S, Xu X, Zhou Z, Jiang C, Liu L, Zhang X. Developmental programming and lineage branching of early human telencephalon. EMBO J 2021; 40:e107277. [PMID: 34558085 DOI: 10.15252/embj.2020107277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
The dorsal and ventral human telencephalons contain different neuronal subtypes, including glutamatergic, GABAergic, and cholinergic neurons, and how these neurons are generated during early development is not well understood. Using scRNA-seq and stringent validations, we reveal here a developmental roadmap for human telencephalic neurons. Both dorsal and ventral telencephalic radial glial cells (RGs) differentiate into neurons via dividing intermediate progenitor cells (IPCs_div) and early postmitotic neuroblasts (eNBs). The transcription factor ASCL1 plays a key role in promoting fate transition from RGs to IPCs_div in both regions. RGs from the regionalized neuroectoderm show heterogeneity, with restricted glutamatergic, GABAergic, and cholinergic differentiation potencies. During neurogenesis, IPCs_div gradually exit the cell cycle and branch into sister eNBs to generate distinct neuronal subtypes. Our findings highlight a general RGs-IPCs_div-eNBs developmental scheme for human telencephalic progenitors and support that the major neuronal fates of human telencephalon are predetermined during dorsoventral regionalization with neuronal diversity being further shaped during neurogenesis and neural circuit integration.
Collapse
Affiliation(s)
- Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Beibei Fan
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiaojie Zhang
- Department of Obstetrics and Gynecology, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xiaocui Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Hong
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiping Wu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, School of Medicine, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai, China.,Brain and Spinal Cord Innovative Research Center, School of Medicine, Tongji University, Shanghai, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, China
| |
Collapse
|
12
|
Ding SL, Royall JJ, Lesnar P, Facer BAC, Smith KA, Wei Y, Brouner K, Dalley RA, Dee N, Dolbeare TA, Ebbert A, Glass IA, Keller NH, Lee F, Lemon TA, Nyhus J, Pendergraft J, Reid R, Sarreal M, Shapovalova NV, Szafer A, Phillips JW, Sunkin SM, Hohmann JG, Jones AR, Hawrylycz MJ, Hof PR, Ng L, Bernard A, Lein ES. Cellular resolution anatomical and molecular atlases for prenatal human brains. J Comp Neurol 2021; 530:6-503. [PMID: 34525221 PMCID: PMC8716522 DOI: 10.1002/cne.25243] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Increasing interest in studies of prenatal human brain development, particularly using new single‐cell genomics and anatomical technologies to create cell atlases, creates a strong need for accurate and detailed anatomical reference atlases. In this study, we present two cellular‐resolution digital anatomical atlases for prenatal human brain at postconceptional weeks (PCW) 15 and 21. Both atlases were annotated on sequential Nissl‐stained sections covering brain‐wide structures on the basis of combined analysis of cytoarchitecture, acetylcholinesterase staining, and an extensive marker gene expression dataset. This high information content dataset allowed reliable and accurate demarcation of developing cortical and subcortical structures and their subdivisions. Furthermore, using the anatomical atlases as a guide, spatial expression of 37 and 5 genes from the brains, respectively, at PCW 15 and 21 was annotated, illustrating reliable marker genes for many developing brain structures. Finally, the present study uncovered several novel developmental features, such as the lack of an outer subventricular zone in the hippocampal formation and entorhinal cortex, and the apparent extension of both cortical (excitatory) and subcortical (inhibitory) progenitors into the prenatal olfactory bulb. These comprehensive atlases provide useful tools for visualization, segmentation, targeting, imaging, and interpretation of brain structures of prenatal human brain, and for guiding and interpreting the next generation of cell census and connectome studies.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Yina Wei
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Amanda Ebbert
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Ian A Glass
- Department of Pediatrics and Medicine, University of Washington School of Medicine, Seattle, WA, 98105
| | - Nika H Keller
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Tracy A Lemon
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Robert Reid
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | | | - Allan R Jones
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 11029
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109
