1
|
Angeli F, Bodega F, Bergamaschi L, Armillotta M, Amicone S, Canton L, Fedele D, Suma N, Cavallo D, Foà A, Belmonte M, Russo V, Attinà D, Niro F, Bonfiglioli R, Fanti S, Pavon AG, Guglielmo M, Mushtaq S, Pantaleo MA, Andreini D, Lovato L, Pontone G, Lopez-Mattei J, Paolisso P, Pizzi C. Multimodality Imaging in the Diagnostic Work-Up of Patients With Cardiac Masses: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:847-862. [PMID: 39801632 PMCID: PMC11711820 DOI: 10.1016/j.jaccao.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiac masses encompass a diverse range of benign and malignant tumors as well as pseudotumors. Accurate histologic identification is essential for guiding appropriate treatment, yet the diagnostic process remains challenging. Although biopsy is traditionally the diagnostic gold standard, its invasive nature and associated risks limit its application. A noninvasive multimodality imaging approach has recently emerged as an alternative, but standardized protocols and supporting evidence are still lacking. Echocardiography is typically the initial imaging modality, with cardiac magnetic resonance recognized as the noninvasive diagnostic gold standard. Cardiac computed tomography provides complementary data to aid in diagnosis and management, while positron emission tomography serves as a third-level imaging option. This state-of-the-art review highlights the role of current multimodality imaging techniques in diagnosing and managing cardiac masses and explores future directions for their applications.
Collapse
Affiliation(s)
- Francesco Angeli
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Bodega
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luca Bergamaschi
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Matteo Armillotta
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sara Amicone
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Lisa Canton
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Damiano Fedele
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nicole Suma
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Daniele Cavallo
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alberto Foà
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marta Belmonte
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Vincenzo Russo
- Department of Pediatric and Adult Cardio-Thoracovascular, Oncohematologic and Emergencies Radiology Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Domenico Attinà
- Department of Pediatric and Adult Cardio-Thoracovascular, Oncohematologic and Emergencies Radiology Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Fabio Niro
- Department of Pediatric and Adult Cardio-Thoracovascular, Oncohematologic and Emergencies Radiology Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Rachele Bonfiglioli
- Institute of Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Policlinico S. Orsola–Malpighi, Bologna, Italy
| | - Stefano Fanti
- Institute of Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Policlinico S. Orsola–Malpighi, Bologna, Italy
| | - Anna Giulia Pavon
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands
- Department of Cardiology, Haga Teaching Hospital, the Hague, the Netherlands
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Abbondanza Pantaleo
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Oncology Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Daniele Andreini
- Clinical Cardiology and Cardiovascular Imaging Unit, Galeazzi-Sant’Ambrogio Hospital, IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Luigi Lovato
- Department of Pediatric and Adult Cardio-Thoracovascular, Oncohematologic and Emergencies Radiology Unit, IRCCS Azienda Ospedaliero–Universitaria di Bologna, Bologna, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Pasquale Paolisso
- Clinical Cardiology and Cardiovascular Imaging Unit, Galeazzi-Sant’Ambrogio Hospital, IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Carmine Pizzi
- Cardiology Unit, IRCCS Azienda Ospedaliera–Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Pérez-Cualtán CE, Vargas-Acevedo C, Sánchez-Posada J, Castro-Páez C, Gutiérrez-Vargas R, Forero-Melo JF, Pérez JM, Briceño JC, Medina HM, Umaña JP, Navarro-Rueda J, Guerrero-Chalela CE. Surgical planning aided with 3D technologies for management of complex paracardiac tumors. J Cardiothorac Surg 2024; 19:548. [PMID: 39342312 PMCID: PMC11438039 DOI: 10.1186/s13019-024-03096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Accurate diagnosis and treatment of complex cardiac tumors poses challenges, particularly when surgical resection is considered. 3D reconstruction and printing appear as a novel approach to allow heart teams for optimal surgical and post operative care. METHODS We report two patients with uncommon masses including a cardiac angiosarcoma (CAS) and a IgG4-related disease (IgG4-RD) with exclusive cardiac involvement. In both cases, three-dimensional (3D) reconstruction and 3D-printed models were utilized to aid the surgical team achieve optimal pre-operative planning. Both patients underwent ECG-gated cardiac computed tomography angiography (CCTA) imaging and, due to the complex anatomy of the masses, their large dimensions, proximity to vital cardiac and vascular structures, and unclear etiology, computational and 3D-printed models were created for surgical planning. An exploratory literature review of studies using 3D-printed models in surgical planning was performed. RESULTS In case 1 (CAS), due to the size and extension of the mass to the right ventricular free wall, surgical intervention was not considered curative and, during thoracotomy, an open biopsy confirmed the imaging suspicion of CAS which guided the initiation of optimal medical treatment with chemotherapy and, after clear tumor retraction, the patient underwent a second surgical intervention, and during the 18 months of follow-up showed no signs of recurrence. In Case 2 (IgG4-RD), the patient underwent uncomplicated total surgical resection; this allowed directed treatment and, at 12 months follow-up, there are no signs of recurrence. Computational and 3D-printed models were used to plan the surgery and to confirm the findings. Limited studies have explored the use of 3D printing in the surgical planning of tumors. CONCLUSIONS We present two patients with uncommon cardiac tumors, highlighting the significant value of 3D models in the anatomical characterization and assessment of their extension. These models may be essential in surgical planning for complex cardiovascular cases and could provide more information than conventional imaging modalities. Further studies are needed to demonstrate the impact of 3D technologies in studying cardiac tumors.
Collapse
Affiliation(s)
- Camilo E Pérez-Cualtán
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia
| | | | | | - Camila Castro-Páez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia
| | - Roberto Gutiérrez-Vargas
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia
- School of Medicine, Universidad del Rosario, Bogotá, Colombia
| | - Julián F Forero-Melo
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia
- Department of Radiology and Diagnostic Imaging, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Juan Manuel Pérez
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia
- Department of Radiology and Diagnostic Imaging, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Juan Carlos Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia
| | - Héctor M Medina
- Department of Cardiac Imaging, The Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Juan Pablo Umaña
- Department of Cardiac Surgery, Cleveland Clinic, Weston, FL, USA
| | - Javier Navarro-Rueda
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia
- Department of Industrial Engineering, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Eduardo Guerrero-Chalela
- Center for 3D Modeling and Printing, Fundación Cardioinfantil - LaCardio, Bogotá, Colombia.
