1
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
2
|
Cordery C, Craddock J, Malý M, Basavaraja K, Webb JS, Walsh MA, Tews I. Control of phosphodiesterase activity in the regulator of biofilm dispersal RbdA from Pseudomonas aeruginosa. RSC Chem Biol 2024:d4cb00113c. [PMID: 39247681 PMCID: PMC11372557 DOI: 10.1039/d4cb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The switch between planktonic and biofilm lifestyle correlates with intracellular concentration of the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). While bacteria possess cyclase and phosphodiesterase enzymes to catalyse formation or hydrolysis of c-di-GMP, both enzymatic domains often occur in a single protein. It is tacitly assumed that one of the two enzymatic activities is dominant, and that additional domains and protein interactions enable responses to environmental conditions and control activity. Here we report the structure of the phosphodiesterase domain of the membrane protein RbdA (regulator of biofilm dispersal) in a dimeric, activated state and show that phosphodiesterase activity is controlled by the linked cyclase. The phosphodiesterase region around helices α5/α6 forms the dimer interface, providing a rationale for activation, as this region was seen in contact with the cyclase domain in an auto-inhibited structure previously described. Kinetic analysis supports this model, as the activity of the phosphodiesterase alone is lower when linked to the cyclase. Analysis of a computed model of the RbdA periplasmatic domain reveals an all-helical architecture with a large binding pocket that could accommodate putative ligands. Unravelling the regulatory circuits in multi-domain phosphodiesterases like RbdA is important to develop strategies to manipulate or disperse bacterial biofilms.
Collapse
Affiliation(s)
- Charlotte Cordery
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Jack Craddock
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| | - Martin Malý
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Kieran Basavaraja
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Jeremy S Webb
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0FA UK
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton Southampton SO17 1BJ UK
- National Biofilms Innovation Centre, University of Southampton Southampton SO17 1BJ UK
| |
Collapse
|
3
|
Syed A, Rawat A, Tariq UB, Haq I, Naz B, Hussain A, Maqsood M, Rasheed A. Insights Into Cystic Fibrosis Gene Mutation Frequency, Clinical Findings, and Complications Among Pakistani Patients. Cureus 2023; 15:e48564. [PMID: 38024076 PMCID: PMC10653747 DOI: 10.7759/cureus.48564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cystic fibrosis (CF) is a genetic disorder with diverse symptoms. Understanding its genetic basis and prevalence is crucial for effective management and treatment. Objective The study aimed to provide comprehensive insights into the frequency of CF gene mutations, clinical presentations, and complications among the Pakistani population. Methodology A cohort comprising 892 patients, ranging in age from 18 to more than 40 years, was selected on the basis of clinical and genetic criteria for the diagnosis of CF. Polymerase chain reaction (PCR) was used to look for 34 variants in the CFTR gene in blood samples. Statistical analysis, which included figuring out the number of mutations, the average age of diagnosis, and the genetic diversity of the samples, was performed to analyze the percentage of patients with specific mutations, offering insights into the genetic diversity. Results In our comprehensive analysis of 892 patient samples, 77.47% (n=691) displayed consanguinity, indicating a family history. The prevailing symptoms included chronic cough (88.67%; n=791), recurrent respiratory infections (76.68%; n=684), and fatigue (73.76%; n=658). The major complications comprised pulmonary infections (22%; n=197), cystic fibrosis-related diabetes (21%; n=187), and malabsorption (20%: n=178). A paired t-test revealed a mean difference of 5.750 with a standard deviation of 9.147, a 95% confidence interval from -0.061 to 11.561, a t-value of 2.178 with 11 degrees of freedom, and a two-tailed p-value of 0.052, suggesting a potential trend towards significance. Nevertheless, the asymptotic significance values of 1.000 and 0.998 for both groups indicate no significant difference. Furthermore, the study identified 12 cystic fibrosis gene mutations, with F508del and N1303K being the most prevalent. Conclusion This research revealed significant consanguinity, confirmed typical CF symptoms, and identified common complications and prevalent CFTR gene mutations (with F508del and N1303K being the most common), providing insights for genetic guidance and treatment in the Pakistani community.