| |
Collapse
|
13
|
Kostović I, Radoš M, Kostović-Srzentić M, Krsnik Ž. Fundamentals of the Development of Connectivity in the Human Fetal Brain in Late Gestation: From 24 Weeks Gestational Age to Term. J Neuropathol Exp Neurol 2021; 80:393-414. [PMID: 33823016 PMCID: PMC8054138 DOI: 10.1093/jnen/nlab024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During the second half of gestation, the human cerebrum undergoes pivotal histogenetic events that underlie functional connectivity. These include the growth, guidance, selection of axonal pathways, and their first engagement in neuronal networks. Here, we characterize the spatiotemporal patterns of cerebral connectivity in extremely preterm (EPT), very preterm (VPT), preterm and term babies, focusing on magnetic resonance imaging (MRI) and histological data. In the EPT and VPT babies, thalamocortical axons enter into the cortical plate creating the electrical synapses. Additionally, the subplate zone gradually resolves in the preterm and term brain in conjunction with the growth of associative pathways leading to the activation of large-scale neural networks. We demonstrate that specific classes of axonal pathways within cerebral compartments are selectively vulnerable to temporally nested pathogenic factors. In particular, the radial distribution of axonal lesions, that is, radial vulnerability, is a robust predictor of clinical outcome. Furthermore, the subplate tangential nexus that we can visualize using MRI could be an additional marker as pivotal in the development of cortical connectivity. We suggest to direct future research toward the identification of sensitive markers of earlier lesions, the elucidation of genetic mechanisms underlying pathogenesis, and better long-term follow-up using structural and functional MRI.
Collapse
Affiliation(s)
- Ivica Kostović
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Milan Radoš
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Polyclinic "Neuron", Zagreb, Croatia
| | - Mirna Kostović-Srzentić
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Health Psychology, University of Applied Health Sciences, Zagreb, Croatia.,Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- From the Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
14
|
Marguet F, Friocourt G, Brosolo M, Sauvestre F, Marcorelles P, Lesueur C, Marret S, Gonzalez BJ, Laquerrière A. Prenatal alcohol exposure is a leading cause of interneuronopathy in humans. Acta Neuropathol Commun 2020; 8:208. [PMID: 33256853 PMCID: PMC7706035 DOI: 10.1186/s40478-020-01089-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol affects multiple neurotransmitter systems, notably the GABAergic system and has been recognised for a long time as particularly damaging during critical stages of brain development. Nevertheless, data from the literature are most often derived from animal or in vitro models. In order to study the production, migration and cortical density disturbances of GABAergic interneurons upon prenatal alcohol exposure, we performed immunohistochemical studies by means of the proliferation marker Ki67, GABA and calretinin antibodies in the frontal cortical plate of 17 foetal and infant brains antenatally exposed to alcohol, aged 15 weeks’ gestation to 22 postnatal months and in the ganglionic eminences and the subventricular zone of the dorsal telencephalon until their regression, i.e., 34 weeks’ gestation. Results were compared with those obtained in 17 control brains aged 14 weeks of gestation to 35 postnatal months. We also focused on interneuron vascular migration along the cortical microvessels by confocal microscopy with double immunolabellings using Glut1, GABA and calretinin. Semi-quantitative and quantitative analyses of GABAergic and calretininergic interneuron density allowed us to identify an insufficient and delayed production of GABAergic interneurons in the ganglionic eminences during the two first trimesters of the pregnancy and a delayed incorporation into the laminar structures of the frontal cortex. Moreover, a mispositioning of GABAergic and calretininergic interneurons persisted throughout the foetal life, these cells being located in the deep layers instead of the superficial layers II and III. Moreover, vascular migration of calretininergic interneurons within the cortical plate was impaired, as reflected by low numbers of interneurons observed close to the cortical perforating vessel walls that may in part explain their abnormal intracortical distribution. Our results are globally concordant with those previously obtained in mouse models, in which alcohol has been shown to induce an interneuronopathy by affecting interneuron density and positioning within the cortical plate, and which could account for the neurological disabilities observed in children with foetal alcohol disorder spectrum.
