1
|
Yilmaz H, Abdulazez IF, Gursoy S, Kazancioglu Y, Ustundag CB. Cartilage Tissue Engineering in Multilayer Tissue Regeneration. Ann Biomed Eng 2025; 53:284-317. [PMID: 39400772 DOI: 10.1007/s10439-024-03626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The functional and structural integrity of the tissue/organ can be compromised in multilayer reconstructive applications involving cartilage tissue. Therefore, multilayer structures are needed for cartilage applications. In this review, we have examined multilayer scaffolds for use in the treatment of damage to organs such as the trachea, joint, nose, and ear, including the multilayer cartilage structure, but we have generally seen that they have potential applications in trachea and joint regeneration. In conclusion, when the existing studies are examined, the results are promising for the trachea and joint connections, but are still limited for the nasal and ear. It may have promising implications in the future in terms of reducing the invasiveness of existing grafting techniques used in the reconstruction of tissues with multilayered layers.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Israa F Abdulazez
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- University of Baghdad Al-Khwarizmi College of Engineering Biomedical Engineering Departments, Baghdad, Iraq
| | - Sevda Gursoy
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yagmur Kazancioglu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Cem Bulent Ustundag
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Amano K, Okuzaki D, Kitaoka Y, Kato S, Fujiwara M, Tanaka S, Iida S. Pth1r in Neural Crest Cells Regulates Nasal Cartilage Differentiation. J Dent Res 2024; 103:308-317. [PMID: 38234039 DOI: 10.1177/00220345231221954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Neural crest cells (NCC) arise from the dorsal margin of the neural plate border and comprise a unique cell population that migrates to and creates the craniofacial region. Although factors including Shh, Fgf8, and bone morphogenetic proteins have been shown to regulate these biological events, the role of parathyroid hormone 1 receptor (Pth1r) has been less studied. We generated an NCC-specific mouse model for Pth1r and researched gene expression, function, and interaction focusing on nasal cartilage framework and midfacial development. Wnt1-Cre;Pth1rfl/fl;Tomatofl/+ mice had perinatal lethality, but we observed short snout and jaws, tongue protrusion, reduced NCC-derived cranial length, increased mineralization in nasal septum and hyoid bones, and less bone mineralization at interfrontal suture in mutants at E18.5. Importantly, the mutant nasal septum and turbinate cartilage histologically revealed gradual, premature accelerated hypertrophic differentiation. We then studied the underlying molecular mechanisms by performing RNA seq analysis and unexpectedly found that expression of Ihh and related signaling molecules was enhanced in mutant nasomaxillary tissues. To see if Pth1r and Ihh signaling are associated, we generated a Wnt1-Cre; Ihhfl/fl;Pth1rfl/fl;Tomatofl/+ (DKO) mouse and compared the phenotypes to those of each single knockout mouse: Wnt1-Cre; Ihhfl/fl;Pth1rfl/+;Tomatofl/+ (Ihh-CKO) and Wnt1-Cre;Ihhfl/+;Pth1rfl/fl;Tomatofl/+ (Pth1r-CKO). Ihh-CKO mice displayed a milder effect. Of note, the excessive hypertrophic conversion of the nasal cartilage framework observed in Pth1r-CKO was somewhat rescued DKO embryos. Further, a half cAMP responsive element and the 4 similar sequences containing 2 mismatches were identified from the promoter to the first intron in Ihh gene. Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+, a Pth1r-deficient model targeted in hedgehog responsive cells, demonstrated the enlarged hypertrophic layer and significantly more Tomato-positive chondrocytes accumulated in the nasal septum and ethmoidal endochondral ossification. Collectively, the data suggest a relevant Pth1r/Ihh interaction. Our findings obtained from novel mouse models for Pth1r signaling illuminate previously unknown aspects in craniofacial biology and development.
