1
|
Tossetta G, Fantone S, Piani F, Crescimanno C, Ciavattini A, Giannubilo SR, Marzioni D. Modulation of NRF2/KEAP1 Signaling in Preeclampsia. Cells 2023; 12:1545. [PMID: 37296665 PMCID: PMC10252212 DOI: 10.3390/cells12111545] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Placentation is a key and tightly regulated process that ensures the normal development of the placenta and fetal growth. Preeclampsia (PE) is a hypertensive pregnancy-related disorder involving about 5-8% of all pregnancies and clinically characterized by de novo maternal hypertension and proteinuria. In addition, PE pregnancies are also characterized by increased oxidative stress and inflammation. The NRF2/KEAP1 signaling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. ROS activate NRF2, allowing its binding to the antioxidant response element (ARE) region present in the promoter of several antioxidant genes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase that neutralize ROS, protecting cells against oxidative stress damages. In this review, we analyze the current literature regarding the role of the NRF2/KEAP1 pathway in preeclamptic pregnancies, discussing the main cellular modulators of this pathway. Moreover, we also discuss the main natural and synthetic compounds that can regulate this pathway in in vivo and in vitro models.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| | - Federica Piani
- Cardiovascular Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40128 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Caterina Crescimanno
- School of Human and Social Science, University “Kore” of Enna, 94100 Enna, Italy;
| | - Andrea Ciavattini
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy; (A.C.); (S.R.G.)
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy; (A.C.); (S.R.G.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.F.); (D.M.)
| |
Collapse
|
2
|
Pirković A, Vilotić A, Borozan S, Nacka-Aleksić M, Bojić-Trbojević Ž, Krivokuća MJ, Battino M, Giampieri F, Dekanski D. Oleuropein Attenuates Oxidative Stress in Human Trophoblast Cells. Antioxidants (Basel) 2023; 12:antiox12010197. [PMID: 36671060 PMCID: PMC9855078 DOI: 10.3390/antiox12010197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Olive-derived bioactive compound oleuropein was evaluated against damage induced by hydrogen peroxide in human trophoblast cells in vitro, by examining the changes in several markers implicated in oxidative stress interactions in the placenta. Trophoblast HTR-8/SVneo cells were preincubated with OLE at 10 and 100 µM and exposed to H2O2, as a model of oxidative stress. Protein and lipid peroxidation, as well as antioxidant enzymes' activity, were determined spectrophotometrically, and DNA damage was evaluated by comet assay. iNOS protein expression was assessed by Western blot, while the mRNA expression of pro- and anti-apoptotic genes BAX and BCL2 and transcription factor NFE2L2, as well as cytokines IL-6 and TNF α were determined by qPCR. Oleuropein demonstrated cytoprotective effects against H2O2 in trophoblast cells by significantly improving the antioxidant status and preventing protein and lipid damage, as well as reducing the iNOS levels. OLE reduced the mRNA expression of IL-6 and TNF α, however, it did not influence the expression of NFE2L2 or the BAX/BCL2 ratio after H2O2 exposure. Oleuropein per se did not lead to any adverse effects in HTR-8/SVneo cells under the described conditions, confirming its safety in vitro. In conclusion, it significantly attenuated oxidative damage and restored antioxidant functioning, confirming its protective role in trophoblast.