Collapse
|
15
|
Alzu'bi A, Clowry GJ. Multiple Origins of Secretagogin Expressing Cortical GABAergic Neuron Precursors in the Early Human Fetal Telencephalon. Front Neuroanat 2020; 14:61. [PMID: 32982702 PMCID: PMC7492523 DOI: 10.3389/fnana.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023] Open
Abstract
Secretagogin (SCGN) which acts as a calcium signaling sensor, has previously been shown to be expressed by a substantial population of cortical GABAergic neurons at mid-gestation in humans but not in mice. The present study traced SCGN expression in cortical GABAergic neurons in human fetal forebrain from earlier stages than previously studied. Multiple potential origins of SCGN-expressing neurons were identified in the caudal ganglionic eminence (CGE) lateral ganglionic eminence (LGE) septum and preoptic area; these cells largely co-expressed SP8 but not the medial ganglionic eminence marker LHX6. They followed various migration routes to reach their target regions in the neocortex, insular and olfactory cortex (OC) and olfactory bulbs. A robust increase in the number of SCGN-expressing GABAergic cortical neurons was observed in the midgestational period; 58% of DLX2+ neurons expressed SCGN in the cortical wall at 19 post-conceptional weeks (PCW), a higher proportion than expressed calretinin, a marker for GABAergic neurons of LGE/CGE origin. Furthermore, although most SCGN+ neurons co-expressed calretinin in the cortical plate (CP) and deeper layers, in the marginal zone (MZ) SCGN+ and calretinin+ cells formed separate populations. In the adult mouse, it has previously been shown that in the rostral migratory stream (RMS), SCGN, annexin V (ANXA5), and matrix metalloprotease 2 (MMP2) are co-expressed forming a functioning complex that exocytoses MMP2 in response to calcium. In the present study, ANXA5 showed widespread expression throughout the cortical wall, although MMP2 expression was very largely limited to the CP. We found co-expression of these proteins in some SCGN+ neurons in the subventricular zones (SVZ) suggesting a limited role for these cells in remodeling the extracellular matrix, perhaps during cell migration.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Alzu'bi A, Middleham W, Shoaib M, Clowry GJ. Selective Expression of Nicotinic Receptor Sub-unit mRNA in Early Human Fetal Forebrain. Front Mol Neurosci 2020; 13:72. [PMID: 32670017 PMCID: PMC7326072 DOI: 10.3389/fnmol.2020.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence from animal and human studies indicate that exposure to nicotine during development, separated from the effects of smoking tobacco, can contribute to dysregulation of brain development including behavioral deficits. An RNAseq study of human fetal cerebral cortex demonstrated that 9 out of 16 genes for human nicotinic acetylcholine (ACh) receptor subunits are selectively expressed between 7.5 and 12 post-conceptional weeks (PCW). The most highly expressed subunit genes were CHNRA4 and CHNRB2, whose protein products combine to form the most ubiquitous functional receptor isoform expressed in the adult brain. They exhibited correlated expression in both RNAseq samples, and in tissue sections by in situ hybridization. Co-localization studies with other cortical markers suggest they are pre-dominantly expressed by post-mitotic glutamatergic neuron pre-cursors in both cortical plate and pre-subplate, rather than cortical progenitor cells or GABAergic interneuron pre-cursors. However, GABAergic interneuron progenitor cells in the ganglionic eminences do express these sub-units. CHNRA5 also showed moderate levels of expression and again favored post-mitotic neurons. Other subunits, e.g., CHRNA7, exhibited low but detectable levels of expression. CHRN genes found not to be expressed included genes for subunits usually considered muscle specific, e.g., CHNRA1, although some muscle specific gene expression was detected, for instance CHNRB1. Although there is little or no synthesis of acetylcholine by intrinsic cortical neurons, cholinergic fibers from basal forebrain innervate the cerebral cortex from 12 PCW at the latest. Acetylcholine may have a paracrine effect on radially migrating cortical neurons and GABAergic interneuron progenitors.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - William Middleham