Collapse
Affiliation(s)
- Asaf Syed
- Medicine and Surgery, Ayub Medical College, Abbottabad, PAK
| | - Anurag Rawat
- Interventional Cardiology, Himalayan Institute of Medical Sciences, Dehradun, IND
| | - Umer Bin Tariq
- Department of Medicine, Nawaz Sharif Medical College, University of Gujrat, Gujrat, PAK
| | - Ihteshamul Haq
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, PAK
| | - Beenish Naz
- Pharmacology and Therapeutics, Khyber Medical University, Peshawar, PAK
| | - Abrar Hussain
- Biological Sciences, International Islamic University, Islamabad, PAK
| | - Mehdi Maqsood
- Internal Medicine, Khyber Medical College, Peshawar, PAK
| | - Arsalan Rasheed
- Molecular Biology and Genetics, Abdul Wali Khan University Mardan, Mardan, PAK
| |
Collapse
|
4
|
Bruno SM, Blaconà G, Lo Cicero S, Castelli G, Virgulti M, Testino G, Pierandrei S, Fuso A, Cimino G, Ferraguti G, Eramo A, Lucarelli M. Quantitative Evaluation of CFTR Gene Expression: A Comparison between Relative Quantification by Real-Time PCR and Absolute Quantification by Droplet Digital PCR. Genes (Basel) 2023; 14:1781. [PMID: 37761921 PMCID: PMC10531455 DOI: 10.3390/genes14091781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In the precision medicine era of cystic fibrosis (CF), therapeutic interventions, by the so-called modulators, target the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The levels of targetable CFTR proteins are a main variable in the success of patient-specific therapy. In turn, the CFTR protein level depends, at least in part, on the level of CFTR mRNA. Many mechanisms can modulate the CFTR mRNA level, for example, transcriptional rate, stability of the mRNA, epigenetics, and pathogenic variants that can affect mRNA production and degradation. Independently from the causes of variable CFTR mRNA levels, their exact quantitative assessment is of great importance in CF. Methods with high analytical sensitivity, precision, and accuracy are mandatory for the quantitative evaluation aimed at the amelioration of the diagnostic, prognostic, and therapeutic aspects. This paper compares, for the first time, two CFTR gene expression quantification methods: a well-established method for the relative quantification of CFTR mRNA using a real-time PCR and an innovative method for its absolute quantification using a droplet digital PCR. No comprehensive methods for absolute CFTR quantification via droplet digital PCR have been published so far. The accurate quantification of CFTR expression at the mRNA level is a critical step for the personalized therapeutic approaches of CF.
Collapse
Affiliation(s)
- Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Mariarita Virgulti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giancarlo Testino
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| |
Collapse
|
5
|
Development of novel therapeutics for all individuals with CF (the future goes on). J Cyst Fibros 2023; 22 Suppl 1:S45-S49. [PMID: 36319570 DOI: 10.1016/j.jcf.2022.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Despite the major advances and successes in finding and establishing new treatments that tackle the basic defect in Cystic Fibrosis (CF), there is still an unmet need to bring these potentially curative therapies to all individuals with CF. Here, we review aspects of what is still missing to treat all individuals with CF by such approaches. On the one hand, we discuss novel holistic (high-throughput) approaches to elucidate mechanistic defects caused by distinct classes of mutations to identify novel drug targets. On the other hand, we examine therapeutic approaches to correct the gene in its own environment, i.e., in the genome.
Collapse
|
6
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
7
|
Amaral MD. Using the genome to correct the ion transport defect in cystic fibrosis. J Physiol 2022; 601:1573-1582. [PMID: 36068724 DOI: 10.1113/jp282308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human genome information can help finding drugs for human diseases. 'Omics' allow unbiased identification of novel drug targets. High-throughput (HT) approaches provide a global view on disease mechanisms. As a monogenic disease CF has led the way in multiple 'Omic' studies. 'Multi-omics' integration will generate maximal biological significance. ABSTRACT Today Biomedicine faces one of its greatest challenges, i.e. treating diseases through their causative dysfunctional processes and not just their symptoms. However, we still miss a global view of mechanisms and pathways involved in pathophysiology of most diseases. In fact, disease mechanisms and pathways can be achieved by holistic studies provided by 'Omic' approaches. Cystic Fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene which encodes an anion channel, is paradigmatic for monogenic disorders, namely channelopathies. A high number of 'omics studies' have focussed on CF, namely several cell-based high-throughput (HT) approaches were developed and applied towards a global mechanistic characterization of CF pathophysiology and the identification of novel and 'unbiased' drug targets. Notwithstanding, it is likely that, through the integration of all these 'layers' of large datasets into comprehensive disease maps that biological significance can be extracted so that the enormous potential of these approaches to identifying dysfunctional mechanisms and novel drugs may become a reality. Abstract figure legend Schematic overview of the 3 main approaches to discovery of new drugs/drug targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande-C8 bdg, Lisboa, 1749-016, Portugal
| |
Collapse
|
8
|
Rossi A, Kontarakis Z. Beyond Mendelian Inheritance: Genetic Buffering and Phenotype Variability. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:79-87. [PMID: 36939776 PMCID: PMC9590499 DOI: 10.1007/s43657-021-00030-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/18/2023]
Abstract
Understanding the way genes work amongst individuals and across generations to shape form and function is a common theme for many genetic studies. The recent advances in genetics, genome engineering and DNA sequencing reinforced the notion that genes are not the only players that determine a phenotype. Due to physiological or pathological fluctuations in gene expression, even genetically identical cells can behave and manifest different phenotypes under the same conditions. Here, we discuss mechanisms that can influence or even disrupt the axis between genotype and phenotype; the role of modifier genes, the general concept of genetic redundancy, genetic compensation, the recently described transcriptional adaptation, environmental stressors, and phenotypic plasticity. We furthermore highlight the usage of induced pluripotent stem cells (iPSCs), the generation of isogenic lines through genome engineering, and sequencing technologies can help extract new genetic and epigenetic mechanisms from what is hitherto considered 'noise'.