- Fundación Cardioinfantil - Instituto de Cardiología, Calle 163A # 13B - 60 Bogotá, Bogotá, 1113111, Colombia.
| |
Collapse
|
3
|
Bis J, Morkisz Ł, Jędrzejek M, Deja MA. Three-dimensional printed heart model for surgical reconstruction of the right atrium in a patient with malignant heart tumor. JTCVS Tech 2024; 25:111-113. [PMID: 38899075 PMCID: PMC11184661 DOI: 10.1016/j.xjtc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 06/21/2024] Open
Affiliation(s)
- Jarosław Bis
- Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - Łukasz Morkisz
- Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - Marek Jędrzejek
- Third Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Marek A. Deja
- Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Mohanadas HP, Nair V, Doctor AA, Faudzi AAM, Tucker N, Ismail AF, Ramakrishna S, Saidin S, Jaganathan SK. A Systematic Analysis of Additive Manufacturing Techniques in the Bioengineering of In Vitro Cardiovascular Models. Ann Biomed Eng 2023; 51:2365-2383. [PMID: 37466879 PMCID: PMC10598155 DOI: 10.1007/s10439-023-03322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Additive Manufacturing is noted for ease of product customization and short production run cost-effectiveness. As our global population approaches 8 billion, additive manufacturing has a future in maintaining and improving average human life expectancy for the same reasons that it has advantaged general manufacturing. In recent years, additive manufacturing has been applied to tissue engineering, regenerative medicine, and drug delivery. Additive Manufacturing combined with tissue engineering and biocompatibility studies offers future opportunities for various complex cardiovascular implants and surgeries. This paper is a comprehensive overview of current technological advancements in additive manufacturing with potential for cardiovascular application. The current limitations and prospects of the technology for cardiovascular applications are explored and evaluated.
Collapse
Affiliation(s)
| | - Vivek Nair
- Computational Fluid Dynamics (CFD) Lab, Mechanical and Aerospace Engineering, University of Texas Arlington, Arlington, TX, 76010, USA
| | | | - Ahmad Athif Mohd Faudzi
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nick Tucker
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Ahmad Fauzi Ismail
- School of Chemical and Energy Engineering, Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology Initiative, National University of Singapore, Singapore, Singapore
| | - Syafiqah Saidin
- IJNUTM Cardiovascular Engineering Centre, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Faculty of Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
- School of Engineering, College of Science, Brayford Pool, Lincoln, LN6 7TS, UK.
| |
Collapse
|
5
|
Lopez-Mattei J, Yang EH, Baldassarre LA, Agha A, Blankstein R, Choi AD, Chen MY, Meyersohn N, Daly R, Slim A, Rochitte C, Blaha M, Whelton S, Dzaye O, Dent S, Milgrom S, Ky B, Iliescu C, Mamas MA, Ferencik M. Cardiac computed tomographic imaging in cardio-oncology: An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). Endorsed by the International Cardio-Oncology Society (ICOS). J Cardiovasc Comput Tomogr 2023; 17:66-83. [PMID: 36216699 DOI: 10.1016/j.jcct.2022.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Cardio-Oncology is a rapidly growing sub-specialty of medicine, however, there is very limited guidance on the use of cardiac CT (CCT) in the care of Cardio-Oncology patients. In order to fill in the existing gaps, this Expert Consensus statement comprised of a multidisciplinary collaboration of experts in Cardiology, Radiology, Cardiovascular Multimodality Imaging, Cardio-Oncology, Oncology and Radiation Oncology aims to summarize current evidence for CCT applications in Cardio-Oncology and provide practice recommendations for clinicians.
Collapse
Affiliation(s)
| | - Eric H Yang
- UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Ali Agha
- Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
| | - Ron Blankstein
- Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew D Choi
- Division of Cardiology and Department of Radiology, The George Washington University School of Medicine, Washington, DC, USA
| | - Marcus Y Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nandini Meyersohn
- Division of Cardiovascular Imaging, Department of Radiology, Massachusetts General Hospital, USA
| | - Ryan Daly
- Franciscan Health Indianapolis, Indianapolis, IN, USA
| | | | - Carlos Rochitte
- InCor Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Michael Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Seamus Whelton
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Omar Dzaye
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Susan Dent
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, NC, USA
| | - Sarah Milgrom
- Department of Radiation Oncology, University of Colorado, Boulder, CO, USA
| | - Bonnie Ky
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cezar Iliescu
- Heart and Vascular Institute, Lee Health, Fort Myers, FL, USA
| | - Mamas A Mamas
- Keele Cardiovascular Research Group, Centre for Prognosis Research, Keele University, UK
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Dai S, Wang Q, Jiang Z, Liu C, Teng X, Yan S, Xia D, Tuo Z, Bi L. Application of three-dimensional printing technology in renal diseases. Front Med (Lausanne) 2022; 9:1088592. [PMID: 36530907 PMCID: PMC9755183 DOI: 10.3389/fmed.2022.1088592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 10/15/2023] Open
Abstract
Three-dimensional (3D) printing technology involves the application of digital models to create 3D objects. It is used in construction and manufacturing and has gradually spread to medical applications, such as implants, drug development, medical devices, prosthetic limbs, and in vitro models. The application of 3D printing has great prospects for development in orthopedics, maxillofacial plastic surgery, cardiovascular conditions, liver disease, and other fields. With in-depth research on 3D printing technology and the continuous update of printing materials, this technology also shows broad development prospects in renal medicine. In this paper, the author mainly summarizes the basic theory of 3D printing technology, its research progress, application status, and development prospect in renal diseases.
Collapse
Affiliation(s)
- Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyu Teng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Songbai Yan
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dian Xia
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
8
|
Pavan Kalyan BG, Kumar L. 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery. AAPS PharmSciTech 2022; 23:92. [PMID: 35301602 PMCID: PMC8929713 DOI: 10.1208/s12249-022-02242-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.
