1
|
Meng Y, Zeng W, Zhu X, Bao L, Pan Y, Li H, Zhang J, Liu L, Gao Z, Du Z, Chu W. The Role of Twist2 in Myoblast Proliferation, Fusion, and Its Impact on Muscle Structure During the Growth of Chinese Perch ( Siniperca chuatsi). Animals (Basel) 2025; 15:1177. [PMID: 40282011 PMCID: PMC12024327 DOI: 10.3390/ani15081177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Twist2 plays a pivotal regulatory role in the growth of skeletal muscle across various organisms. Nonetheless, the specific mechanism by which Twist2 governs skeletal muscle function in fish, particularly in the economically significant Chinese perch (Siniperca chuatsi), remains unclear. Within the muscle injury model in Chinese perch, we observed that Twist2 expression was upregulated during the repair phase of fast muscle tissue, exhibiting an expression pattern analogous to that of Pax7. Following the knockdown of Twist2 using Twist2-specific in vivo-siRNA in fast muscle tissues, the expression of myogenic regulatory factors (MRFs) and Myomaker was significantly reduced in the Twist2-siRNA-treated group compared with the control group, whereas no significant differences were observed for Pax3 and Pax7. Furthermore, the diameter of myofibers and the number of nuclei in single myofibers were reduced, and concurrently, the number of BrdU-positive cells (proliferating cells) was significantly reduced in the Twist2-siRNA-treated group. Taken together, this study demonstrates that Twist2 promotes myoblast proliferation and fusion, thereby regulating fast muscle growth in juvenile Chinese perch. These findings provide a clear direction for further exploration of molecular mechanisms underlying skeletal muscle growth in economic fish species.
Collapse
Affiliation(s)
- Yangyang Meng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Wei Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Xin Zhu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Lingsheng Bao
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Yaxiong Pan
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Honghui Li
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Jianshe Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| | - Lusha Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Z.G.)
| | - Zexia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (L.L.); (Z.G.)
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Wuying Chu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; (Y.M.); (W.Z.); (L.B.); (Y.P.); (H.L.); (J.Z.)
| |
Collapse
|
2
|
Forker GK, Schoenfuss HL, Blob RW, Diamond KM. Bendy to the bone: Links between vertebral morphology and waterfall climbing in amphidromous gobioid fishes. J Anat 2021; 239:747-754. [PMID: 33928628 PMCID: PMC8349408 DOI: 10.1111/joa.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Locomotor force production imposes strong demands on organismal form. Thus, the evolution of novel locomotor modes is often associated with morphological adaptations that help to meet those demands. In the goby lineage of fishes, most species are marine and use their fused pelvic fins to facilitate station holding in wave-swept environments. However, several groups of gobies have evolved an amphidromous lifecycle, in which larvae develop in the ocean but juveniles migrate to freshwater for their adult phase. In many of these species, the pelvic fins have been co-opted to aid in climbing waterfalls during upstream migrations to adult habitats. During horizontal swimming, forces are produced by axial musculature pulling on the vertebral column. However, during vertical climbing, gravity also exerts forces along the length of the vertebral column. In this study, we searched for novel aspects of vertebral column form that might be associated with the distinctive locomotor strategies of climbing gobies. We predicted that stiffness would vary along the length of the vertebral column due to competing demands for stability of the suction disk anteriorly and flexibility for axial thrust production posteriorly. We also predicted that derived, climbing goby species would require stiffer backbones to aid in vertical thrust production compared to non-climbing species. To test these predictions, we used microcomputed tomography scans to compare vertebral anatomy (centrum length, centrum width, and intervertebral space) along the vertebral column for five gobioid species that differ in climbing ability. Our results support our second prediction, that gobies are more flexible in the posterior portion of the body. However, the main variation in vertebral column form associated with climbing ability was the presence of larger intervertebral spaces in Sicyopterus stimpsoni, a species that uses a distinctive inching behavior to climb. These results build on past kinematic studies of goby climbing performance and lend insights into how the underlying vertebral structure of these fishes may enable their novel locomotion.
Collapse
Affiliation(s)
- Grace K. Forker
- Department of Biological SciencesClemson UniversityClemsonSCUSA
- School of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Richard W. Blob
- Department of Biological SciencesClemson UniversityClemsonSCUSA
| | - Kelly M. Diamond
- Department of Biological SciencesClemson UniversityClemsonSCUSA
- Center for Developmental Biology and Regenerative MedicineSeattle Children’s Research InstituteSeattleWAUSA
| |
Collapse
|
3
|
Diamond KM, Lagarde R, Griner JG, Ponton D, Powder KE, Schoenfuss HL, Walker JA, Blob RW. Interactions among multiple selective pressures on the form–function relationship in insular stream fishes. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Relationships between body shape and escape performance are well established for many species. However, organisms can face multiple selection pressures that might impose competing demands. Many fishes use fast starts for escaping predator attacks, whereas some species of gobiid fishes have evolved the ability to climb waterfalls out of predator-dense habitats. The ancestral ‘powerburst’ climbing mechanism uses lateral body undulations to move up waterfalls, whereas a derived ‘inching’ mechanism uses rectilinear locomotion. We examined whether fast-start performance is impacted by selection imposed from the new functional demands of climbing. We predicted that non-climbing species would show morphology and fast-start performance that facilitate predator evasion, because these fish live consistently with predators and are not constrained by the demands of climbing. We also predicted that, by using lateral undulations, powerburst climbers would show escape performance superior to that of inchers. We compared fast starts and body shape across six goby species. As predicted, non-climbing fish exhibited distinct morphology and responded more frequently to an attack stimulus than climbing species. Contrary to our predictions, we found no differences in escape performance among climbing styles. These results indicate that selection for a competing pressure need not limit the ability of prey to escape predator attacks.
Collapse
Affiliation(s)
- Kelly M Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Raphaël Lagarde
- Hydrô Réunion, Z.I. Les Sables, Etang Salé, La Réunion, France
- Université de Perpignan Via Domitia – CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR, Perpignan, France
| | - J Gill Griner
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Dominique Ponton
- ENTROPIE, IRD-Université de La Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, BP, Toliara, Madagascar
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN, USA
| | - Jeffrey A Walker
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|