Collapse
Affiliation(s)
- K Amano
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - D Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Y Kitaoka
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Kato
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Fujiwara
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S Tanaka
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P, Lemanowicz A, Nadolska K, Janiszewska-Olszowska J. Correlation Analysis of Nasal Septum Deviation and Results of AI-Driven Automated 3D Cephalometric Analysis. J Clin Med 2023; 12:6621. [PMID: 37892759 PMCID: PMC10607148 DOI: 10.3390/jcm12206621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The nasal septum is believed to play a crucial role in the development of the craniofacial skeleton. Nasal septum deviation (NSD) is a common condition, affecting 18-65% of individuals. This study aimed to assess the prevalence of NSD and its potential association with abnormalities detected through cephalometric analysis using artificial intelligence (AI) algorithms. The study included CT scans of 120 consecutive, post-traumatic patients aged 18-30. Cephalometric analysis was performed using an AI web-based software, CephX. The automatic analysis comprised all the available cephalometric analyses. NSD was assessed using two methods: maximum deviation from an ideal non-deviated septum and septal deviation angle (SDA). The concordance of repeated manual measurements and automatic analyses was assessed. Of the 120 cases, 90 met the inclusion criteria. The AI-based cephalometric analysis provided comprehensive reports with over 100 measurements. Only the hinge axis angle (HAA) and SDA showed significant (p = 0.039) negative correlations. The rest of the cephalometric analyses showed no correlation with the NSD indicators. The analysis of the agreement between repeated manual measurements and automatic analyses showed good-to-excellent concordance, except in the case of two angular measurements: LI-N-B and Pr-N-A. The CephX AI platform showed high repeatability in automatic cephalometric analyses, demonstrating the reliability of the AI model for most cephalometric analyses.
Collapse
Affiliation(s)
| | - Wojciech Kazimierczak
- Kazimierczak Private Dental Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland; (Z.S.)
| | - Zbigniew Serafin
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland; (Z.S.)
| | - Paweł Nowicki
- Kazimierczak Private Dental Practice, Dworcowa 13/u6a, 85-009 Bydgoszcz, Poland
| | - Adam Lemanowicz
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland; (Z.S.)
| | - Katarzyna Nadolska
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067 Bydgoszcz, Poland; (Z.S.)
| | | |
Collapse
|
4
|
Baldwin MC, Zarudnaya D, Liu ZJ, Herring SW. The nasal septum and midfacial growth. Anat Rec (Hoboken) 2023. [PMID: 36965023 DOI: 10.1002/ar.25214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
The nasal septum is the only element of the chondrocranium which never completely ossifies. The persistence of this nonarticular cartilage has given rise to a variety of theories concerning cranial mechanics and growth of the midface. Previously, using pigs, we demonstrated that the septum is not a strut supporting the snout and that septal growth seems capable of stretching the overlying nasofrontal suture, a major contributor to snout elongation. Here we investigate whether abnormalities of the septum are implicated in cases of midfacial hypoplasia, in which growth of the midface is inadequate. Mild midfacial hypoplasia is common in domestic pig breeds and often severe in the Yucatan minipig, a popular laboratory breed. Normal-snouted and midfacial hypoplastic heads of standard (farm mixed breed) and minipigs ranging in age from perinatal to 12 months were dissected, imaged by CT, and/or prepared for histology. Even at birth, Yucatan minipigs with midfacial hypoplasia exhibited greater caudal ossification than normal; the ventral cartilaginous sphenoidal "tail" was diminished or missing. In addition, cells that morphologically appeared to have divided recently were less numerous than in newborn standard pigs. Juvenile Yucatan minipigs lacked caudal cartilaginous growth zones almost completely. In standard newborns, the ventral caudal septum was more replicative than the dorsal, but this trend was not seen in Yucatan newborns. In conclusion, accelerated maturation of the caudal septum was associated with midfacial hypoplasia, a further indication that the septum, particularly its ventral portion, is important for midfacial elongation.