Collapse
|
9
|
MacGillivray TE, Reardon MJ. Commentary: Trim the fat. JTCVS Tech 2022; 11:41-42. [PMID: 35169732 PMCID: PMC8828950 DOI: 10.1016/j.xjtc.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Michael J. Reardon
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, Tex
| |
Collapse
|
10
|
Mufarrih SH, Mahmood F, Qureshi NQ, Yunus R, Quraishi I, Baribeau V, Sharkey A, Matyal R, Khabbaz KR. Three-Dimensional Printing of Patient-Specific Heart Valves: Separating Facts From Fiction and Myth From Reality. J Cardiothorac Vasc Anesth 2021; 36:2643-2655. [PMID: 34654635 DOI: 10.1053/j.jvca.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
The development of prosthetic heart valves by Dr. Charles Hufnagel in 1952 was a major clinical innovation; however, it was not an ideal solution. Mechanical prosthetic heart valves are rigid, immunogenic, require anticoagulation, do not grow with the patient, and have a finite life.1 An ideal prosthetic valve should overcome all these limitations. Considering the prevalence of valvular heart disorders, there is considerable interest in the creation of patient-specific heart valves. Following the introduction of three-dimensional (3D) printing in 1986 by Chuck Hill, rapid advances in multimodality 3D imaging and modeling have led to a generation of tangible replicas of patient-specific anatomy. The science of organogenesis has gained importance for a multitude of valid reasons: as an alternate source of organs, for realistic drug testing, as an alternative to animal testing, and for transplants that grow with the patient. What scientists imagined to be seemingly impossible in the past now seems just a step away from becoming a reality. However, due to the disruptive nature of this technology, often there are commercially-motivated claims of originality and overstatement of the scope and applicability of 3D printing. It often is difficult to separate fact from fiction and myth from reality. In this manuscript, the authors have reviewed the historic perspective, status of the basic techniques of organogenesis with specific reference to heart valves, and their potential.
Collapse
Affiliation(s)
- Syed Hamza Mufarrih
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Feroze Mahmood
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Nada Qaisar Qureshi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Rayaan Yunus
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Ibrahim Quraishi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Vincent Baribeau
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Aidan Sharkey
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Robina Matyal
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kamal R Khabbaz
- Department of Surgery, Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
11
|
Talanki VR, Peng Q, Shamir SB, Baete SH, Duong TQ, Wake N. Three-Dimensional Printed Anatomic Models Derived From Magnetic Resonance Imaging Data: Current State and Image Acquisition Recommendations for Appropriate Clinical Scenarios. J Magn Reson Imaging 2021; 55:1060-1081. [PMID: 34046959 DOI: 10.1002/jmri.27744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) printing technologies have been increasingly utilized in medicine over the past several years and can greatly facilitate surgical planning thereby improving patient outcomes. Although still much less utilized compared to computed tomography (CT), magnetic resonance imaging (MRI) is gaining traction in medical 3D printing. The purpose of this study was two-fold: 1) to determine the prevalence in the existing literature of using MRI to create 3D printed anatomic models for surgical planning and 2) to provide image acquisition recommendations for appropriate clinical scenarios where MRI is the most suitable imaging modality. The workflow for creating 3D printed anatomic models from medical imaging data is complex and involves image segmentation of the regions of interest and conversion of that data into 3D surface meshes, which are compatible with printing technologies. CT is most commonly used to create 3D printed anatomic models due to the high image quality and relative ease of performing image segmentation from CT data. As compared to CT datasets, 3D printing using MRI data offers advantages since it provides exquisite soft tissue contrast needed for accurate organ segmentation and it does not expose patients to unnecessary ionizing radiation. MRI, however, often requires complicated imaging techniques and time-consuming postprocessing procedures to generate high-resolution 3D anatomic models needed for 3D printing. Despite these challenges, 3D modeling and printing from MRI data holds great clinical promises thanks to emerging innovations in both advanced MRI imaging and postprocessing techniques. EVIDENCE LEVEL: 2 TECHNICAL EFFICATCY: 5.
Collapse
Affiliation(s)
- Varsha R Talanki
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qi Peng
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephanie B Shamir
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven H Baete
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Additive Manufacturing of Resected Oral and Oropharyngeal Tissue: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030911. [PMID: 33494422 PMCID: PMC7908081 DOI: 10.3390/ijerph18030911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022]
Abstract
Better visualization of tumor structure and orientation are needed in the postoperative setting. We aimed to assess the feasibility of a system in which oral and oropharyngeal tumors are resected, photographed, 3D modeled, and printed using additive manufacturing techniques. Three patients diagnosed with oral/oropharyngeal cancer were included. All patients underwent preoperative magnetic resonance imaging followed by resection. In the operating room (OR), the resected tissue block was photographed using a smartphone. Digital photos were imported into Agisoft Photoscan to produce a digital 3D model of the resected tissue. Physical models were then printed using binder jetting techniques. The aforementioned process was applied in pilot cases including carcinomas of the tongue and larynx. The number of photographs taken for each case ranged from 63 to 195. The printing time for the physical models ranged from 2 to 9 h, costs ranging from 25 to 141 EUR (28 to 161 USD). Digital photography may be used to additively manufacture models of resected oral/oropharyngeal tumors in an easy, accessible and efficient fashion. The model may be used in interdisciplinary discussion regarding postoperative care to improve understanding and collaboration, but further investigation in prospective studies is required.
Collapse
|
13
|
Ali A, Ballard DH, Althobaity W, Christensen A, Geritano M, Ho M, Liacouras P, Matsumoto J, Morris J, Ryan J, Shorti R, Wake N, Rybicki FJ, Sheikh A. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: adult cardiac conditions. 3D Print Med 2020; 6:24. [PMID: 32965536 PMCID: PMC7510265 DOI: 10.1186/s41205-020-00078-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Medical 3D printing as a component of care for adults with cardiovascular diseases has expanded dramatically. A writing group composed of the Radiological Society of North America (RSNA) Special Interest Group on 3D Printing (SIG) provides appropriateness criteria for adult cardiac 3D printing indications. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with a number of adult cardiac indications, physiologic, and pathologic processes. Each study was vetted by the authors and graded according to published guidelines. RESULTS Evidence-based appropriateness guidelines are provided for the following areas in adult cardiac care; cardiac fundamentals, perioperative and intraoperative care, coronary disease and ischemic heart disease, complications of myocardial infarction, valve disease, cardiac arrhythmias, cardiac neoplasm, cardiac transplant and mechanical circulatory support, heart failure, preventative cardiology, cardiac and pericardial disease and cardiac trauma. CONCLUSIONS Adoption of common clinical standards regarding appropriate use, information and material management, and quality control are needed to ensure the greatest possible clinical benefit from 3D printing. This consensus guideline document, created by the members of the RSNA 3D printing Special Interest Group, will provide a reference for clinical standards of 3D printing for adult cardiac indications.
