1
|
Karić L, Janjić F, Spariosu K, Davitkov D, Krstić V, Kovačević Filipović M, Radaković M. (Un)Tying the Knot: Oxidative Stress, Inflammatory Markers, and Lipid Status in Dogs with Hypercortisolism. Animals (Basel) 2024; 14:3476. [PMID: 39682441 DOI: 10.3390/ani14233476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to revisit the complex relationship between inflammation, oxidative stress and lipid metabolism in dogs with hypercortisolism (HC). Fourteen dogs newly diagnosed with HC and an equal number of healthy counterparts of similar age and markers of oxidative stress (AOPP, TBARS, TAC, GSH, PON-1, and UA) and inflammation (NLR, PLR, SII, HPT, CHE, CP, and Hcy) were included in the study. To determine the lipid profiles, cholesterol, and triglyceride levels were measured, and the electrophoretic separation of lipoproteins was performed. The results revealed that dogs with HC had higher levels of AOPP and TBARS, but only greater levels of GSH among antioxidants. Uric acid levels were higher in HC dogs, suggesting a pro-oxidative role. Elevated NLR, PLR, SII, and HPT levels were detected, but they did not seem to be associated with inflammation. Notable changes were detected in the HDL fraction, alongside hypercholesterolaemia and hypertriglyceridaemia. Correlation analysis revealed links between lipid markers and both oxidative stress and inflammatory indices. In conclusion, the data acquired may prove useful in further understanding of the intricate pathophysiology of Cushing's syndrome.
Collapse
Affiliation(s)
- Lazar Karić
- Department of Equine, Small Animal, Poultry and Wild Animal Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Filip Janjić
- Department for Immunochemistry and Glycobiology, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Kristina Spariosu
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Darko Davitkov
- Department of Equine, Small Animal, Poultry and Wild Animal Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Vanja Krstić
- Department of Equine, Small Animal, Poultry and Wild Animal Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Milica Kovačević Filipović
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Milena Radaković
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Xu W, Xie B, Wei D, Song X. Dissecting hair breakage in alopecia areata: the central role of dysregulated cysteine homeostasis. Amino Acids 2024; 56:36. [PMID: 38772922 PMCID: PMC11108903 DOI: 10.1007/s00726-024-03395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
In the initial stages of Alopecia Areata (AA), the predominance of hair breakage or exclamation mark hairs serves as vital indicators of disease activity. These signs are non-invasive and are commonly employed in dermatoscopic examinations. Despite their clinical salience, the underlying etiology precipitating this hair breakage remains largely uncharted territory. Our exhaustive review of the existing literature points to a pivotal role for cysteine-a key amino acid central to hair growth-in these mechanisms. This review will probe and deliberate upon the implications of aberrant cysteine metabolism in the pathogenesis of AA. It will examine the potential intersections of cysteine metabolism with autophagy, ferroptosis, immunity, and psychiatric manifestations associated with AA. Such exploration could illuminate new facets of the disease's pathophysiology, potentially paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Dongfan Wei
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
3
|
Feng Y. Exploring clues pointing toward the existence of a brain-gut microbiota-hair follicle axis. Curr Res Transl Med 2024; 72:103408. [PMID: 38246020 DOI: 10.1016/j.retram.2023.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 01/23/2024]
Abstract
Proposing the concept of a brain-gut-skin axis has led some researchers to recognize the relationship among brain activity, gut microbiota, and the skin. Hair follicles are skin accessory organs, a previously unnoticed target tissue for classical neurohormones, neurotrophins, and neuropeptides. Some studies have shown a relationship between the central nervous system and hair follicles that an imbalance in the gut bacteria can affect hair follicle density. This review summarizes existing evidence from literature and explores clues supporting a connection linking the brain, gut microbiota, and hair follicles. It amalgamates previously proposed partial concepts into a new, unified concept-the "brain-gut microbiota-hair follicle" axis, -which suggests that modulation of the microbiome via probiotics can have positive effects on hair follicles. This review also explores how preclinical research on hair follicles can propel novel and clinically untapped applications.
