1
|
Hou L, Bertrand OC, Mudannayake HN, Rolian C, Cote S. Semicircular canal morphology in Rodentia and its relationship to locomotion. J Anat 2025. [PMID: 40329528 DOI: 10.1111/joa.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Anatomical structures vary among mammals with different locomotor behaviours, including sensory structures such as the semicircular canals (SCCs) in the inner ear. Recent SCC research has examined various mammalian groups, but there has been a lack of research on rodents, the most speciose and diverse mammalian order. In this study, an extant sample of 98 rodent SCCs from 56 species across seven different locomotor behaviour categories (arboreal, fossorial, gliding, ricochetal, semiaquatic, semifossorial, terrestrial) was used to understand the correlations between SCC morphology and locomotion in rodents. Morphological correlates considered include the radius of curvature (R), overall 3-dimensional shape, and angles between pairs of canals (orthogonality). Our results show that agile arboreal taxa have larger R for their body size, and fossorial taxa have smaller R for their body size. Shape among specialized locomotor behaviours (arboreal, gliding vs. fossorial) can be differentiated, while other "generalist" categories overlap in morphospace. Specialized locomotor categories can be predicted with greater precision and sensitivity, while other generalist categories tend to be miscategorized as terrestrial. Angles between canals are not consistent across locomotor categories, and more agile groups do not have more orthogonal angles, contrary to our predictions. SCC R and overall shape are robust indicators of specialized locomotor behaviours and can be informative in reconstructing the behaviour of fossil rodents.
Collapse
Affiliation(s)
- Lily Hou
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Barcelona, Spain
- Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Hiruni N Mudannayake
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Campbell Rolian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Susanne Cote
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Anderson HE, Lis A, Lundeen I, Silcox MT, López-Torres S. Sensory Reconstruction of the Fossil Lorisid Mioeuoticus: Systematic and Evolutionary Implications. Animals (Basel) 2025; 15:345. [PMID: 39943115 PMCID: PMC11816023 DOI: 10.3390/ani15030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The fossil record of lorises and pottos (family Lorisidae) potentially dates back to the late Oligocene of Namibia, but a later moderate diversification of this family occurred during the Miocene of Africa and Asia. In the African Miocene, the family Lorisidae is represented solely by one genus: Mioeuoticus. The phyletic position of Mioeuoticus has been a source of debate, as it has been suggested to belong to either the stem of the family Lorisidae or to be further nested within lorisids, as a sister to the African potto clade (subfamily Perodicticinae). Reconstructing the internal sensory anatomy of Mioeuoticus shipmani (KNM-RU 2052) could shed some light on this debate and possibly clarify how modern lorisoid olfactory and visual sensitivity and locomotor abilities evolved. Here, we collected data from the nasal turbinals, bony labyrinths, and orbits of Mioeuoticus shipmani from the early Miocene of Rusinga Island, Kenya. These results are consistent with Mioeuoticus, having developed typical modern lorisid behaviour (i.e., slow locomotion, nocturnal activity pattern) and olfactory abilities consistent with modern representatives. However, the arrangement of the nasal turbinals shows an intermediate state between lemuroids and lorisoids that is most consistent with a basal position of Mioeuoticus within the family Lorisidae or even the superfamily Lorisoidea.
Collapse
Affiliation(s)
- Holly E. Anderson
- University of Warsaw, Faculty of Biology, Żwirki i Wigury 101, 02-096 Warsaw, Poland (S.L.-T.)
| | - Adam Lis
- University of Warsaw, Faculty of Biology, Żwirki i Wigury 101, 02-096 Warsaw, Poland (S.L.-T.)
| | - Ingrid Lundeen
- Department of Anthropology, Hunter College, City University of New York, 695 Park Ave., New York, NY 10065, USA
| | - Mary T. Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada;
| | - Sergi López-Torres
- University of Warsaw, Faculty of Biology, Żwirki i Wigury 101, 02-096 Warsaw, Poland (S.L.-T.)
