1
|
Chang YH, Wu KC, Wang KH, Ding DC. Effects of the Overexpression of Progesterone Receptors on a Precancer p53 and Rb-Defective Human Fallopian Tube Epithelial Cell Line. Int J Mol Sci 2023; 24:11823. [PMID: 37511582 PMCID: PMC10380282 DOI: 10.3390/ijms241411823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of progesterone receptors A (PRA) and B (PRB) on proliferation, migration, invasion, anchorage-independent growth (AIG), and apoptosis of FE25 cells, a precancer p53- and retinoblastoma-defective human fallopian tube epithelial cell line. We observed that the transfection of PRA (FE25-PRA) or PRB (FE25-PRB) into FE25 cells significantly increased the expression of PRA or PRB at both RNA and protein levels without affecting cell morphology. The FE25-PRA cells exhibited slower proliferation, whereas FE25-PRB showed faster cell proliferation than the control cells. In contrast, the FE25-PRA cells showed the highest migration and invasion abilities, whereas the FE25-PRB cells showed the lowest migration and invasion abilities. After treatment with progesterone, all cell types showed decreased AIG levels, increased apoptotic rates in Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling assay (TUNEL) staining, and increased levels of apoptotic proteins ascertained based on cleaved caspase-3 levels. The half-maximal inhibitory concentration of carboplatin increased in FE25-PRB cells, but that of paclitaxel remained unchanged. Overall, this study suggests that PRA and PRB have distinct roles in regulating the behavior of FE25 cells, and targeting these receptors could be a potential therapeutic strategy for ovarian cancer treatment. If PRA or PRB overexpression is observed in high-grade serous carcinoma, progesterone could be considered as an adjuvant therapy for these specific cancer patients. However, further research is needed to confirm these findings and investigate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Hu J, Xu Z, Ye Z, Li J, Hao Z, Wang Y. The association between single nucleotide polymorphisms and ovarian cancer risk: A systematic review and network meta-analysis. Cancer Med 2023; 12:541-556. [PMID: 35637613 PMCID: PMC9844622 DOI: 10.1002/cam4.4891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The relationship between single nucleotide polymorphisms (SNPs) and ovarian cancer (OC) risk remains controversial. This systematic review and network meta-analysis was aimed to determine the association between SNPs and OC risk. METHODS Several databases (PubMed, EMBASE, China National Knowledge Infrastructure, Wanfang databases, China Science and Technology Journal Database, and China Biology Medicine disc) were searched to summarize the association between SNPs and OC published throughout April 2021. Direct meta-analysis was used to identify SNPs that could predict the incidence of OC. Ranking probability resulting from network meta-analysis and the Thakkinstian's algorithm was used to select the most appropriate gene model. The false positive report probability (FPRP) and Venice criteria were further tested for credible relationships. Subgroup analysis was also carried out to explore whether there are racial differences. RESULTS A total of 63 genes and 92 SNPs were included in our study after careful consideration. Fok1 rs2228570 is likely a dominant risk factor for the development of OC compared to other selected genes. The dominant gene model of Fok1 rs2228570 (pooled OR = 1.158, 95% CI: 1.068-1.256) was determined to be the most suitable model with a FPRP <0.2 and moderate credibility. CONCLUSIONS Fok1 rs2228570 is closely linked to OC risk, and the dominant gene model is likely the most appropriate model for estimating OC susceptibility.