Collapse
Affiliation(s)
- Andrea Pirković
- Department for Biology of Reproduction, Institute for Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandra Vilotić
- Department for Biology of Reproduction, Institute for Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department for Biology of Reproduction, Institute for Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- Department for Biology of Reproduction, Institute for Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Department for Biology of Reproduction, Institute for Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Maurizio Battino
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Correspondence: ; Tel.: +39-071-2204136
| | - Dragana Dekanski
- Department for Biology of Reproduction, Institute for Application of Nuclear Energy (INEP), University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
3
|
Mészáros B, Veres DS, Nagyistók L, Somogyi A, Rosta K, Herold Z, Kukor Z, Valent S. Pravastatin in preeclampsia: A meta-analysis and systematic review. Front Med (Lausanne) 2023; 9:1076372. [PMID: 36714131 PMCID: PMC9880057 DOI: 10.3389/fmed.2022.1076372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To review of the efficacy and safety of pravastatin use for prophylaxis and treatment of preeclampsia. DESIGN Systematic review and meta-analysis of clinical studies evaluating pravastatin for treatment and/or prophylaxis of preeclampsia. DATA COLLECTION Two independent reviewers systematically searched data from PubMed, Scopus, Web of Science, Cochrane, Embase, and clinicaltrials.gov databases, for studies evaluating pravastatin for prevention of pre-eclampsia. RESULTS Fourteen studies were identified, including 1,570 pregnant women who received either pravastatin or placebo, published between 2003 and 2022. From these studies, 5 studies were identified for inclusion in the meta-analysis to evaluate the role of pravastatin use prior to 20 weeks of gestation, to prevent pre-eclampsia, Pravastatin treatment reduced the incidence of preeclampsia by 61% and premature birth by 45%. Among the newborns, there was a 45% reduction in intrauterine growth retardation (IUGR) in the treated group, as well as a 77% reduction in those receiving neonatal intensive care unit (NICU) admissions. CONCLUSION Prophylactic treatment with pravastatin appears to reduce risk of developing pre-eclampsia as well as potentially lowering risk of IUGR, preterm birth, and NICU admission in neonates.
Collapse
Affiliation(s)
- Balázs Mészáros
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Dániel Sándor Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Luca Nagyistók
- Dél-Pest Centrum Hospital National Hematology and Infectious Diseases Institute, Budapest, Hungary
| | - Anikó Somogyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Klára Rosta
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Zoltán Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sándor Valent
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Tantengco OAG, de Castro Silva M, Shahin H, Bento GFC, Cursino GC, Cayenne S, da Silva MG, Menon R. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in normal and pathological pregnancy: A systematic review. Am J Reprod Immunol 2021; 86:e13496. [PMID: 34467607 DOI: 10.1111/aji.13496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE A homeostatic balance between reactive oxygen species production and the antioxidant redox system is an important component of normal pregnancy. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) preserves cellular homeostasis by enhancing the cell's innate antioxidant status to reduce oxidative stress and inflammatory damage to the cell during pregnancy. Active Nrf2, in the nucleus of the cell, transactivates various antioxidant genes. The objective of this systematic review was to synthesize evidence on the role of Nrf2 in various adverse pregnancy outcomes (APOs). METHODS We conducted a systematic review of the role of Nrf2 in pregnancy. Articles written in English, Portuguese, and Spanish were obtained from three different databases from inception until January 2021. The titles, abstracts and full text were reviewed independently by six reviewers. The quality of the included studies was assessed using a quality assessment tool developed to assess basic science and clinical studies. Nrf2 expression (gene and protein), functional contributions, and association with APOs were assessed. RESULTS A total of 747 citations were identified; 80 were retained for full review. Most studies on Nrf2 have been carried out using placental tissues and placenta-derived cells. Limited studies have been conducted using fetal membranes, uterus, and cervix. Nuclear translocation of Nrf2 results in transactivation of antioxidant enzymes, including glutathione peroxidase, hemeoxygenase-1, and superoxide dismutase in gestational cells during pregnancy. This antioxidant response maintains cellular homeostasis during pregnancy. This promotes trophoblast cell survival and prevents cell death and abnormal angiogenesis in the placenta. Excessive and insufficient Nrf2 response may promote oxidative and reductive stress, respectively. This Nrf2 dysregulation has been associated with APOs including gestational diabetes mellitus, intrauterine growth restriction, reproductive toxicity, preeclampsia, and preterm birth. CONCLUSION Several studies have localized and reported an association between Nrf2's differential expression in reproductive tissues and the pathogenesis of APOs. However, a comprehensive functional understanding of Nrf2 in reproductive tissues is still lacking. Nrf2's activation and functions are complex, and therefore, current in vitro and in vivo studies are limited in their experimental approaches. We have identified key areas for future Nrf2 research that is needed to fill knowledge gaps.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Division of Basic & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mariana de Castro Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Hend Shahin