Collapse
Affiliation(s)
- Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich of ETH Zurich, University of Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Amaral MD. Precision medicine for rare diseases: The times they are A-Changin'. Curr Opin Pharmacol 2022; 63:102201. [DOI: 10.1016/j.coph.2022.102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
|
10
|
Roda J, Teixeira T, Ai Silva I, Silva TR, Ferreira R, Amaral MD, Oliveira G. Pediatric population with cystic fibrosis in the centre of Portugal: candidates for new therapies. J Pediatr (Rio J) 2022; 98:212-217. [PMID: 34252371 PMCID: PMC9432345 DOI: 10.1016/j.jped.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Cystic fibrosis (CF) is a severe autosomal recessive disease that results from mutations in a gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, a chloride channel. This study aims to characterize the clinical and genetic features of a cohort of pediatric people with CF (PwCF) in the center of Portugal and to determine which ones are candidates for the new drugs modulating the CFTR channel. METHODS A review of the demographic, genetic and clinical characteristics of PwCF undergoing follow-up at a CF reference center was carried out. RESULTS Twenty-three PwCF (12 male), with a median age of 12 years, were followed up. All patients carry the F508del mutation in at least one allele. Fifteen PwCF were F508del-homozygous, median BMI z-score was -0.13, all are pancreatic insufficient and median FEV1 value was 78.1%. These PwCF are eligible for dual therapy (lumacaftor/tezacaftor+ivacaftor) and for triple therapy (tezacaftor+ivacaftor+elexacaftor). PwCF with 711 +1G->T (n = 2), 2184insA (n = 1) mutations and a novel mutation c.3321dup (n = 1) have minimal function mutation and patients with a residual function mutation: R334W (n = 3) and P5L (n = 1) have a less severe phenotype. All these patients, because they also carry F508del mutation, are elegible to triple therapy. CONCLUSIONS Genetic and molecular characterization of PwCF poses an important step not just for CF diagnosis and prognosis which is tightly correlated with the clinical phenotype, but also for the eligibility of CFTR modulator drugs.
Collapse
Affiliation(s)
- Juliana Roda
- Centro Hospitalar e Universitário de Coimbra, Hospital Pediátrico, Unidade de Gastroenterologia e Nutrição Pediátrica, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Clínica Universitária de Pediatria, Coimbra, Portugal.
| | - Teresa Teixeira
- Faculdade de Medicina da Universidade de Coimbra, Clínica Universitária de Pediatria, Coimbra, Portugal
| | - Iris Ai Silva
- Universidade de Lisboa, Faculdade de Ciências, Instituto de Biossistemas e Ciências Integrativas (BioISI), Lisbon, Portugal
| | - Teresa Reis Silva
- Centro Hospitalar e Universitário de Coimbra, Centro de Referência em Fibrose Cística, Unidade Pediátrica, Coimbra, Portugal
| | - Ricardo Ferreira
- Centro Hospitalar e Universitário de Coimbra, Hospital Pediátrico, Unidade de Gastroenterologia e Nutrição Pediátrica, Coimbra, Portugal
| | - Margarida D Amaral
- Universidade de Lisboa, Faculdade de Ciências, Instituto de Biossistemas e Ciências Integrativas (BioISI), Lisbon, Portugal
| | - Guiomar Oliveira
- Faculdade de Medicina da Universidade de Coimbra, Clínica Universitária de Pediatria, Coimbra, Portugal; Centro Hospitalar e Universitário de Coimbra, Centro de Desenvolvimento da Criança e Centro de Investigação e Formação Clínica, Hospital Pediátrico, Coimbra, Portugal
| |
Collapse
|
11
|
Pankonien I, Quaresma MC, Rodrigues CS, Amaral MD. CFTR, Cell Junctions and the Cytoskeleton. Int J Mol Sci 2022; 23:ijms23052688. [PMID: 35269829 PMCID: PMC8910340 DOI: 10.3390/ijms23052688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, a cAMP regulated chloride (Cl−) and bicarbonate (HCO3−) ion channel expressed at the apical plasma membrane (PM) of epithelial cells. Reduced CFTR protein results in decreased Cl− secretion and excessive sodium reabsorption in epithelial cells, which consequently leads to epithelial dehydration and the accumulation of thick mucus within the affected organs, such as the lungs, pancreas, gastrointestinal (GI) tract, reproductive system and sweat glands. However, CFTR has been implicated in other functions besides transporting ions across epithelia. The rising number of references concerning its association to actin cytoskeleton organization, epithelial cell junctions and extracellular matrix (ECM) proteins suggests a role in the formation and maintenance of epithelial apical basolateral polarity. This review will focus on recent literature (the last 10 years) substantiating the role of CFTR in cell junction formation and actin cytoskeleton organization with its connection to the ECM.
Collapse
|
12
|
Rare Trafficking CFTR Mutations Involve Distinct Cellular Retention Machineries and Require Different Rescuing Strategies. Int J Mol Sci 2021; 23:ijms23010024. [PMID: 35008443 PMCID: PMC8744605 DOI: 10.3390/ijms23010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Most of the ~2100 CFTR variants so far reported are very rare and still uncharacterized regarding their cystic fibrosis (CF) disease liability. Since some may respond to currently approved modulators, characterizing their defect and response to these drugs is essential. Here we aimed characterizing the defect associated with four rare missense (likely Class II) CFTR variants and assess their rescue by corrector drugs. We produced CFBE cell lines stably expressing CFTR with W57G, R560S, H1079P and Q1100P, assessed their effect upon CFTR expression and maturation and their rescue by VX-661/VX-445 correctors. Results were validated by forskolin-induced swelling assay (FIS) using intestinal organoids from individuals bearing these variants. Finally, knock-down (KD) of genes previously shown to rescue F508del-CFTR was assessed on these mutants. Results show that all the variants preclude the production of mature CFTR, confirming them as Class II mutations. None of the variants responded to VX-661 but the combination rescued H1079P- and Q1100P-CFTR. The KD of factors that correct F508del-CFTR retention only marginally rescued R560S- and H1079P-CFTR. Overall, data evidence that Class II mutations induce distinct molecular defects that are neither rescued by the same corrector compounds nor recognized by the same cellular machinery, thus requiring personalized drug discovery initiatives.