Collapse
Affiliation(s)
- Jia Hu
- Department of GastroenterologyThe Second Xiangya Hospital, Central South UniversityChangshaChina
- Research Center of Digestive DiseaseThe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Zhe Xu
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhuomiao Ye
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jin Li
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Zhinan Hao
- Department of Gastrointestinal SurgeryHebei General HospitalShijiazhuangChina
| | - Yongjun Wang
- Department of GastroenterologyThe Second Xiangya Hospital, Central South UniversityChangshaChina
- Research Center of Digestive DiseaseThe Second Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
3
|
Genetic variation in progesterone receptor gene and ovarian cancer risk: A case control study. Gene X 2022; 820:146288. [PMID: 35143942 DOI: 10.1016/j.gene.2022.146288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Previous studies examined the association of genetic variation in progesterone receptor (PR) gene (PGR) with ovarian cancer, possibly by altering the expression of PR-B isoform, but with mixed outcome. OBJECTIVE This study evaluated the association of PGR variants with ovarian cancer and associated features. METHODS This was a retrospective case-control study, which involved 82 women with ovarian cancer and 95 cancer-free women who served as controls. Genotyping was done by Taqman® SNP genotyping by qRT-PCR. The PGR variants tested were rs471767 (A > G), rs590688 (G > C), and rs10895068 (G > A). Stratification analyses were used for testing the correlation between the PGR variants with ovarian cancer susceptibility according to menstruation status, FIGO classification, pathological grade, and chemotherapy. RESULTS Significantly lower minor allele frequency (MAF) of rs10895068 was seen among ovarian cancer patients, thereby imparting disease protective nature to this variant. Significant association of rs10895068 genotypes with ovarian cancer was seen under the dominant model, but not other genetic models. FIGO classification correlated positively with rs471767 and rs10895068, while rs10895068 correlated positively with lymph node positivity. Three-locus haplotype analysis identified ACA and HCG haplotypes to be negatively associated with the risk of ovarian cancer. CONCLUSIONS This report confirms the contribution of PGR variants, specifically the rs10895068 (+331G/A) the etiology of ovarian cancer.
Collapse
|
4
|
Kamaraju S, Fowler AM, Weil E, Wisinski KB, Truong TH, Lehr M, Chaudhary LN, Cheng YC, Chitambar CR, Rui H, Yee D, Lange C. Leveraging Antiprogestins in the Treatment of Metastatic Breast Cancer. Endocrinology 2021; 162:6178343. [PMID: 33735382 DOI: 10.1210/endocr/bqab060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Although incurable, the prognosis for patients with metastatic breast cancer (MBC) has considerably improved with the approvals of multiple targeted and cytotoxic therapies. For hormone receptor-positive (HR+), ie, estrogen receptor and progesterone receptor positive (ER+/PgR+) and human epidermal growth factor receptor-2 negative (ie, ERBB2 gene nonamplified or HER2-) MBC, current approved treatment options include palliative endocrine therapy (ET), cyclin-dependent kinase (CDK 4/6) inhibitors, mTOR inhibitors, and PI3 kinase inhibitors. Most treatments target ER+ disease regardless of PgR status. Although the presence of PgR is crucial for ER+ cell proliferation in both normal and malignant mammary tissue, currently, there are no approved treatments that specifically target PgR. Recent literature has demonstrated the potential of antiprogestins in the treatment of MBC both in preclinical and clinical studies. Antiprogestins, including selective PgR modulators (SPRMs) that act as PgR antagonists, are a promising class of therapeutics for overcoming endocrine resistance in patients who develop activating estrogen receptor 1 (ESR1) and phosphatidylinositol 3-kinase (PI3K) gene mutations after prior endocrine therapy. Herein, we summarize the role of PgR and antiprogestins in the treatment of MBC. Other aspects on the use of functional imaging, clinical trials incorporating novel antiprogestins, and potential treatment combinations to overcome endocrine resistance will be briefly discussed.