Collapse
Affiliation(s)
- Yang Feng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
4
|
Ma YQ, Sun Z, Li YM, Xu H. Oxidative stress and alopecia areata. Front Med (Lausanne) 2023; 10:1181572. [PMID: 37396920 PMCID: PMC10311488 DOI: 10.3389/fmed.2023.1181572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Alopecia areata (AA) is an inflammatory autoimmune disease characterized by non-scarring hair loss on the scalp or any other part of the hair-bearing skin. While the collapse of the immune privilege is considered as one of the most accepted theories accounting for AA, the exact pathogenesis of this disease remains unclear by now. Other factors, such as genetic predisposition, allergies, microbiota, and psychological stress, also play an important role in the occurrence and development of AA. Oxidative stress (OS), an unbalance between the oxidation and antioxidant defense systems, is believed to be associated with AA and may trigger the collapse of hair follicle-immune privilege. In this review, we examine the evidence of oxidative stress in AA patients, as well as the relationship between the pathogenesis of AA and OS. In the future, antioxidants may play a new role as a supplementary therapy for AA.
Collapse
Affiliation(s)
| | | | | | - Hui Xu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Homolak J. Possible mechanisms mediating complete regrowth of hair following scalp tattooing in alopecia universalis. JAAD Case Rep 2023; 34:10-11. [PMID: 36936862 PMCID: PMC10015113 DOI: 10.1016/j.jdcr.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Correspondence to: Jan Homolak, MD, Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10 000, Zagreb, Croatia
| |
Collapse
|
7
|
Alopecia Areata: A Review of the Role of Oxidative Stress, Possible Biomarkers, and Potential Novel Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12010135. [PMID: 36670997 PMCID: PMC9854963 DOI: 10.3390/antiox12010135] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Alopecia areata (AA) is a dermatological condition characterized by non-scarring hair loss. Exact etiopathogenesis of AA is still unknown although it is known that several factors contribute to the collapse of the hair-follicle (HF)-immune-privileged (IP) site. Oxidative stress (OS) plays an important role in skin diseases. The aim of this review was to clarify the role of OS in AA pathogenesis and diagnosis, and to discuss potential treatment options. Oxidative-stress markers are altered in serum and skin samples of patients with AA, confirming a general pro-oxidative status in patients with AA. OS induces MHC class I chain-related A (MICA) expression in HF keratinocytes that activates the receptor NKG2D, expressed in NK cells and CD8+ T cytotoxic cells leading to destabilization of the HF immune-privileged site through the production of IFN-γ that stimulates JAK1 and JAK2 pathways. OS also activates the KEAP1-NRF2 pathway, an antioxidant system that contributes to skin homeostasis. In addition, a decrease of ATG5 and LC3B in the hair matrix and an increase in p62 levels indicates a reduction of intrafollicular autophagy during the evolution of AA. Potential biomarkers of OS in AA could be: malondialdehyde (MDA), advanced glycation end-products (AGEs), and ischemic-modified albumin (IMA). JAK inhibitors are the new frontier in treatment of AA and the use of nutraceuticals that modulate the OS balance, in combination with standard treatments, represent promising therapeutic tools.
Collapse
|
8
|
Taskin S, Celik H, Cakirca G, Manav V, Taskin A. Nitric oxide synthase activity: A novel potential biomarker for predicting Alopecia areata. J Cosmet Dermatol 2022; 21:7075-7080. [PMID: 36093562 DOI: 10.1111/jocd.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Alopecia areata is a dermatological disease characterized by nonscarring type hair loss. The cause of Alopecia areata not known exactly but studies support that it has an autoimmune etiology in which oxidative stress play an important role. AIM This study was conducted to evaluate the level of nitrosative stress in Alopecia areata and to investigate the predictive power of nitrosative stress parameters for Alopecia areata. PATIENTS/METHODS Thirty patients diagnosed with Alopecia areata, and 30 healthy controls were included in a prospective, cross-sectional study. In both groups, nitric oxide (NO· ), peroxynitrite (ONOO- ), and nitric oxide synthase (NOS) activity as nitrosative stress markers were measured spectrophotometrically in serum samples. The predictive power of nitrosative stress parameters in Alopecia areata and control groups was compared with binary logistic regression and Receiver Operating Characteristic analysis. RESULTS NO· , ONOO- , and NOS activity were significantly higher in patients with Alopecia areata than in the control group (p = 0.001; p < 0.001; p < 0.001, respectively). A positive correlation was found between the parameters. Significantly, binary logistic regression modeling suggested that increases in NOS (p = 0.003, OR = 1.305, 95% CI = 1.095-1.556) activity were associated with Alopecia areata. CONCLUSION According to the data obtained from the present study, patients with Alopecia areata were exposed to potent nitrosative stress. In particular, peroxynitrite, which acts as a bridge between reactive oxygen species and reactive nitrogen species, caused the expansion of the oxidative stress cascade. Nitrosative stress might play a role in the etiopathogenesis of Alopecia areata. Nitrosative stress parameters, particularly NOS activity, may be potential markers for Alopecia areata.