Collapse
Affiliation(s)
- Arafat Ali
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Waleed Althobaity
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Andy Christensen
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | - Michelle Ho
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Liacouras
- 3D Medical Applications Center, Walter Reed National Military Medical Center, Washington, DC, USA
| | - Jane Matsumoto
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Justin Ryan
- Rady Children's Hospital, San Diego, CA, USA
| | - Rami Shorti
- Intermountain Healthcare, South Jordan, UT, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Adnan Sheikh
- Department of Radiology and The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
14
|
Yunker BE, Stupic KF, Wagner JL, Huddle S, Shandas R, Weir RF, Russek SE, Keenan KE. Characterization of 3-Dimensional Printing and Casting Materials for use in Magnetic Resonance Imaging Phantoms at 3 T. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2020; vol:vol125.028. [PMID: 35573857 PMCID: PMC9097953 DOI: 10.6028/jres.125.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 06/14/2023]
Abstract
Imaging phantoms are used to calibrate and validate the performance of magnetic resonance imaging (MRI) systems. Many new materials have been developed for additive manufacturing (three-dimensional [3D] printing) processes that may be useful in the direct printing or casting of dimensionally accurate, anatomically accurate, patient-specific, and/or biomimetic MRI phantoms. The T1, T2, and T2* spin relaxation times of polymer samples were tested to discover materials for use as tissue mimics and structures in MRI phantoms. This study included a cohort of polymer compounds that was tested in cured form. The cohort consisted of 101 standardized polymer samples fabricated from: two-part silicones and polyurethanes used in commercial casting processes; one-part optically cured polyurethanes used in 3D printing; and fused deposition thermoplastics used in 3D printing. The testing was performed at 3 T using inversion recovery, spin echo, and gradient echo sequences for T1, T2, and T2*, respectively. T1, T2, and T2* values were plotted with error bars to allow the reader to assess how well a polymer matches a tissue for a specific application. A correlation was performed between T1, T2, T2* values and material density, elongation, tensile strength, and hardness. Two silicones, SI_XP-643 and SI_P-45, may be usable mimics for reported liver values; one silicone, SI_XP-643, may be a useful mimic for muscle; one silicone, SI_XP-738, may be a useful mimic for white matter; and four silicones, SI_P-15, SI_GI-1000, SI_GI-1040, and SI_GI-1110, may be usable mimics for spinal cord. Elongation correlated to T2 (p = 0.0007), tensile strength correlated to T1 (p = 0.002), T2 (p = 0.0003), and T2* (p = 0.003). The 80 samples not providing measurable signal with T1, T2, T2* relaxation values too short to measure with the standard sequences, may be useful for MRI-invisible fixturing and medical devices at 3 T.
Collapse
Affiliation(s)
- B. E. Yunker
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305,
USA
- University of Colorado-Denver/Anschutz, Aurora, CO 80045,
USA
| | - K. F. Stupic
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305,
USA
| | - J. L. Wagner
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305,
USA
| | - S. Huddle
- University of Colorado-Denver/Anschutz, Aurora, CO 80045,
USA
| | - R. Shandas
- University of Colorado-Denver/Anschutz, Aurora, CO 80045,
USA
| | - R. F. Weir
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305,
USA
| | - S. E. Russek
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305,
USA
| | - K. E. Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, CO 80305,
USA
| |
Collapse
|
15
|
Ferrari E, Gallo M, Wang C, Zhang L, Taramasso M, Maisano F, Pirelli L, Berdajs D, von Segesser LK. Three-dimensional printing in adult cardiovascular medicine for surgical and transcatheter procedural planning, teaching and technological innovation. Interact Cardiovasc Thorac Surg 2020; 30:203-214. [PMID: 31633170 DOI: 10.1093/icvts/ivz250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D)-printing technologies in cardiovascular surgery have provided a new way to tailor surgical and percutaneous treatments. Digital information from standard cardiac imaging is integrated into physical 3D models for an accurate spatial visualization of anatomical details. We reviewed the available literature and analysed the different printing technologies, the required procedural steps for 3D prototyping, the used cardiac imaging, the available materials and the clinical implications. We have highlighted different materials used to replicate aortic and mitral valves, vessels and myocardial properties. 3D printing allows a heuristic approach to investigate complex cardiovascular diseases, and it is a unique patient-specific technology providing enhanced understanding and tactile representation of cardiovascular anatomies for the procedural planning and decision-making process. 3D printing may also be used for medical education and surgical/transcatheter training. Communication between doctors and patients can also benefit from 3D models by improving the patient understanding of pathologies. Furthermore, medical device development and testing can be performed with rapid 3D prototyping. Additionally, widespread application of 3D printing in the cardiovascular field combined with tissue engineering will pave the way to 3D-bioprinted tissues for regenerative medicinal applications and 3D-printed organs.