- Division of Basic & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Giovana Fernanda Cosi Bento
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Geovanna Cristofani Cursino
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Samir Cayenne
- The University of Texas at Austin, Austin, Texas, USA
| | - Marcia Guimarães da Silva
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Ramkumar Menon
- Division of Basic & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
5
|
Wu Y, Mi Y, Zhang F, Cheng Y, Wu X. Suppression of bromodomain-containing protein 4 protects trophoblast cells from oxidative stress injury by enhancing Nrf2 activation. Hum Exp Toxicol 2020; 40:742-753. [PMID: 33094643 DOI: 10.1177/0960327120968857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress is considered a key hallmark of preeclampsia, which causes the dysregulation of trophoblast cells, and it contributes to the pathogenesis of preeclampsia. Emerging evidence has suggested bromodomain-containing protein 4 (BRD4) as a key regulator of oxidative stress in multiple cell types. However, whether BRD4 participates in regulating oxidative stress in trophoblast cells remains undetermined. The current study was designed to explore the potential function of BRD4 in the regulation of oxidative stress in trophoblast cells. Our data revealed that BRD4 expression was elevated in trophoblast cells stimulated with hydrogen peroxide. Exposure to hydrogen peroxide caused marked decreases in the levels of proliferation and invasion but promoted apoptosis and the production of ROS in trophoblast cells. Knockdown of BRD4, or treatment with a BRD4 inhibitor, markedly increased the levels of cell proliferation and invasion and decreased apoptosis and ROS production following the hydrogen peroxide challenge. Further data indicated that suppression of BRD4 markedly decreased the expression levels of Keap1, but increased the nuclear expression of Nrf2 and enhanced Nrf2-mediated transcriptional activity. BRD4 inhibition-mediated protective effects were markedly reversed by Keap1 overexpression or Nrf2 inhibition. Overall, these results demonstrated that BRD4 inhibition attenuated hydrogen peroxide-induced oxidative stress injury in trophoblast cells by enhancing Nrf2 activation via the downregulation of Keap1. Our study highlights the potential importance of the BRD4/Keap1/Nrf2 axis in the modulation of the oxidative stress response in trophoblast cells. Targeted inhibition of BRD4 may offer new opportunities for the development of innovative therapeutic approaches to treat preeclampsia.
Collapse
Affiliation(s)
- Yiqing Wu
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Fan Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yimin Cheng
- The Hospital of Xi'an Shiyou University, Xi'an, Shaanxi, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Cox AG, Gurusinghe S, Abd Rahman R, Leaw B, Chan ST, Mockler JC, Murthi P, Marshall SA, Lim R, Wallace EM. Sulforaphane improves endothelial function and reduces placental oxidative stress in vitro. Pregnancy Hypertens 2019; 16:1-10. [PMID: 31056142 DOI: 10.1016/j.preghy.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The maternal endothelial dysfunction characteristic of preeclampsia arises, in part, from excessive placental production of anti-angiogenic factors, including soluble Flt-1, soluble endoglin and activin A, inducing oxidative stress. We assessed whether the antioxidant and NRF2-activator sulforaphane could mitigate endothelial and trophoblast dysfunction in vitro. METHODS We induced dysfunction in human umbilical vein endothelial cells (HUVECs) with TNF-α, assessing endothelial activation and dysfunction (endothelin-1, vascular cell adhesion molecule; VCAM1, intracellular adhesion molecule; ICAM1, e-selectin and endothelial permeability) in the presence or absence of sulforaphane. We also assessed the effects of sulforaphane in mitigating hypoxic and hyperoxic injury in term placental explants by measuring secretion of anti-angiogenic factors. To assess the role of NRF2 we silenced NRF2 in HUVECs and primary trophoblast cells. RESULTS Sulforaphane reduced TNF-α mediated HUVEC secretion of endothelin-1, VCAM1, ICAM1 and E-selectin, and prevented increased endothelial permeability. In placental explants, sulforaphane reduced the secretion of soluble Flt-1, soluble endoglin and activin A. Sulforaphane induced activation and nuclear translocation of NRF2 in HUVECs, inducing heme oxygenase 1. NRF2 silencing blocked some but not all of sulforaphane's effects in HUVECs. NRF2 silencing did not prevent sulforaphane's inhibition of trophobast secretion of soluble Flt-1 or activin A. CONCLUSION In reducing placental and endothelial oxidative stress, sulforaphane may offer a new adjuvant therapeutic approach for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Annie G Cox
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.