Collapse
|
13
|
Synergy in Cystic Fibrosis Therapies: Targeting SLC26A9. Int J Mol Sci 2021; 22:ijms222313064. [PMID: 34884866 PMCID: PMC8658147 DOI: 10.3390/ijms222313064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
SLC26A9, a constitutively active Cl- transporter, has gained interest over the past years as a relevant disease modifier in several respiratory disorders including Cystic Fibrosis (CF), asthma, and non-CF bronchiectasis. SLC26A9 contributes to epithelial Cl- secretion, thus preventing mucus obstruction under inflammatory conditions. Additionally, SLC26A9 was identified as a CF gene modifier, and its polymorphisms were shown to correlate with the response to drugs modulating CFTR, the defective protein in CF. Here, we aimed to investigate the relationship between SLC26A9 and CFTR, and its role in CF pathogenesis. Our data show that SLC26A9 expression contributes to enhanced CFTR expression and function. While knocking-down SLC26A9 in human bronchial cells leads to lower wt- and F508del-CFTR expression, function, and response to CFTR correctors, the opposite occurs upon its overexpression, highlighting SLC26A9 relevance for CF. Accordingly, F508del-CFTR rescue by the most efficient correctors available is further enhanced by increasing SLC26A9 expression. Interestingly, SLC26A9 overexpression does not increase the PM expression of non-F508del CFTR traffic mutants, namely those unresponsive to corrector drugs. Altogether, our data indicate that SLC26A9 stabilizes CFTR at the ER level and that the efficacy of CFTR modulator drugs may be further enhanced by increasing its expression.
Collapse
|
14
|
Reeves SR. Primary nasal epithelial cells from patients with cystic fibrosis hold promise for guiding precision medicine and expanding treatment. Eur Respir J 2021; 58:2102735. [PMID: 34857588 DOI: 10.1183/13993003.02735-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Stephen R Reeves
- Dept of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
15
|
Mezzi N, Messaoud O, Mkaouar R, Zitouna N, Romdhane S, Abdessalem G, Charfeddine C, Maazoul F, Ouerteni I, Hamdi Y, Zaouak A, Mrad R, Abdelhak S, Romdhane L. Spectrum of Genetic Diseases in Tunisia: Current Situation and Main Milestones Achieved. Genes (Basel) 2021; 12:1820. [PMID: 34828426 PMCID: PMC8617973 DOI: 10.3390/genes12111820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Genetic diseases in Tunisia are a real public health problem given their chronicity and the lack of knowledge concerning their prevalence and etiology, and the high rates of consanguinity. Hence, we performed systematic reviews of the literature in order to provide a more recent spectrum of these disorders and to expose the challenges that still exist to tackle these kinds of diseases. A manual textual data mining was conducted using MeSH and PubMed databases. Collected data were classified according to the CIM-10 classification and the transmission mode. The spectrum of these diseases is estimated to be 589 entities. This suggests remarkable progress through the development of biomedical health research activities and building capacities. Sixty percent of the reported disorders are autosomal recessive, which could be explained by the high prevalence of endogamous mating. Congenital malformations (29.54%) are the major disease group, followed by metabolic diseases (22%). Sixty percent of the genetic diseases have a known molecular etiology. We also reported additional cases of comorbidity that seem to be a common phenomenon in our population. We also noticed that epidemiological data are scarce. Newborn and carrier screening was only limited to pilot projects for a few genetic diseases. Collected data are being integrated into a database under construction that will be a valuable decision-making tool. This study provides the current situation of genetic diseases in Tunisia and highlights their particularities. Early detection of the disease is important to initiate critical intervention and to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Nessrine Mezzi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Jarzouna 7021, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Nadia Zitouna
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Safa Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Ghaith Abdessalem
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
- High Institute of Biotechnology of Sidi Thabet, Biotechpole of Sidi Thabet, University of Manouba, Ariana 2080, Tunisia
| | - Faouzi Maazoul
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1002, Tunisia
| | - Ines Ouerteni
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1002, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Research Unit Genodermatosis and Cancer LR12SP03, Habib Thameur Hospital, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1002, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis 1002, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Jarzouna 7021, Tunisia
| |
Collapse
|
16
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
17
|
García-Foncillas J, Argente J, Bujanda L, Cardona V, Casanova B, Fernández-Montes A, Horcajadas JA, Iñiguez A, Ortiz A, Pablos JL, Pérez Gómez MV. Milestones of Precision Medicine: An Innovative, Multidisciplinary Overview. Mol Diagn Ther 2021; 25:563-576. [PMID: 34331269 DOI: 10.1007/s40291-021-00544-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 12/11/2022]
Abstract
Although the concept of precision medicine, in which healthcare is tailored to the molecular and clinical characteristics of each individual, is not new, its implementation in clinical practice has been heterogenous. In some medical specialties, precision medicine has gone from being just a promise to a reality that achieves better patient outcomes. This is a fact if we consider, for example, the great advances made in the genetic diagnosis and subsequent treatment of countless hereditary diseases, such as cystic fibrosis, which have improved the life expectancy of many of the affected children. In the field of oncology, the development of targeted therapies has prolonged the survival of patients with breast, lung, colorectal, melanoma, and hematological malignancies. In other disciplines, clinical milestones are perhaps less well known, but no less important. The current challenge is to expand and generalize the use of technologies that are central to precision medicine, such as massively parallel sequencing, to improve the management (prevention and treatment) of complex conditions such as cardiovascular, kidney, or autoimmune diseases. This process requires investment in specialized expertise, multidisciplinary collaboration, and the nationwide organization of genetic laboratories for diagnosis of specific diseases.