Collapse
Affiliation(s)
- Enrico Ferrari
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | - Michele Gallo
- Cardiovascular Surgery, Cardiocentro Ticino, Lugano, Switzerland
| | | | - Lei Zhang
- Cardiovascular Surgery, Nanjing Jinling Hospital, Nanjing, China
| | | | - Francesco Maisano
- Cardiovascular Surgery, Zurich University Hospital, Zurich, Switzerland
| | - Luigi Pirelli
- Cardiothoracic Surgery, Lenox Hill Heart and Vascular Institute, New York, NY, USA
| | - Denis Berdajs
- Cardiovascular Surgery, Basel University Hospital, Basel, Switzerland
| | - Ludwig Karl von Segesser
- Department of Surgery, Cardiovascular Research Unit, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
Thorburn C, Abdel-Razek O, Fagan S, Pearce N, Furey M, Harris S, Bartellas M, Adams C. Three-dimensional printing for assessment of paravalvular leak in transcatheter aortic valve implantation. J Cardiothorac Surg 2020; 15:211. [PMID: 32758268 PMCID: PMC7405457 DOI: 10.1186/s13019-020-01255-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022] Open
Abstract
Background Three-dimensional (3D) models have the unique ability to replicate individualized cardiac anatomy and may therefore provide clinical benefit. Transcatheter aortic valve implantation (TAVI) currently relies on preoperative imaging for accurate valve sizing, type of valve used, and avoidance of complications. Three-dimensional (3D) modelling may provide benefit for optimal preoperative TAVI planning. The goal of this study is to assess the utility of 3D modelling in the prediction of paravalvular leak (PVL) post TAVI. Methods Retrospective analysis of five patients who underwent TAVI at our center. Pre-operative cardiac gated CT images were utilized to create a 3D printed model with true size aortic root dimensions, including the coronary artery ostium location and left ventricular outflow tract. Deployment of the corresponding model and size TAVI valve into the created 3D model at a similar depth of implantation via fluoroscopy was performed for each patient. Degree of PVL was assessed using a closed system with water infusion under pressure over a duration of 5 s. Correlation was made between the volume obtained in the closed loop model during the pressurized period and the degree of PVL reported on the patients post TAVI placement on transthoracic echocardiogram. Results One female, and four males (age in years ranged from 68 to 87) underwent successful TAVI (0% 30-day mortality). PVL on post procedure TTE ranged from none to trivial. Successful deployment of TAVI valves inside the 3D model occurred in all cases. The average volume of water collected on three trials over 5 s ranged between 19.1–24.1 ml A multivariate linear regression showed significant association between the degree of PVL reported on post-operative transthoracic echocardiogram and the amount of volume detected in the 3D model (difference: -3.9657, 95% CI: (− 4.6761,-3.2554), p < 0.001). Conclusions Our experiments show that replicated 3D models have potential clinical utilization in predicting PVL in the TAVI population. Future research into the role of 3D modelling in the field of TAVI should continue to be explored.
Collapse
Affiliation(s)
- Casey Thorburn
- Discipline of General Surgery, Memorial University of Newfoundland, St. John's, Canada
| | - Omar Abdel-Razek
- Discipline of Cardiology, University of Ottawa, Memorial University, Ottawa, Canada
| | - Susan Fagan
- Department of Cardiology, Memorial University of Newfoundland, St. John's, Canada
| | - Neil Pearce
- Department of Cardiology, Memorial University of Newfoundland, St. John's, Canada
| | - Michael Furey
- Department of Cardiology, Memorial University of Newfoundland, St. John's, Canada
| | - Scott Harris
- Department of Radiology, Memorial University, St. John's, Canada
| | | | - Corey Adams
- Department of Cardiac Surgery, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
17
|
Wang C, Zhang L, Qin T, Xi Z, Sun L, Wu H, Li D. 3D printing in adult cardiovascular surgery and interventions: a systematic review. J Thorac Dis 2020; 12:3227-3237. [PMID: 32642244 PMCID: PMC7330795 DOI: 10.21037/jtd-20-455] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
3D printing in adult cardiac and vascular surgery has been evaluated over the last 10 years, and all of the available literature reports benefits from the use of 3D models. In the present study, we analyzed the current applications of 3D printing for adult cardiovascular disease treated with surgical or catheter-based interventions, including the clinical medical simulation of physiological or pathology conducted with 3D printing in this field. A search of PubMed and MEDLINE databases were supplemented by searching through bibliographies of key articles. Thereafter, data on demographic, clinical scenarios and application, imaging modality, purposes of using with 3D printing, outcomes and follow-up were extracted. A total of 43 articles were deemed eligible and included. 296 patients (mean age: 65.4±14.2 years; male, 58.2%) received 3D printing for cardiac and vascular surgery or conditions [percutaneous left atrial appendage occlusion (LAAO), TAVR, mitral valve disease, aortic valve replacement, coronary artery abnormality, HOCM, aortic aneurysm and aortic dissection, Kommerell's diverticulum, primary cardiac tumor and ventricular aneurysm]. Eight papers reported the utility of 3D printing in the medical simulator and training fields. Most studies were conducted starting in 2014. Twenty-six was case report. The major scenario used with 3D printing technology was LAAO (50.3%) and followed by TAVR (17.6%). CT and echocardiography were two main imaging techniques that were used to generate 3D-printed heart models. All studies showed that 3D-printed models were helpful for preoperative planning, orientation, and medical teaching. The important finding is that 3D printing provides a unique patient-specific method to assess complex anatomy and is helpful for intraoperative orientation, decision-making, creating functional models, and teaching adult cardiac and vascular surgery, including catheter-based heart surgery.
Collapse
Affiliation(s)
- Changtian Wang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Tao Qin
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Zhilong Xi
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Lei Sun
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Haiwei Wu
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| | - Demin Li
- Department of Cardiovascular Surgery, Jinling Hospital, Nanjing University, School Medicine, Nanjing 210002, China
| |
Collapse
|
18
|
Radzi S, Tan HKJ, Tan GJS, Yeong WY, Ferenczi MA, Low-Beer N, Mogali SR. Development of a three-dimensional printed heart from computed tomography images of a plastinated specimen for learning anatomy. Anat Cell Biol 2020; 53:48-57. [PMID: 32274249 PMCID: PMC7118264 DOI: 10.5115/acb.19.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Learning anatomy is commonly facilitated by use of cadavers, plastic models and more recently three-dimensional printed (3DP) anatomical models as they allow students to physically touch and hold the body segments. However, most existing models are limited to surface features of the specimen, with little opportunity to manipulate the structures. There is much interest in developing better 3DP models suitable for anatomy education. This study aims to determine the feasibility of developing a multi-material 3DP heart model, and to evaluate students' perceptions of the model. Semi-automated segmentation was performed on computed tomgoraphy plastinated heart images to develop its 3D digital heart model. Material jetting was used as part of the 3D printing process so that various colors and textures could be assigned to the individual segments of the model. Morphometric analysis was conducted to quantify the differences between the printed model and the plastinated heart. Medical students' opinions were sought using a 5-point Likert scale. The 3DP full heart was anatomically accurate, pliable and compressible to touch. The major vessels of the heart were color-coded for easy recognition. Morphometric analysis of the printed model was comparable with the plastinated heart. Students were positive about the quality of the model and the majority of them reported that the model was useful for their learning and that they would recommend their use for anatomical education. The successful feasibility study and students' positive views suggest that the development of multi-material 3DP models is promising for medical education.