- Division of Paleontology, American Museum of Natural History, 79th Street & Central Park West, New York, NY 10024, USA
- Earth Science Department, National Museums of Kenya, Museum Hill, Nairobi 00100, Kenya
| |
Collapse
|
3
|
Taylor PJ, Nengovhela A, Denys C, Scott GR, Ivy CM. Adaptation in brain structure and respiratory and olfactory structures across environmental gradients in African and North American muroid rodents. Integr Zool 2024; 19:165-181. [PMID: 38044327 DOI: 10.1111/1749-4877.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Morphometric studies of 3D micro CT-scanned images can provide insights into the evolution of the brain and sensory structures but such data are still scarce for the most diverse mammalian order of rodents. From reviewed and new data, we tested for convergence to extreme aridity and high elevation in the sensory and brain morphology of rodents, from morphometric data from micro-CT X-ray scans of 174 crania of 16 species of three distantly related African murid (soft-furred mice, Praomyini, laminate-toothed rats, Otomyini, and gerbils, Gerbillinae) clades and one North American cricetid (deer mice and white-footed mice, Peromyscus) clade. Recent studies demonstrated convergent evolution acting on the oval window area of the cochlea (enlarged in extremely arid-adapted species of Otomyini and Gerbillinae) and on endocranial volume (reduced in high elevation taxa of Otomyini and Peromyscus). However, contrary to our predictions, we did not find evidence of convergence in brain structure to aridity, or in the olfactory/respiratory system (turbinate bones) to high elevation. Brain structure differed, particularly in the petrosal lobules of the cerebellum and the olfactory bulbs, between Otomyini and Gerbillinae, with extreme arid-adapted species in each clade being highly divergent (not convergent) from other species in the same clade. We observed greater "packing" of the maxillary turbinate bones, which have important respiratory functions, in Peromyscus mice from high and low elevations compared to the high-elevation African Praomyini, but more complex patterns within Peromyscus, probably related to trade-offs in respiratory physiology and heat exchange in the nasal epithelium associated with high-elevation adaptation.
Collapse
Affiliation(s)
- Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Catherine M Ivy
- Guglielmo and Shoemaker Labs, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
4
|
Button DJ, Zanno LE. Neuroanatomy of the late Cretaceous Thescelosaurus neglectus (Neornithischia: Thescelosauridae) reveals novel ecological specialisations within Dinosauria. Sci Rep 2023; 13:19224. [PMID: 37932280 PMCID: PMC10628235 DOI: 10.1038/s41598-023-45658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
Ornithischian dinosaurs exhibited a diversity of ecologies, locomotory modes, and social structures, making them an ideal clade in which to study the evolution of neuroanatomy and behaviour. Here, we present a 3D digital reconstruction of the endocranial spaces of the latest Cretaceous neornithischian Thescelosaurus neglectus, in order to interpret the neuroanatomy and paleobiology of one of the last surviving non-avian dinosaurs. Results demonstrate that the brain of Thescelosaurus was relatively small compared to most other neornithischians, instead suggesting cognitive capabilities within the range of extant reptiles. Other traits include a narrow hearing range, with limited ability to distinguish high frequencies, paired with unusually well-developed olfactory lobes and anterior semicircular canals, indicating acute olfaction and vestibular sensitivity. This character combination, in conjunction with features of the postcranial anatomy, is consistent with specializations for burrowing behaviours in the clade, as evidenced by trace and skeletal fossil evidence in earlier-diverging thescelosaurids, although whether they reflect ecological adaptations or phylogenetic inheritance in T. neglectus itself is unclear. Nonetheless, our results provide the first evidence of neurological specializations to burrowing identified within Ornithischia, and non-avian dinosaurs more generally, expanding the range of ecological adaptations recognized within this major clade.