| | - Seshini Gurusinghe
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rahana Abd Rahman
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.
| | - Bryan Leaw
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| | - Siow T Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| | - Joanne C Mockler
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.
| | - Padma Murthi
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.
| | - Sarah A Marshall
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| | - Euan M Wallace
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Simvastatin Treatment Upregulates HO-1 in Patients with Abdominal Aortic Aneurysm but Independently of Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2028936. [PMID: 29743974 PMCID: PMC5883937 DOI: 10.1155/2018/2028936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
Heme oxygenase-1 (HO-1), encoded by HMOX1 gene and regulated by Nrf2 transcription factor, is a cytoprotective enzyme. Its deficiency may exacerbate abdominal aortic aneurysm (AAA) development, which is also often associated with hyperlipidemia. Beneficial effects of statins, the broadly used antilipidemic drugs, were attributed to modulation of Nrf2/HO-1 axis. However, the effect of statins on Nrf2/HO-1 pathway in patients with AAA has not been studied yet. We analyzed AAA tissue from patients treated with simvastatin (N = 28) or without statins (N = 14). Simvastatin treatment increased HO-1 protein level in AAA, both in endothelial cells (ECs) and in smooth muscle cells (SMCs), but increased Nrf2 localization was restricted only to vasa vasorum. Nrf2 target genes HMOX1, NQO1, and GCLM expression remained unchanged in AAA. In vitro studies showed that simvastatin raises HO-1 protein level slightly in ECs and to much higher extent in SMCs, which is not related to Nrf2/ARE activation, although HMOX1 expression is upregulated by simvastatin in both cell types. In conclusion, simvastatin-induced modulation of HO-1 level in ECs and SMCs in vitro is not related to Nrf2/ARE activity. Likewise, divergent HO-1 and Nrf2 localization together with stable expression of Nrf2 target genes, including HMOX1, in AAA tissue denotes Nrf2 independency.
Collapse
|
8
|
Wu J, He Z, Gao Y, Zhang G, Huang X, Fang Q. Placental NFE2L2 is discordantly activated in monochorionic twins with selective intrauterine growth restriction and possibly regulated by hypoxia. Free Radic Res 2017; 51:351-359. [PMID: 28441900 DOI: 10.1080/10715762.2017.1315113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Nuclear factor, erythroid 2 like 2 (NFE2L2) is an important transcription factor that protects cells from oxidative stress (OS). NFE2L2 deficiency in placentas is associated with pregnancy complications. We have demonstrated that elevated OS existed in placental shares of the smaller fetus in selective intrauterine growth restriction (sIUGR); however, the role of NFE2L2 in the development of sIUGR remains unknown. In this study, we examined the levels of NFE2L2 and heme oxygenase 1 (HMOX1), a major antioxidant regulated by NFE2L2, in sIUGR placentas. We also investigated the relationship between hypoxia and NFE2L2 activation, which may be involved in the pathogenesis of sIUGR. METHODS Real-time PCR, Western blot, and immunohistochemistry were used to detect the levels of NFE2L2 and HMOX1 in placentas from 30 monochorionic diamniotic (MCDA) twin pregnancies. The trophoblast cell line HTR-8/SVneo was cultured under severe (3%) or mild (10%) hypoxia. RESULTS NFE2L2 and HMOX1 were both up-regulated in placental shares of the smaller fetus in the sIUGR group. No significant inter-twin differences in NFE2L2 and HMOX1 were detected in the normal group. In vitro, NFE2L2 was suppressed under severe hypoxia (3% O2) but was clearly up-regulated under mild hypoxia (10% O2). DISCUSSION Compared with the suppression of NFE2L2 in placentas of fetal growth restriction (FGR) in singleton pregnancies, NFE2L2 was up-regulated in placental shares of the smaller fetus in sIUGR pregnancies. The asymmetrical activation of NFE2L2 in placental shares of sIUGR twins may be a compensation for hypoxia that protects the smaller fetus from OS damage.