Collapse
Affiliation(s)
- Jesús García-Foncillas
- Department of Oncology, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain.
- Medical Oncology Department, University Hospital Fundación Jiménez Díaz-Universidad Autonoma de Madrid, Madrid, Spain.
| | - Jesús Argente
- Department of Endocrinology, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Victoria Cardona
- Allergy Section, Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- ARADyAL Research Network, Barcelona, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Fernández-Montes
- Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Andrés Iñiguez
- Department of Cardiology, Hospital Álvaro Cunqueiro-Complejo Hospitalario Universitario, Vigo, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
18
|
Sette G, Lo Cicero S, Blaconà G, Pierandrei S, Bruno SM, Salvati V, Castelli G, Falchi M, Fabrizzi B, Cimino G, De Maria R, Biffoni M, Eramo A, Lucarelli M. Theratyping cystic fibrosis in vitro in ALI-culture and organoid models generated from patient-derived nasal epithelial Conditionally Reprogrammed Stem Cells. Eur Respir J 2021; 58:13993003.00908-2021. [PMID: 34413153 PMCID: PMC8675295 DOI: 10.1183/13993003.00908-2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Abstract
QUESTION Cystic Fibrosis (CF) is due to pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Recent improvement enabled pharmacologic therapy aiming at restoring mutated CFTR expression and function. CFTR "modulators" have revolutionised the CF therapeutic landscape, particularly the last approved Trikafta. This drug-combination is indicated by FDA and very recently by EMA for genotypes carrying at least one copy of CFTR with F508del pathogenic variant. However, several genotypes, are not eligible for Trikafta treatment, yet. MATERIALS/PATIENTS AND METHODS We exploited an innovative cellular approach allowing highly efficient in vitro-expansion of airway epithelial stem cells (AESC) through conditional reprogramming (CRC) from nasal brushing of CF patients. This approach, coupled to development of AESC-derived personalised disease models, as organoids and air liquid interface (ALI) cultures, revealed highly suitable for CFTR pharmacological-testing. RESULTS AND ANSWER TO THE QUESTION We fully validated the experimental models and implemented the CFTR functional assays and biochemical CFTR protein characterisation, that allowed to evaluate the efficacy of clinically available modulators in restoring CFTR maturation and function of each patient-derived "avatar" (theratyping). F508del homozygous genotypes, used as controls, confirmed the higher clinical activity of Trikafta in comparison with older modulators. Trikafta showed its efficacy also on three rare genotypes previously not eligible for modulators-treatment, opening the way to clinical translation. Finally, encouraging results for innovative drug combinations were also obtained.
Collapse
Affiliation(s)
- Giovanni Sette
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Co-first authors
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Care Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, AOU Policlinico Umberto I, Rome, Italy
| | - Ruggero De Maria
- U.O.C. Medical Oncology, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy .,Co-last authors
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.,Co-last authors
| |
Collapse
|
19
|
Shastri MD, Allam VSRR, Shukla SD, Jha NK, Paudel KR, Peterson GM, Patel RP, Hansbro PM, Chellappan DK, Dua K. Interleukin-13: A pivotal target against influenza-induced exacerbation of chronic lung diseases. Life Sci 2021; 283:119871. [PMID: 34352260 DOI: 10.1016/j.lfs.2021.119871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/17/2022]
Abstract
Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia.
| | | | - Shakti D Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, UP, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
20
|
Abstract
Cystic Fibrosis (CF) is the commonest inherited genetic disorder in Caucasians due to a mutation in the gene CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), and it should be considered as an Inherited Colorectal Cancer (CRC) Syndrome. In the United States, physicians of CF Foundation established the “Developing Innovative Gastroenterology Speciality Training Program” to increase the research on CF in gastrointestinal and hepatobiliary diseases. The risk to develop a CRC is 5–10 times higher in CF patients than in the general population and even greater in CF patients receiving immunosuppressive therapy due to organ transplantation (30-fold increased risk relative to the general population). Colonoscopy should be considered the best screening for CRC in CF patients. The screening colonoscopy should be started at the age of 40 in CF patients and, if negative, a new colonoscopy should be performed every 5 years and every 3 years if adenomas are detected. For transplanted CF patients, the screening colonoscopy could be started at the age of 35, in transplanted patients at the age of 30 and, if before, at the age of 30. CF transplanted patients, between the age of 35 and 55, must repeat colonoscopy every 3 years. Our review draws attention towards the clinically relevant development of CRC in CF patients, and it may pave the way for further screenings and studies.