Collapse
Affiliation(s)
- Shairah Radzi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Heang Kuan Joel Tan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Gerald Jit Shen Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | | | - Naomi Low-Beer
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | |
Collapse
|
19
|
Sun Z. Use of Three-dimensional Printing in the Development of Optimal Cardiac CT Scanning Protocols. Curr Med Imaging 2020; 16:967-977. [PMID: 32107994 DOI: 10.2174/1573405616666200124124140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, 6845, Australia
| |
Collapse
|
20
|
Color Enhancement Strategies for 3D Printing of X-ray Computed Tomography Bone Data for Advanced Anatomy Teaching Models. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three-dimensional (3D) printed anatomical models are valuable visual aids that are widely used in clinical and academic settings to teach complex anatomy. Procedures for converting human biomedical image datasets, like X-ray computed tomography (CT), to prinTable 3D files were explored, allowing easy reproduction of highly accurate models; however, these largely remain monochrome. While multi-color 3D printing is available in two accessible modalities (binder-jetting and poly-jet/multi-jet systems), studies embracing the viability of these technologies in the production of anatomical teaching models are relatively sparse, especially for sub-structures within a segmentation of homogeneous tissue density. Here, we outline a strategy to manually highlight anatomical subregions of a given structure and multi-color 3D print the resultant models in a cost-effective manner. Readily available high-resolution 3D reconstructed models are accessible to the public in online libraries. From these databases, four representative files (of a femur, lumbar vertebra, scapula, and innominate bone) were selected and digitally color enhanced with one of two strategies (painting or splitting) guided by Feneis and Dauber’s Pocket Atlas of Human Anatomy. Resulting models were created via 3D printing with binder-jet and/or poly-jet machines with important features, such as muscle origin and insertion points, highlighted using multiple colors. The resulting multi-color, physical models are promising teaching tools that will enhance the anatomical learning experience.
Collapse
|
21
|
Parwani P, Co M, Ramesh T, Akhter N, Iliescu C, Palaskas N, Kim P, Gladish G, Stojanovska J, Abramov D, Lopez-Mattei J. Differentiation of Cardiac Masses by Cardiac Magnetic Resonance Imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020. [DOI: 10.1007/s12410-019-9522-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Liddy S, McQuade C, Walsh KP, Loo B, Buckley O. The Assessment of Cardiac Masses by Cardiac CT and CMR Including Pre-op 3D Reconstruction and Planning. Curr Cardiol Rep 2019; 21:103. [DOI: 10.1007/s11886-019-1196-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Thaker R, Araujo-Gutierrez R, Marcos-Abdala HG, Agrawal T, Fida N, Kassi M. Innovative Modeling Techniques and 3D Printing in Patients with Left Ventricular Assist Devices: A Bridge from Bench to Clinical Practice. J Clin Med 2019; 8:E635. [PMID: 31075841 PMCID: PMC6572374 DOI: 10.3390/jcm8050635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
Left ventricular assist devices (LVAD) cause altered flow dynamics that may result in complications such as stroke, pump thrombosis, bleeding, or aortic regurgitation. Understanding altered flow dynamics is important in order to develop more efficient and durable pump configurations. In patients with LVAD, hemodynamic assessment is limited to imaging techniques such as echocardiography which precludes detailed assessment of fluid dynamics. In this review article, we present some innovative modeling techniques that are often used in device development or for research purposes, but have not been utilized clinically. Computational fluid dynamic (CFD) modeling is based on computer simulations and particle image velocimetry (PIV) employs ex vivo models that helps study fluid characteristics such as pressure, shear stress, and velocity. Both techniques may help elaborate our understanding of complications that occur with LVAD and could be potentially used in the future to troubleshoot LVAD-related alarms. These techniques coupled with 3D printing may also allow for patient-specific device implants, lowering the risk of complications increasing device durability.
Collapse
Affiliation(s)
- Rishi Thaker
- Touro College of Osteopathic Medicine, Middletown, New York, NY 10940, USA.
| | - Raquel Araujo-Gutierrez
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Hernan G Marcos-Abdala
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Tanushree Agrawal
- Department of Internal Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Nadia Fida
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Mahwash Kassi
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
24
|
|
25
|
Sun Z. 3D printing in medicine: current applications and future directions. Quant Imaging Med Surg 2018; 8:1069-1077. [PMID: 30701160 PMCID: PMC6328380 DOI: 10.21037/qims.2018.12.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
26
|
Manufacturing Better Outcomes in Cardiovascular Intervention: 3D Printing in Clinical Practice Today. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:95. [DOI: 10.1007/s11936-018-0692-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Reardon MJ. See one, do one, teach one? J Thorac Cardiovasc Surg 2018; 157:e45-e46. [PMID: 30266396 DOI: 10.1016/j.jtcvs.2018.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Michael J Reardon
- Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, Tex.
| |
Collapse
|
28
|
Yanagawa B, Mazine A, Chan EY, Barker CM, Gritti M, Reul RM, Ravi V, Ibarra S, Shapira OM, Cusimano RJ, Reardon MJ. Surgery for Tumors of the Heart. Semin Thorac Cardiovasc Surg 2018; 30:385-397. [PMID: 30205144 DOI: 10.1053/j.semtcvs.2018.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/04/2018] [Indexed: 11/11/2022]
Abstract
Most surgeons will encounter only a handful of primary cardiac tumors outside of myxomas. Approximately 3 quarters of primary cardiac tumors are benign and 1 quarter is malignant. In most cases, cardiac tumors are silent but when symptoms do occur, they are primarily determined by tumor size and anatomical location, not by histopathology. The diagnosis and preoperative imaging relies heavily on multimodal imaging including echocardiography, computed tomography, magnetic resonance imaging, and coronary angiography. Surgical resection is the most common treatment for most simple primary cardiac tumors and for some complex benign tumors. Surgical resection of primary cardiac tumors frequently involves the need for complex cardiac reconstruction, particularly when malignant. Secondary tumors to the heart are 30 times more frequent than primary cardiac tumors, and their incidence is increasing, largely as a result of advances in cancer diagnosis and therapy. Surgical resection is feasible in only a small fraction of highly-selected patients with secondary tumors to the heart. For complex benign tumors-such as paraganglioma or large fibromas-and all primary and secondary malignant tumors, a multidisciplinary cardiac tumor team review in experienced centers of excellence is recommended.