Collapse
Affiliation(s)
- Seyhan Taskin
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Hakim Celik
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Gokhan Cakirca
- Department of Biochemistry, Sanliurfa Mehmet Akif Inan Training and Research Hospital, Sanliurfa, Turkey
| | - Vildan Manav
- Department of Dermatology, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Abdullah Taskin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Harran University, Sanliurfa, Turkey
| |
Collapse
|
9
|
Sánchez-Pellicer P, Navarro-Moratalla L, Núñez-Delegido E, Agüera-Santos J, Navarro-López V. How Our Microbiome Influences the Pathogenesis of Alopecia Areata. Genes (Basel) 2022; 13:genes13101860. [PMID: 36292745 PMCID: PMC9601531 DOI: 10.3390/genes13101860] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022] Open
Abstract
Alopecia areata is a multifactorial autoimmune-based disease with a complex pathogenesis. As in all autoimmune diseases, genetic predisposition is key. The collapse of the immune privilege of the hair follicle leading to scalp loss is a major pathogenic event in alopecia areata. The microbiota considered a bacterial ecosystem located in a specific area of the human body could somehow influence the pathogenesis of alopecia areata, as it occurs in other autoimmune diseases. Moreover, the Next Generation Sequencing of the 16S rRNA bacterial gene and the metagenomic methodology have provided an excellent characterization of the microbiota. The aim of this narrative review is to examine the published literature on the cutaneous and intestinal microbiota in alopecia areata to be able to establish a pathogenic link. In this review, we summarize the influence of the microbiota on the development of alopecia areata. We first introduce the general pathogenic mechanisms that cause alopecia areata to understand the influence that the microbiota may exert and then we summarize the studies that have been carried out on what type of gut and skin microbiota is found in patients with this disease.
Collapse
Affiliation(s)
- Pedro Sánchez-Pellicer
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Laura Navarro-Moratalla
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Juan Agüera-Santos
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Vicente Navarro-López
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
- Infectious Diseases Unit, University Hospital of Vinalopó-Fisabio, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain
- Correspondence:
| |
Collapse
|
10
|
Xie B, Sun J, Song X. Hair Follicle Melanocytes Initiate Autoimmunity in Alopecia Areata: a Trigger Point. Clin Rev Allergy Immunol 2022; 63:417-430. [PMID: 36121544 DOI: 10.1007/s12016-022-08954-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Alopecia areata (AA) is characterized by common non-scarring alopecia due to autoimmune disorders. To date, the specific pathogenesis underlying AA remains unknown. Thus, AA treatment in the dermatological clinic is still a challenge. Numerous clinical observations and experimental studies have established that melanocytes may be the trigger point that causes hair follicles to be attacked by the immune system. A possible mechanism is that the impaired melanocytes, under oxidative stress, cannot be repaired in time and causes apoptosis. Melanocyte-associated autoantigens are released and presented, inducing CD8+ T cell attacks. Thereafter, amplification of the immune responses further spreads to the entire hair follicle (HF). The immune privilege of HF subsequently collapses, leading to AA. Herein, we present a narrative review on the roles of melanocytes in AA pathogenesis, aiming to provide a better understanding of this disease from the melanocyte's perspective.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Jiayi Sun
- Graduate School, Zhejiang Chinese Medical University, Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, West Lake Ave 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|