Collapse
|
21
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
22
|
Kondrateva E, Demchenko A, Slesarenko Y, Yasinovsky M, Amelina E, Tabakov V, Voronina E, Lavrov A, Smirnikhina S. Derivation of iPSC line (RCMGi002-A) from dermal fibroblasts of a cystic fibrosis female patient with homozygous F508del mutation. Stem Cell Res 2021; 53:102251. [PMID: 33684631 DOI: 10.1016/j.scr.2021.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis is one of the most common inherited diseases caused by mutations in CFTR gene, of which F508del is the most frequent. Currently, the possibility of cell therapy including genome editing is widely discussed. We generated induced pluripotent stem cells from fibroblasts obtained from a 22-year-old woman with clinically manifested and genetically proven disease by using non-viral, non-integrating RNA reprogramming vector that contains five reprogramming factors: OCT4, KLF4, SOX2, GLIS1, and c-MYC. The established cell line can express endogenous pluripotency markers, possesses a normal karyotype, and has the ability to differentiate into three germ layers in spontaneous differentiation assay.
Collapse
Affiliation(s)
| | - Anna Demchenko
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | - Yana Slesarenko
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | - Matvey Yasinovsky
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | - Elena Amelina
- The Research Institute of Pulmonology, Moscow 115682, Russian Federation
| | | | | | - Alexander Lavrov
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | | |
Collapse
|
23
|
Quantitative Evaluation of CFTR Pre-mRNA Splicing Dependent on the (TG)mTn Poly-Variant Tract. Diagnostics (Basel) 2021; 11:diagnostics11020168. [PMID: 33504063 PMCID: PMC7911278 DOI: 10.3390/diagnostics11020168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic analysis in cystic fibrosis (CF) is a difficult task. Within the many causes of variability and uncertainty, a major determinant is poor knowledge of the functional effect of most DNA variants of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. In turn, knowledge of the effect of a CFTR variant has dramatic diagnostic, prognostic and, in the era of CF precision medicine, also therapeutic consequences. One of the most challenging CFTR variants is the (TG)mTn haplotype, which has variable functional effect and controversial clinical consequences. The exact quantification of the anomalous splicing of CFTR exon 10 (in the HGVS name; exon 9 in the legacy name) and, consequently, of the residual wild-type functional CFTR mRNA, should be mandatory in clinical assessment of patients with potentially pathological haplotype of this tract. Here, we present a real time-based assay for the quantification of the proportion of exon 10+/exon 10− CFTR mRNA, starting from nasal brushing. Our assay proved rapid, economic and easy to perform. Specific primers used for this assay are either disclosed or commercially available, allowing any laboratory to easily perform it. A simplified analysis of the data is provided, facilitating the interpretation of the results. This method helps to enhance the comprehension of the genotype–phenotype relationship in CF and CFTR-related disorders (CFTR-RD), crucial for the diagnosis, prognosis and personalized therapy of CF.
Collapse
|
24
|
Rosales-Reyes R, Vargas-Roldán SY, Lezana-Fernández JL, Santos-Preciado JI. Pseudomonas Aeruginosa: Genetic Adaptation, A Strategy for its Persistence in Cystic Fibrosis. Arch Med Res 2020; 52:357-361. [PMID: 33309309 DOI: 10.1016/j.arcmed.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Cystic fibrosis (CF) is a progressive autosomal recessive genetic disease that principally affects the respiratory and digestive systems. It is a chronic disease that has no cure. Symptoms often include chronic cough, lung infections, and shortness of breath. Children with cystic fibrosis present failure to thrive as manifested by low weight and height for age. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene that codes for a cell membrane protein of epithelial tissues and affects multiple organ systems in the human body. Mutations on the CFTR causes dysfunctional electrolyte regulation affecting intracellular water content. Defective CFTR function in airways produce a dehydrated and sticky mucus that leads the establishment of bacterial chronic infection that ultimate decrease the lung function. During the first decade of life, affected individuals are colonized principally by non typable Haemophilus influenzae and Staphylococcus aureus. During the second decade, Pseudomonas aeruginosa becomes the most dominant pathogen and persists throughout the remainder of their lives. In this work, we describe the mechanisms used by P. aeruginosa to adapt and persist in lungs of individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Silvia Yalid Vargas-Roldán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Luis Lezana-Fernández
- Laboratorio de Fisiología Respiratoria y Clínica de Fibrosis Quística, Hospital Infantil de México Federico Gómez, Ciudad de México, México; Dirección Médica, Asociación Mexicana de Fibrosis Quística, Ciudad de México, México
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
25
|
Loureiro CA, Pinto FR, Barros P, Matos P, Jordan P. A SYK/SHC1 pathway regulates the amount of CFTR in the plasma membrane. Cell Mol Life Sci 2020; 77:4997-5015. [PMID: 31974654 PMCID: PMC11105000 DOI: 10.1007/s00018-020-03448-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause the recessive genetic disease cystic fibrosis, where the chloride transport across the apical membrane of epithelial cells mediated by the CFTR protein is impaired. CFTR protein trafficking to the plasma membrane (PM) is the result of a complex interplay between the secretory and membrane recycling pathways that control the number of channels present at the membrane. In addition, the ion transport activity of CFTR at the PM is modulated through post-translational protein modifications. Previously we described that spleen tyrosine kinase (SYK) phosphorylates a specific tyrosine residue in the nucleotide-binding domain 1 domain and this modification can regulate the PM abundance of CFTR. Here we identified the underlying biochemical mechanism using peptide pull-down assays followed by mass spectrometry. We identified in bronchial epithelial cells that the adaptor protein SHC1 recognizes tyrosine-phosphorylated CFTR through its phosphotyrosine-binding domain and that the formation of a complex between SHC1 and CFTR is induced at the PM in the presence of activated SYK. The depletion of endogenous SHC1 expression was sufficient to promote an increase in CFTR at the PM of these cells. The results identify a SYK/SHC1 pathway that regulates the PM levels of CFTR channels, contributing to a better understanding of how CFTR-mediated chloride secretion is regulated.