Collapse
Affiliation(s)
- Sailaja Kamaraju
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amy M Fowler
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Elizabeth Weil
- Froedtert Health, Cancer Center, Milwaukee, WI 53226, USA
| | - Kari B Wisinski
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Lehr
- Context Therapeutics, Philadelphia, PA 19104, USA
| | - Lubna N Chaudhary
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yee Chung Cheng
- Division of Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- Division of Hematology-Oncology Medical College of Wisconsin, Cancer Center, 4th Fl Administrative Offices, Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | - Hallgeir Rui
- Pathology and Laboratory Medicine, Medical College of Wisconsin , Milwaukee, WI 53226, USA
| | - Douglas Yee
- Division of Hematology-Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol Lange
- Division of Hematology-Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
6
|
Parida S, Chakraborty S, Maji RK, Ghosh Z. Elucidating the gene regulatory networks modulating cancer stem cells and non-stem cancer cells in high grade serous ovarian cancer. Genomics 2018; 111:103-113. [PMID: 29355597 DOI: 10.1016/j.ygeno.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The origin and pathogenesis of epithelial ovarian cancer have perplexed investigators for decades. The most prevalent type of it is the high-grade serous ovarian carcinoma (HGSOv) which is a highly aggressive disease with high relapse rates and insurgence of chemo-resistance at later stages of treatment. These are driven by a rare population of stem cell like cancer cells called cancer stem cells (CSCs). We have taken up a systems approach to find out the common gene interaction paths between non-CSC tumor cells (CCs) and CSCs in HGSOv. Detailed investigation reveals a set of 17 Transcription Factors (named as pivot-TFs) which can govern changes in the mode of gene regulation along these paths. Overall, this work highlights a divergent road map of functional information relayed by these common key players in the two cell states, which might aid towards designing novel therapeutic measures to target the CSCs for ovarian cancer therapy.
Collapse
Affiliation(s)
- Sibun Parida
- Bioinformatics Centre, Bose Institute, Kolkata 700054, India
| | | | | | - Zhumur Ghosh
- Bioinformatics Centre, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
7
|
Choudhury AR, Singh KK. Mitochondrial determinants of cancer health disparities. Semin Cancer Biol 2017; 47:125-146. [PMID: 28487205 PMCID: PMC5673596 DOI: 10.1016/j.semcancer.2017.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Mitochondria, which are multi-functional, have been implicated in cancer initiation, progression, and metastasis due to metabolic alterations in transformed cells. Mitochondria are involved in the generation of energy, cell growth and differentiation, cellular signaling, cell cycle control, and cell death. To date, the mitochondrial basis of cancer disparities is unknown. The goal of this review is to provide an understanding and a framework of mitochondrial determinants that may contribute to cancer disparities in racially different populations. Due to maternal inheritance and ethnic-based diversity, the mitochondrial genome (mtDNA) contributes to inherited racial disparities. In people of African ancestry, several germline, population-specific haplotype variants in mtDNA as well as depletion of mtDNA have been linked to cancer predisposition and cancer disparities. Indeed, depletion of mtDNA and mutations in mtDNA or nuclear genome (nDNA)-encoded mitochondrial proteins lead to mitochondrial dysfunction and promote resistance to apoptosis, the epithelial-to-mesenchymal transition, and metastatic disease, all of which can contribute to cancer disparity and tumor aggressiveness related to racial disparities. Ethnic differences at the level of expression or genetic variations in nDNA encoding the mitochondrial proteome, including mitochondria-localized mtDNA replication and repair proteins, miRNA, transcription factors, kinases and phosphatases, and tumor suppressors and oncogenes may underlie susceptibility to high-risk and aggressive cancers found in African population and other ethnicities. The mitochondrial retrograde signaling that alters the expression profile of nuclear genes in response to dysfunctional mitochondria is a mechanism for tumorigenesis. In ethnic populations, differences in mitochondrial function may alter the cross talk between mitochondria and the nucleus at epigenetic and genetic levels, which can also contribute to cancer health disparities. Targeting mitochondrial determinants and mitochondrial retrograde signaling could provide a promising strategy for the development of selective anticancer therapy for dealing with cancer disparities. Further, agents that restore mitochondrial function to optimal levels should permit sensitivity to anticancer agents for the treatment of aggressive tumors that occur in racially diverse populations and hence help in reducing racial disparities.