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohammed Shoaib
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Molnár Z, Clowry GJ, Šestan N, Alzu'bi A, Bakken T, Hevner RF, Hüppi PS, Kostović I, Rakic P, Anton ES, Edwards D, Garcez P, Hoerder‐Suabedissen A, Kriegstein A. New insights into the development of the human cerebral cortex. J Anat 2019; 235:432-451. [PMID: 31373394 PMCID: PMC6704245 DOI: 10.1111/joa.13055] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The cerebral cortex constitutes more than half the volume of the human brain and is presumed to be responsible for the neuronal computations underlying complex phenomena, such as perception, thought, language, attention, episodic memory and voluntary movement. Rodent models are extremely valuable for the investigation of brain development, but cannot provide insight into aspects that are unique or highly derived in humans. Many human psychiatric and neurological conditions have developmental origins but cannot be studied adequately in animal models. The human cerebral cortex has some unique genetic, molecular, cellular and anatomical features, which need to be further explored. The Anatomical Society devoted its summer meeting to the topic of Human Brain Development in June 2018 to tackle these important issues. The meeting was organized by Gavin Clowry (Newcastle University) and Zoltán Molnár (University of Oxford), and held at St John's College, Oxford. The participants provided a broad overview of the structure of the human brain in the context of scaling relationships across the brains of mammals, conserved principles and recent changes in the human lineage. Speakers considered how neuronal progenitors diversified in human to generate an increasing variety of cortical neurons. The formation of the earliest cortical circuits of the earliest generated neurons in the subplate was discussed together with their involvement in neurodevelopmental pathologies. Gene expression networks and susceptibility genes associated to neurodevelopmental diseases were discussed and compared with the networks that can be identified in organoids developed from induced pluripotent stem cells that recapitulate some aspects of in vivo development. New views were discussed on the specification of glutamatergic pyramidal and γ-aminobutyric acid (GABA)ergic interneurons. With the advancement of various in vivo imaging methods, the histopathological observations can be now linked to in vivo normal conditions and to various diseases. Our review gives a general evaluation of the exciting new developments in these areas. The human cortex has a much enlarged association cortex with greater interconnectivity of cortical areas with each other and with an expanded thalamus. The human cortex has relative enlargement of the upper layers, enhanced diversity and function of inhibitory interneurons and a highly expanded transient subplate layer during development. Here we highlight recent studies that address how these differences emerge during development focusing on diverse facets of our evolution.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Gavin J. Clowry
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Nenad Šestan
- Department of Neuroscience, Yale University School of MedicineNew HavenCTUSA
| | - Ayman Alzu'bi
- Department of Basic Medical SciencesFaculty of MedicineYarmouk UniversityIrbidJordan
| | | | | | - Petra S. Hüppi
- Dept. de l'enfant et de l'adolescentHôpitaux Universitaires de GenèveGenèveSwitzerland
| | - Ivica Kostović
- Croatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of MedicineNew HavenCTUSA
| | - E. S. Anton
- UNC Neuroscience CenterDepartment of Cell and Molecular PhysiologyThe University of North Carolina School of MedicineChapel HillNCUSA
| | - David Edwards
- Centre for the Developing BrainBiomedical Engineering and Imaging Sciences,King's College LondonLondonUK
| | - Patricia Garcez
- Federal University of Rio de Janeiro, UFRJInstitute of Biomedical SciencesRio de JaneiroBrazil
| | | | - Arnold Kriegstein
- Department of NeurologyUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUCSFSan FranciscoCAUSA
| |
Collapse
|