Collapse
Affiliation(s)
- Cláudia Almeida Loureiro
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
26
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
27
|
Editorial: Special Issue on "Therapeutic Approaches for Cystic Fibrosis". Int J Mol Sci 2020; 21:ijms21186657. [PMID: 32932926 PMCID: PMC7555172 DOI: 10.3390/ijms21186657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
|
28
|
Bene Z, Fejes Z, Macek M, Amaral MD, Balogh I, Nagy B. Laboratory biomarkers for lung disease severity and progression in cystic fibrosis. Clin Chim Acta 2020; 508:277-286. [PMID: 32428503 DOI: 10.1016/j.cca.2020.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Although the clinical outcomes of cystic fibrosis (CF) have been markedly improved through the recent implementation of novel CF transmembrane conductance regulator (CFTR) modulator drugs, robust and reliable biomarkers are still demanded for the early detection of CF lung disease progression, monitoring treatment efficacy and predicting life-threatening clinical complications. Thus, there is an unmet need to identify and validate novel, ideally blood based biomarkers with strong correlations to the severity of CF lung disease, which represents a major contribution to overall CF morbidity and mortality. In this review, we aim to summarize the utility of thus far studied blood-, sputum- and bronchoalveolar lavage (BAL)-based biomarkers to evaluate inflammatory conditions in the lung and to follow treatment efficacy in CF. Measurements of sweat chloride concentrations and the spirometric parameter FEV1 are currently utilized to monitor CFTR function and the effect of various CF therapies. Nonetheless, both have inherent pitfalls and limitations, thus routinely analyzed biomarkers in blood, sputum or BAL samples are required as surrogates for lung disorders. Recent discovery of new protein (e.g. HE4) and RNA-based biomarkers, such as microRNAs may offer a higher efficacy, which in aggregate may be valuable to evaluate disease prognosis and to substantiate CF drug efficacy.
Collapse
Affiliation(s)
- Zsolt Bene
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Milan Macek
- Department of Biology and Medical Genetics, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - István Balogh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
29
|
Kondrateva E, Adilgereeva E, Amelina E, Tabakov V, Demchenko A, Ustinov K, Yasinovsky M, Voronina E, Lavrov A, Smirnikhina S. Generation of induced pluripotent stem cell line (RCMGi001-A) from human skin fibroblasts of a cystic fibrosis patient with p.F508del mutation. Stem Cell Res 2020; 48:101933. [PMID: 32777768 DOI: 10.1016/j.scr.2020.101933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Skin fibroblasts obtained from a 27-year-old man with clinically manifested and genetically proven (F508del/F508del) cystic fibrosis were successfully transformed into induced pluripotent stem cells (iPSCs) by using Sendai virus-based reprogramming vectors including the four Yamanaka factors, OCT3/4, SOX2, KLF4, and c-MYC. The iPSCs showed a normal karyotype, expressed pluripotency markers and exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay. This iPSC line may be subsequently used for development of a personalized etiotropic treatment including genome editing, and for disease modelling and drug screening.
Collapse
Affiliation(s)
| | | | - Elena Amelina
- The Research Institute of Pulmonology, Moscow 115682, Russian Federation
| | | | - Anna Demchenko
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | - Kirill Ustinov
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | - Matvey Yasinovsky
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | | | - Alexander Lavrov
- Research Centre for Medical Genetics, Moscow 115522, Russian Federation
| | | |
Collapse
|
30
|
Liessi N, Pedemonte N, Armirotti A, Braccia C. Proteomics and Metabolomics for Cystic Fibrosis Research. Int J Mol Sci 2020; 21:ijms21155439. [PMID: 32751630 PMCID: PMC7432297 DOI: 10.3390/ijms21155439] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this review article is to introduce the reader to the state-of-the-art of the contribution that proteomics and metabolomics sciences are currently providing for cystic fibrosis (CF) research: from the understanding of cystic fibrosis transmembrane conductance regulator (CFTR) biology to biomarker discovery for CF diagnosis. Our work particularly focuses on CFTR post-translational modifications and their role in cellular trafficking as well as on studies that allowed the identification of CFTR molecular interactors. We also show how metabolomics is currently helping biomarker discovery in CF. The most recent advances in these fields are covered by this review, as well as some considerations on possible future scenarios for new applications.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Nicoletta Pedemonte
- U.O.C. Genetica Medica, IRCCS Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
- Correspondence: ; Tel.: +39-010-2896-938
| | - Clarissa Braccia
- D3PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
31
|
Sharma N, Cutting GR. The genetics and genomics of cystic fibrosis. J Cyst Fibros 2019; 19 Suppl 1:S5-S9. [PMID: 31879237 DOI: 10.1016/j.jcf.2019.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Genetics is the branch of biology concerned with study of individual genes and how they work whereas genomics is involved with the analysis of all genes and their interactions. Both of these approaches have been applied extensively to CF. Identification of the CFTR gene initiated the dissection of CF genetics at the molecular level. Subsequently, thousands of variants were found in the gene and the functional consequences of a subset have been studied in detail. The completion of the human genome ushered in a new phase of study where the role of genes beyond CFTR could be evaluated for their contribution to the severity of CF. This will be a brief overview of the contribution of these complementary methods to our understanding of CF pathogenesis.