Collapse
Affiliation(s)
- Michael C Baldwin
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Diana Zarudnaya
- Department of Oral Health Sciences, University of Washington, Box 357475, Seattle, Washington, 98195, USA
| | - Zi-Jun Liu
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| | - Susan W Herring
- Department of Orthodontics, University of Washington, Box 357446, Seattle, Washington, 98195, USA
| |
Collapse
|
5
|
Zhang S, Wu M, Chen J, Yin J, Sakran KA, Wang Y, Zeng N, Yang C, Shi B, Huang H. The Necessity of Nostril Retention Application After Secondary Unilateral Cleft Rhinoplasty. Laryngoscope 2022. [DOI: 10.1002/lary.30451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shiming Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Min Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jiali Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jiayi Yin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Karim A. Sakran
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Ni Zeng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Chao Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
6
|
Baddam P, Bayona-Rodriguez F, Campbell SM, El-Hakim H, Graf D. Properties of the Nasal Cartilage, from Development to Adulthood: A Scoping Review. Cartilage 2022; 13:19476035221087696. [PMID: 35345900 PMCID: PMC9137313 DOI: 10.1177/19476035221087696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/29/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Nasal septum cartilage is a hyaline cartilage that provides structural support to the nasal cavity and midface. Currently, information on its cellular and mechanical properties is widely dispersed and has often been inferred from studies conducted on other cartilage types such as the knee. A detailed understanding of nasal cartilage properties is important for several biological, clinical, and engineering disciplines. The objectives of this scoping review are to (1) consolidate actual existing knowledge on nasal cartilage properties and (2) identify gaps of knowledge and research questions requiring future investigations. DESIGN This scoping review incorporated articles identified using PROSPERO, Cochrane Library (CDSR and Central), WOS BIOSIS, WOS Core Collection, and ProQuest Dissertations and Theses Global databases. Following the screening process, 86 articles were considered. Articles were categorized into three groups: growth, extracellular matrix, and mechanical properties. RESULTS Most articles investigated growth properties followed by extracellular matrix and mechanical properties. NSC cartilage is not uniform. Nasal cartilage growth varies with age and location. Similarly, extracellular matrix composition and mechanical properties are location-specific within the NSC. Moreover, most articles included in the review investigate these properties in isolation and only very few articles demonstrate the interrelationship between multiple cartilage properties. CONCLUSIONS This scoping review presents a first comprehensive description of research on NSC properties with a focus on NSC growth, extracellular matrix and mechanical properties. It additionally identifies the needs (1) to understand how these various cartilage properties intersect and (2) for more granular, standardized assessment protocols to describe NSC.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Sandra M. Campbell
- John W. Scott Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Hamdy El-Hakim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Baddam P, Young D, Dunsmore G, Nie C, Eaton F, Elahi S, Jovel J, Adesida AB, Dufour A, Graf D. Nasal Septum Deviation as the Consequence of BMP-Controlled Changes to Cartilage Properties. Front Cell Dev Biol 2021; 9:696545. [PMID: 34249945 PMCID: PMC8265824 DOI: 10.3389/fcell.2021.696545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
The nasal septum cartilage is a specialized hyaline cartilage important for normal midfacial growth. Abnormal midfacial growth is associated with midfacial hypoplasia and nasal septum deviation (NSD). However, the underlying genetics and associated functional consequences of these two anomalies are poorly understood. We have previously shown that loss of Bone Morphogenetic Protein 7 (BMP7) from neural crest (BMP7 ncko ) leads to midfacial hypoplasia and subsequent septum deviation. In this study we elucidate the cellular and molecular abnormalities underlying NSD using comparative gene expression, quantitative proteomics, and immunofluorescence analysis. We show that reduced cartilage growth and septum deviation are associated with acquisition of elastic cartilage markers and share similarities with osteoarthritis (OA) of the knee. The genetic reduction of BMP2 in BMP7 ncko mice was sufficient to rescue NSD and suppress elastic cartilage markers. To our knowledge this investigation provides the first genetic example of an in vivo cartilage fate switch showing that this is controlled by the relative balance of BMP2 and BMP7. Cellular and molecular changes similar between NSD and knee OA suggest a related etiology underlying these cartilage abnormalities.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Garett Dunsmore
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Chunpeng Nie
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Juan Jovel
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|