Collapse
Affiliation(s)
- David J Button
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Schwartz E, Nenning KH, Heuer K, Jeffery N, Bertrand OC, Toro R, Kasprian G, Prayer D, Langs G. Evolution of cortical geometry and its link to function, behaviour and ecology. Nat Commun 2023; 14:2252. [PMID: 37080952 PMCID: PMC10119184 DOI: 10.1038/s41467-023-37574-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Studies in comparative neuroanatomy and of the fossil record demonstrate the influence of socio-ecological niches on the morphology of the cerebral cortex, but have led to oftentimes conflicting theories about its evolution. Here, we study the relationship between the shape of the cerebral cortex and the topography of its function. We establish a joint geometric representation of the cerebral cortices of ninety species of extant Euarchontoglires, including commonly used experimental model organisms. We show that variability in surface geometry relates to species' ecology and behaviour, independent of overall brain size. Notably, ancestral shape reconstruction of the cortical surface and its change during evolution enables us to trace the evolutionary history of localised cortical expansions, modal segregation of brain function, and their association to behaviour and cognition. We find that individual cortical regions follow different sequences of area increase during evolutionary adaptations to dynamic socio-ecological niches. Anatomical correlates of this sequence of events are still observable in extant species, and relate to their current behaviour and ecology. We decompose the deep evolutionary history of the shape of the human cortical surface into spatially and temporally conscribed components with highly interpretable functional associations, highlighting the importance of considering the evolutionary history of cortical regions when studying their anatomy and function.
Collapse
Affiliation(s)
- Ernst Schwartz
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Nathan Jeffery
- Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool, England
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès., Barcelona, Spain
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, EH9 3FE, United Kingdom
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et Théorique, F-75015, Paris, France
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna, Austria.
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
López‐Torres S, Bhagat R, Bertrand OC, Silcox MT, Fostowicz‐Frelik Ł. Locomotor behavior and hearing sensitivity in an early lagomorph reconstructed from the bony labyrinth. Ecol Evol 2023; 13:e9890. [PMID: 36942029 PMCID: PMC10024310 DOI: 10.1002/ece3.9890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The structure of the bony labyrinth is highly informative with respect to locomotor agility (semicircular canals [SCC]) and hearing sensitivity (cochlear and oval windows). Here, we reconstructed the agility and hearing sensitivity of the stem lagomorph Megalagus turgidus from the early Oligocene of the Brule Formation of Nebraska (USA). Megalagus has proportionally smaller SCCs with respect to its body mass compared with most extant leporids but within the modern range of variability, suggesting that it was less agile than most of its modern relatives. A level of agility for Megalagus within the range of modern rabbits is consistent with the evidence from postcranial elements. The hearing sensitivity for Megalagus is in the range of extant lagomorphs for both low- and high-frequency sounds. Our data show that by the early Oligocene stem lagomorphs had already attained fundamentally rabbit-like hearing sensitivity and locomotor behavior, even though Megalagus was not a particularly agile lagomorph. This is likely because Megalagus was more of a woodland dweller than an open-habitat runner. The study of sensory evolution in Lagomorpha is practically unknown, and these results provide first advances in understanding the primitive stages for the order and how the earliest members of this clade perceived their environment.
Collapse
Affiliation(s)
- Sergi López‐Torres
- Biological and Chemical Research Centre, Institute of Evolutionary Biology, Faculty of BiologyUniversity of WarsawWarsawPoland
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Raj Bhagat
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Ornella C. Bertrand
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Edifici ICTA‐ICPCerdanyola del VallèsSpain
| | - Mary T. Silcox
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Łucja Fostowicz‐Frelik
- Department of Organismal Biology and AnatomyThe University of ChicagoChicagoIllinoisUSA
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- Department of Evolutionary Paleobiology, Institute of PaleobiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
7
|
Goyens J, Baeckens S, Smith ESJ, Pozzi J, Mason MJ. Parallel evolution of semicircular canal form and sensitivity in subterranean mammals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:627-640. [PMID: 36251041 DOI: 10.1007/s00359-022-01578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
The vertebrate vestibular system is crucial for balance and navigation, and the evolution of its form and function in relation to species' lifestyle and mode of locomotion has been the focus of considerable recent study. Most research, however, has concentrated on aboveground mammals, with much less published on subterranean fauna. Here, we explored variation in anatomy and sensitivity of the semicircular canals among 91 mammal species, including both subterranean and non-subterranean representatives. Quantitative phylogenetically informed analyses showed significant widening of the canals relative to radius of curvature in subterranean species. A relative canal width above 0.166 indicates with 95% certainty that a species is subterranean. Fluid-structure interaction modelling predicted that canal widening leads to a substantial increase in canal sensitivity; a reasonably good estimation of the absolute sensitivity is possible based on the absolute internal canal width alone. In addition, phylogenetic comparative modelling and functional landscape exploration revealed repeated independent evolution of increased relative canal width and anterior canal sensitivity associated with the transition to a subterranean lifestyle, providing evidence of parallel adaptation. Our results suggest that living in dark, subterranean tunnels requires good balance and/or navigation skills which may be facilitated by more sensitive semicircular canals.