Collapse
Affiliation(s)
- Bobby Yanagawa
- Division of Cardiac Surgery, Department of Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Amine Mazine
- Division of Cardiac Surgery, Department of Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Edward Y Chan
- Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Colin M Barker
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Michael Gritti
- Division of Cardiac Surgery, Department of Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Ross M Reul
- Department of Cardiovascular Surgery, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Vinod Ravi
- Department of Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sergio Ibarra
- Department of Cardiovascular Surgery, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Oz M Shapira
- Department of Cardiothoracic Surgery, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Robert J Cusimano
- Division of Cardiac Surgery, Department of Surgery, Peter Munk Cardiac Centre, Toronto General Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Michael J Reardon
- Department of Cardiovascular Surgery, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|
29
|
Affiliation(s)
- Rodolfo V. Rocha
- Division of Cardiac Surgery, Peter Munk Cardiac Centre, Toronto General Hospital; University of Toronto; Toronto Canada
| | - Jagdish Butany
- Department of Pathology; Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Robert J. Cusimano
- Division of Cardiac Surgery, Peter Munk Cardiac Centre, Toronto General Hospital; University of Toronto; Toronto Canada
| |
Collapse
|
30
|
Riggs KW, Dsouza G, Broderick JT, Moore RA, Morales DLS. 3D-printed models optimize preoperative planning for pediatric cardiac tumor debulking. Transl Pediatr 2018; 7:196-202. [PMID: 30159245 PMCID: PMC6087832 DOI: 10.21037/tp.2018.06.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND This study reports the first known application of 3-dimensional (3D) printing of cardiac tumors to preoperatively plan debulking in infants. 3D-printed cardiac tumor models were used to identify the spacial relationship between the tumors and coronary arteries as well as understand the depth and infiltration of the tumors. METHODS Physical 3D cardiac tumor models of two children were obtained using medical imaging, image 3D rendering and modeling, and 3D printing. The hearts were 3D-printed in an opaque material while the tumors were made transparent to allow optimal visualization of the cardiovascular anatomy within the tumor. The surgical team used these models to plan exposure of the tumor, as well as, the extent of debulking. RESULTS Patient 1 had a cardiac tumor arising from the anterior surface of the right ventricle causing significant right ventricular outflow tract obstruction and involving the right and left coronary artery courses. Patient 2 had a cardiac tumor arising from the left ventricle and extending beyond the left atrium compressing the airway preventing extubation, and surrounding the left coronary artery system. In both patients, 3D-printed models were used to maximize debulking and avoid injury to the coronaries. CONCLUSIONS 3D-printed cardiac tumor and anatomic models were effectively used to preoperatively plan two pediatric tumor debulkings. Both patients had tumors that were integrally involved with the coronary arteries. The 3D models helped devise a safe surgical strategy for maximal tumor debulking while protecting the coronary circulation.
Collapse
Affiliation(s)
- Kyle W Riggs
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gavin Dsouza
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John T Broderick
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ryan A Moore
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David L S Morales
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
31
|
Zhao L, Zhou S, Fan T, Li B, Liang W, Dong H. Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery. J Card Surg 2018; 33:24-27. [PMID: 29409167 DOI: 10.1111/jocs.13523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To assess the clinical value of three-dimensional (3D) printing technology for treatment strategies for complex double outlet right ventricle (DORV). METHODS Twenty-five patients with complex double outlet right ventricle were enrolled in this study. The patients were divided into two groups: 3D printing group (eight patients) and a non-3-D printing control group (17 patients). The cardiac images of patients in the 3D printing group were transformed to Digital Imaging and Communications and were segmented and reconstructed to create a heart model. No cardiac models were created in the control group. A Pearson coefficient analysis was used to assess the correlation between measurements of 3D printed models and computed tomography angiography (CTA) data. Pre-operative assessment and planning were performed with 3D printed models, and then operative time and recovery time were compared between the two groups. RESULTS There was good correlation (r = 0.977) between 3D printed models and CTA data. Patients in the 3D printing group had shorter aortic cross-clamp time (102.88 vs 127.76 min, P = 0.094) and cardiopulmonary bypass time (151.63 vs 184.24 min; P = 0.152) than patients in the control group. Patients with 3D printed models had significantly lower mechanical ventilation time (56.43 vs 96.76 h, P = 0.040) and significantly shorter intensive care unit time (99.04 vs 166.94 h, P = 0.008) than patients in the control group. CONCLUSIONS 3D printed models can accurately demonstrate anatomic structures and are useful for pre-operative treatment strategies in DORV.
Collapse
Affiliation(s)
- Liyun Zhao
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Sijie Zhou
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Taibing Fan
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Li
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Liang
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoju Dong
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Lazar HL. Three-dimensional printing in cardiac surgery: Enhanced imagery results in enhanced outcomes. J Card Surg 2018; 33:28. [PMID: 29409168 DOI: 10.1111/jocs.13514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harold L Lazar
- Division of Cardiac Surgery, The Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
33
|
Suzuki R, Miyamoto T, Hirayama R, Sakaguchi T, Uekihara K, Yoshioka Y. Primary cardiac leiomyosarcoma causing severe pulmonary hypertension. J Card Surg 2017; 32:794-796. [PMID: 29169207 DOI: 10.1111/jocs.13241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryusuke Suzuki
- Department of Cardiovascular Surgery, Japanese Red Cross Kumamoto Hospital, Higashi-Ku, Kumamoto-City, Japan
| | - Tomoya Miyamoto
- Department of Cardiovascular Surgery, Japanese Red Cross Kumamoto Hospital, Higashi-Ku, Kumamoto-City, Japan
| | - Ryo Hirayama
- Department of Cardiovascular Surgery, Japanese Red Cross Kumamoto Hospital, Higashi-Ku, Kumamoto-City, Japan
| | - Takeshi Sakaguchi
- Department of Cardiovascular Surgery, Japanese Red Cross Kumamoto Hospital, Higashi-Ku, Kumamoto-City, Japan
| | - Kenta Uekihara
- Department of Cardiovascular Surgery, Japanese Red Cross Kumamoto Hospital, Higashi-Ku, Kumamoto-City, Japan
| | - Yuki Yoshioka
- Department of Cardiovascular Surgery, Japanese Red Cross Kumamoto Hospital, Higashi-Ku, Kumamoto-City, Japan
| |
Collapse
|
34
|
Farooqi KM, Mahmood F. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease. J Cardiothorac Vasc Anesth 2017; 32:1937-1945. [PMID: 29277300 DOI: 10.1053/j.jvca.2017.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 01/12/2023]
Abstract
Two-dimensional visualization of complex congenital heart disease has limitations in that there is variation in the interpretation by different individuals. Three-dimensional printing technology has been in use for decades but is currently becoming more commonly used in the medical field. Congenital heart disease serves as an ideal pathology to employ this technology because of the variation of anatomy between patients. In this review, the authors aim to discuss basics of applicability of three-dimensional printing, the process involved in creating a model, as well as challenges with establishing utility and quality.