Collapse
Affiliation(s)
| | - Keshav K Singh
- Departments of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Departments of Environmental Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Wu NY, Huang HS, Chao TH, Chou HM, Fang C, Qin CZ, Lin CY, Chu TY, Zhou HH. Progesterone Prevents High-Grade Serous Ovarian Cancer by Inducing Necroptosis of p53-Defective Fallopian Tube Epithelial Cells. Cell Rep 2017; 18:2557-2565. [PMID: 28297660 DOI: 10.1016/j.celrep.2017.02.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/19/2017] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) originates mainly from the fallopian tube (FT) epithelium and always carries early TP53 mutations. We previously reported that tumors initiate in the FT fimbria epithelium because of apoptotic failure and the expansion of cells with DNA double-strand breaks (DSB) caused by bathing of the FT epithelial cells in reactive oxygen species (ROSs) and hemoglobin-rich follicular fluid (FF) after ovulation. Because ovulation is frequent and HGSOC is rare, we hypothesized that luteal-phase progesterone (P4) could eliminate p53-defective FT cells. Here we show that P4, via P4 receptors (PRs), induces necroptosis in Trp53-/- mouse oviduct epithelium and in immortalized human p53-defective fimbrial epithelium through the TNF-α/RIPK1/RIPK3/MLKL pathway. Necroptosis occurs specifically at diestrus, recovers at the proestrus phase of the estrus cycle, and can be augmented with P4 supplementation. These results reveal the mechanism of the well-known ability of progesterone to prevent ovarian cancer.
Collapse
Affiliation(s)
- Na-Yiyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China; Department of Research, Tzu Chi General Hospital, Hualien 970, Taiwan, ROC; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, People's Republic of China; Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Hsuan-Shun Huang
- Department of Research, Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Tung Hui Chao
- Department of Research, Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Hsien Ming Chou
- Department of Research, Tzu Chi General Hospital, Hualien 970, Taiwan, ROC
| | - Chao Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, People's Republic of China
| | - Chong-Zhen Qin
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, People's Republic of China; Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Chueh-Yu Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC; Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan, ROC
| | - Tang-Yuan Chu
- Department of Research, Tzu Chi General Hospital, Hualien 970, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, ROC; Department of Obstetrics and Gynecology, Tzu Chi General Hospital, Hualien 970, Taiwan, ROC.
| | - Hong Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, People's Republic of China.
| |
Collapse
|
9
|
Interactions between dietary acrylamide intake and genes for ovarian cancer risk. Eur J Epidemiol 2017; 32:431-441. [PMID: 28391539 PMCID: PMC5506210 DOI: 10.1007/s10654-017-0244-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
Abstract
Some epidemiological studies observed a positive association between dietary acrylamide intake and ovarian cancer risk but the causality needs to be substantiated. By analyzing gene-acrylamide interactions for ovarian cancer risk for the first time, we aimed to contribute to this. The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline in 1986, a random subcohort of 2589 women was sampled from the total cohort for a case cohort analysis approach. Dietary acrylamide intake of subcohort members and ovarian cancer cases (n = 252, based on 20.3 years of follow-up) was assessed with a food frequency questionnaire. We selected single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism and in genes involved in the possible mechanisms of acrylamide-induced carcinogenesis (effects on sex steroid systems, oxidative stress and DNA damage). Genotyping was done on DNA from toenails through Agena’s MassARRAY iPLEX platform. Multiplicative interaction between acrylamide intake and SNPs was assessed with Cox proportional hazards analysis. Among the results for 57 SNPs and 2 gene deletions, there were no statistically significant interactions between acrylamide and gene variants after adjustment for multiple testing. However, there were several nominally statistically significant interactions between acrylamide intake and SNPs in the HSD3B1/B2 gene cluster: (rs4659175 (p interaction = 0.04), rs10923823 (p interaction = 0.06) and its proxy rs7546652 (p interaction = 0.05), rs1047303 (p interaction = 0.005), and rs6428830 (p interaction = 0.05). Although in need of confirmation, results of this study suggest that acrylamide may cause ovarian cancer through effects on sex hormones.
Collapse
|
10
|
Zhang P, Wang C, Cheng L, Zhang P, Guo L, Liu W, Zhang Z, Huang Y, Ou Q, Wen X, Tian Y. Development of a multi-marker model combining HE4, CA125, progesterone, and estradiol for distinguishing benign from malignant pelvic masses in postmenopausal women. Tumour Biol 2015; 37:2183-91. [DOI: 10.1007/s13277-015-4037-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/02/2015] [Indexed: 01/04/2023] Open
|