Collapse
Affiliation(s)
- Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium.
| | - Simon Baeckens
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium.,Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Jasmine Pozzi
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium
| | - Matthew J Mason
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Scarpitti EA, Calede JJM. Ecological correlates of the morphology of the auditory bulla in rodents: Application to the fossil record. J Anat 2022; 240:647-668. [PMID: 34747041 PMCID: PMC8930836 DOI: 10.1111/joa.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022] Open
Abstract
For rodents, hearing is essential to survival. It enables predator evasion, prey detection, and conspecific recognition; it is also likely to be constrained by the physical environment. The resulting hypothetical link between tympanic bulla morphology and ecology has never been investigated across a broad array of rodent species before. Such link may enable the determination of the ecological affinities of many fossil species only known from partial skulls. In this study, we used geometric morphometrics to quantify the shape of the auditory bulla of 197 specimens representing 91 species from 17 families of extant rodents across four different locomotory modes. We used landmarks and semi-landmarks on the ventral and lateral views of the skull to capture morphological characteristics of the bulla and external auditory meatus (EAM). Our results demonstrate an association between bullar morphology and locomotion in rodents. Bullar shape enables the correct classification of 76% of the species in our training set. Fossorial taxa, in particular, show a characteristic morphology including an asymmetric bulla with a dorsally located and laterally expanded EAM that has a small opening diameter. A phylogenetically informed flexible discriminant analysis shows a weak phylogenetic effect on tympanic morphology. There is no evidence for differences in bullar hypertrophy across locomotory categories. The application of this approach to select fossil rodents from the Oligo-Miocene shows broad agreements with prior studies and yields new locomotory inferences for 14 fossil species, including the first proposed locomotion for members of the family Florentiamyidae. Such results call for the timing of burrowing diversification in rodents to be reevaluated.
Collapse
Affiliation(s)
| | - Jonathan J. M. Calede
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityMarionOhioUSA
| |
Collapse
|
9
|
Lower Levels of Vestibular Developmental Stability in Slow-Moving than Fast-Moving Primates. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vestibular system of the mammalian inner ear senses angular and linear velocity of the head and enables animals to maintain their balance. Vestibular anatomy has been studied extensively in order to link its structure to particular kinds of locomotion. Available evidence indicates that, in primates, slow-moving species show higher levels of vestibular variation than fast-moving taxa. We analysed intraspecific morphological variation and fluctuating asymmetry (FA) levels in the semicircular canal systems of six species of lorisiform primates: three slow-moving lorisids and three fast-moving galagids. Our results showed clear differences in levels of intraspecific variation between slow-moving and fast-moving taxa. Higher levels of variation were responsible for deviations from coplanarity for synergistic pairs of canals in slower taxa. Lorisids also presented higher levels of FA than galagids. FA is a better indicator of agility than intraspecific variation. These results suggest that in order to function efficiently in fast taxa, semicircular canal systems must develop as symmetrically as possible, and should minimise the deviation from coplanarity for synergistic pairs. Higher levels of variation and asymmetry in slow-moving taxa may be related to lower levels of stabilising selection on the vestibular system, linked to a lower demand for rapid postural changes.
Collapse
|
10
|
Bertrand OC, Püschel HP, Schwab JA, Silcox MT, Brusatte SL. The impact of locomotion on the brain evolution of squirrels and close relatives. Commun Biol 2021; 4:460. [PMID: 33846528 PMCID: PMC8042109 DOI: 10.1038/s42003-021-01887-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023] Open
Abstract
How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene-Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK.
| | - Hans P Püschel
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| | - Julia A Schwab
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| |
Collapse
|