Collapse
Affiliation(s)
- Kanwal M Farooqi
- Division of Pediatric Cardiology, New York Presbyterian-Columbia University Medical Center, New York, NY.
| | - Feroze Mahmood
- Department of Anesthesia Critical Care and Pain Management, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
35
|
Ajao MO, Clark NV, Kelil T, Cohen SL, Einarsson JI. Case Report: Three-Dimensional Printed Model for Deep Infiltrating Endometriosis. J Minim Invasive Gynecol 2017. [DOI: 10.1016/j.jmig.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation. World Neurosurg 2017; 107:1049.e1-1049.e7. [DOI: 10.1016/j.wneu.2017.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/03/2017] [Indexed: 11/22/2022]
|
37
|
Xu Z, Wu Q, Li H, Zhang M. Surgical resection of giant left ventricular fibromas in children. J Card Surg 2017; 32:662-664. [PMID: 28929583 DOI: 10.1111/jocs.13212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary cardiac tumors in infancy and childhood are rare and usually benign. We report two children with giant left ventricular fibromas and discuss their surgical management.
Collapse
Affiliation(s)
- Zhonghua Xu
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Qingyu Wu
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Hongyin Li
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Mingkui Zhang
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing, China
| |
Collapse
|
38
|
Foley TA, El Sabbagh A, Anavekar NS, Williamson EE, Matsumoto JM. 3D-Printing: Applications in Cardiovascular Imaging. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0239-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
3D Printing from Cardiac Computed Tomography for Procedural Planning. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Sander IM, Liepert TT, Doney EL, Leevy WM, Liepert DR. Patient Education for Endoscopic Sinus Surgery: Preliminary Experience Using 3D-Printed Clinical Imaging Data. J Funct Biomater 2017; 8:E13. [PMID: 28387702 PMCID: PMC5491994 DOI: 10.3390/jfb8020013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
Within the Ear, Nose, and Throat (ENT) medical space, a relatively small fraction of patients follow through with elective surgeries to fix ailments such as a deviated septum or occluded sinus passage. Patient understanding of their diagnosis and treatment plan is integral to compliance, which ultimately yields improved medical outcomes and better quality of life. Here we report the usage of advanced, polyjet 3D printing methods to develop a multimaterial replica of human nasal sinus anatomy, derived from clinical X-ray computed tomography (CT) data, to be used as an educational aid during physician consultation. The final patient education model was developed over several iterations to optimize material properties, anatomical accuracy and overall display. A two-arm, single-center, randomized, prospective study was then performed in which 50 ENT surgical candidates (and an associated control group, n = 50) were given an explanation of their anatomy, disease state, and treatment options using the education model as an aid. Statistically significant improvements in patient ratings of their physician's explanation of their treatment options (p = 0.020), self-rated anatomical understanding (p = 0.043), self-rated understanding of disease state (p = 0.016), and effectiveness of the visualization (p = 0.007) were noted from the population that viewed the 3D education model, indicating it is an effective tool which ENT surgeons may use to educate and interact with patients.
Collapse
Affiliation(s)
- Ian M Sander
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA.
| | - Taimi T Liepert
- Michiana Sleep Solutions and Allied ENT Speciality Center, South Bend, IN 46635, USA.
| | - Evan L Doney
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA.
| | - W Matthew Leevy
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA.
| | - Douglas R Liepert
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA.
- Michiana Sleep Solutions and Allied ENT Speciality Center, South Bend, IN 46635, USA.
| |
Collapse
|
41
|
Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D Printing and its Future Directions. JACC Cardiovasc Imaging 2017; 10:171-184. [PMID: 28183437 PMCID: PMC5664227 DOI: 10.1016/j.jcmg.2016.12.001] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions.
Collapse
Affiliation(s)
- Marija Vukicevic
- Department of Cardiology, Weill Cornell Medicine, Houston Methodist Research Institute, Houston, Texas
| | - Bobak Mosadegh
- Department of Radiology and Medicine, Weill Cornell Medicine, New-York Presbyterian, New York, New York
| | - James K Min
- Department of Radiology and Medicine, Weill Cornell Medicine, New-York Presbyterian, New York, New York
| | - Stephen H Little
- Department of Cardiology, Weill Cornell Medicine, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
42
|
Cardiovascular 3D Printing. 3D Print Med 2017. [DOI: 10.1007/978-3-319-61924-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Abstract
3D-printed models fabricated from CT, MRI, or echocardiography data provide the advantage of haptic feedback, direct manipulation, and enhanced understanding of cardiovascular anatomy and underlying pathologies. Reported applications of cardiovascular 3D printing span from diagnostic assistance and optimization of management algorithms in complex cardiovascular diseases, to planning and simulating surgical and interventional procedures. The technology has been used in practically the entire range of structural, valvular, and congenital heart diseases, and the added-value of 3D printing is established. Patient-specific implants and custom-made devices can be designed, produced, and tested, thus opening new horizons in personalized patient care and cardiovascular research. Physicians and trainees can better elucidate anatomical abnormalities with the use of 3D-printed models, and communication with patients is markedly improved. Cardiovascular 3D bioprinting and molecular 3D printing, although currently not translated into clinical practice, hold revolutionary potential. 3D printing is expected to have a broad influence in cardiovascular care, and will prove pivotal for the future generation of cardiovascular imagers and care providers. In this Review, we summarize the cardiovascular 3D printing workflow, from image acquisition to the generation of a hand-held model, and discuss the cardiovascular applications and the current status and future perspectives of cardiovascular 3D printing.
Collapse
|