Collapse
Affiliation(s)
- Jing Wu
- a Department of Obstetrics and Gynecology, Fetal Medicine Center , The First Affiliated Hospital of Sun Yat-sen University , Yuexiu District , Guangzhou City , Guangdong Province , China
| | - Zhiming He
- a Department of Obstetrics and Gynecology, Fetal Medicine Center , The First Affiliated Hospital of Sun Yat-sen University , Yuexiu District , Guangzhou City , Guangdong Province , China
| | - Yu Gao
- b Department of Obstetrics and Gynecology , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Guanglan Zhang
- c Department of Obstetrics , Guangzhou Women and Children's Medical Center , Guangzhou , Guangdong , China
| | - Xuan Huang
- a Department of Obstetrics and Gynecology, Fetal Medicine Center , The First Affiliated Hospital of Sun Yat-sen University , Yuexiu District , Guangzhou City , Guangdong Province , China
| | - Qun Fang
- a Department of Obstetrics and Gynecology, Fetal Medicine Center , The First Affiliated Hospital of Sun Yat-sen University , Yuexiu District , Guangzhou City , Guangdong Province , China
| |
Collapse
|
9
|
Park JH, Choi BH, Ku SK, Kim DH, Jung KA, Oh E, Kwak MK. Amelioration of high fat diet-induced nephropathy by cilostazol and rosuvastatin. Arch Pharm Res 2017; 40:391-402. [PMID: 28084586 DOI: 10.1007/s12272-017-0889-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/05/2017] [Indexed: 02/06/2023]
Abstract
Multiple comorbidities of metabolic disorders are associated with facilitated chronic kidney disease progression. Anti-platelet cilostazol is used for the treatment of peripheral artery disease. In this study, we investigated the potential beneficial effects of cilostazol and rosuvastatin on metabolic disorder-induced renal dysfunctions. C57BL/6 mice that received high fat diet (HFD) for 22 weeks and a low dose of streptozotocin (STZ, 40 mg/kg) developed albuminuria and had increased urinary cystatin C excretion, and cilostazol treatment (13 weeks) improved these markers. Histopathological changes, including glomerular mesangial expansion, tubular vacuolization, apoptosis, and lipid accumulation were ameliorated by cilostazol treatment. Tubulointerstitial fibrosis that was indicated by the increases in collagen and transforming growth factor-β1 subsided by cilostazol. Renoprotective effects were also observed in rosuvastatin-treated mice, and combinatorial treatment with cilostazol and rosuvastatin demonstrated enhanced ameliorative effects in histopathological evaluations. Notably, repressed renal heme oxygenase-1 (Ho-1) level in HFD/STZ mice was restored in cilostazol group. Further, we demonstrated that cilostazol enhanced Nrf2/Ho-1 signaling in cultured proximal tubular epithelial cells. Collectively, these results suggest the potential advantageous use of cilostazol as an adjunctive therapy with statins for the amelioration of metabolic disorder-associated renal injury.
Collapse
Affiliation(s)
- Jeong-Hyeon Park
- Department of Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Hannydae-ro 1, Gyeongsan, Gyeonsangbuk-do, 712-715, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Kyeong-Ah Jung
- Department of Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Euichaul Oh
- Department of Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea.,College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School of The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea. .,College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 420-743, Republic of Korea.
| |
Collapse
|
10
|
Zheng Y, Zhao Y, Luo Q, Liu X, Liu X, Hu Y, Zou L. Edaravone protects against cobalt chloride-induced dysfunctions in apoptosis and invasion in trophoblast cells. Mol Reprod Dev 2016; 83:576-87. [PMID: 27128210 DOI: 10.1002/mrd.22652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/24/2016] [Indexed: 12/24/2022]
Affiliation(s)
- YanFang Zheng
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Yin Zhao
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - QingQing Luo
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - XiaoXia Liu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - XiaoPing Liu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Ying Hu
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| | - Li Zou
- Department of Obstetrics and Gynecology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei Province China
| |
Collapse
|