Collapse
Affiliation(s)
- N Sharma
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - G R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
32
|
Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol 2019; 7:406. [PMID: 31921811 PMCID: PMC6927921 DOI: 10.3389/fbioe.2019.00406] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide and characterized by a hypersecretion of thick mucus difficult to clear arising from the defective CFTR protein. The over-production of the mucus secreted in the lungs, along with its altered composition and consistency, results in airway obstruction that makes the lungs susceptible to recurrent and persistent bacterial infections and endobronchial chronic inflammation, which are considered the primary cause of bronchiectasis, respiratory failure, and consequent death of patients. Despite the difficulty of treating the continuous infections caused by pathogens in CF patients, various strategies focused on the symptomatic therapy have been developed during the last few decades, showing significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR modulators as well as the development of gene therapy have provided new opportunity to treat CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the treatments. Nanomedicine represents an extraordinary opportunity for the improvement of current therapies and for the development of innovative treatment options for CF previously considered hard or impossible to treat. Due to the peculiar environment in which the therapies have to operate characterized by several biological barriers (pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to improve and enhance drug delivery or gene therapies is an extremely promising way to be pursued. The aim of this review is to revise the currently used treatments and to outline the most recent progresses about the use of nanotechnology for the management of CF.
Collapse
Affiliation(s)
- Cecilia Velino
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Vitali
- Institute for the Chemistry of Molecular Recognition (ICRM), National Research Council (CNR), c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB) - UOS Milan, National Research Council (CNR), Milan, Italy
| | - Francesca Bugli
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
33
|
Fiorotto R, Strazzabosco M. Pathophysiology of Cystic Fibrosis Liver Disease: A Channelopathy Leading to Alterations in Innate Immunity and in Microbiota. Cell Mol Gastroenterol Hepatol 2019; 8:197-207. [PMID: 31075352 PMCID: PMC6664222 DOI: 10.1016/j.jcmgh.2019.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutation of Cftr. CF-associated liver disease (CFLD) is a common nonpulmonary cause of mortality in CF and accounts for approximately 2.5%-5% of overall CF mortality. The peak of the disease is in the pediatric population, but a second wave of liver disease in CF adults has been reported in the past decade in association with an increase in the life expectancy of these patients. New drugs are available to correct the basic defect in CF but their efficacy in CFLD is not known. The cystic fibrosis transmembrane conductance regulator, expressed in the apical membrane of cholangiocytes, is a major determinant for bile secretion and CFLD classically has been considered a channelopathy. However, the recent findings of the cystic fibrosis transmembrane conductance regulator as a regulator of epithelial innate immunity and the possible influence of the intestinal disease with an altered microbiota on the liver complication have opened new mechanistic insights on the pathogenesis of CFLD. This review provides an overview of the current understanding of the pathophysiology of the disease and discusses a potential target for intervention.
Collapse
Affiliation(s)
- Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
34
|
Villella VR, Tosco A, Esposito S, Bona G, Raia V, Maiuri L. Mutation-specific therapies and drug repositioning in cystic fibrosis. Minerva Pediatr 2019; 71:287-296. [DOI: 10.23736/s0026-4946.19.05506-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Abstract
PURPOSE OF REVIEW Cystic fibrosis (CF; OMIM 219700) is caused by variations in the cystic fibrosis transmembrane conductance regulator gene. CF-related liver disease (CFLD) affects approximately one-third of patients with CF, but the severity of CFLD is highly variable. This review provides the latest knowledge in the pathophysiology and CF genetic modifier research in CFLD. RECENT FINDINGS So far, the only modifier gene validated in CFLD is SERPINA1 (α-1-antitrypsin) Z allele. Recent studies support the view that cholangiopathy arising in CF is the result of an ill-adapted innate immune response to endotoxins coming from the intestine and triggering a pro-inflammatory response. SUMMARY The pathophysiology of liver disease remains uncertain and so far, no therapy has proven effective to prevent the progression of CFLD. A better understanding of the pathophysiology and the effect of environmental and non-cystic fibrosis transmembrane conductance regulator genetic influences in the context of CFLD development would help improve management and develop new drug therapies.
Collapse
|
36
|
Kmit A, Marson FAL, Pereira SVN, Vinagre AM, Leite GS, Servidoni MF, Ribeiro JD, Ribeiro AF, Bertuzzo CS, Amaral MD. Extent of rescue of F508del-CFTR function by VX-809 and VX-770 in human nasal epithelial cells correlates with SNP rs7512462 in SLC26A9 gene in F508del/F508del Cystic Fibrosis patients. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1323-1331. [PMID: 30716472 DOI: 10.1016/j.bbadis.2019.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND We analyzed the CFTR response to VX-809/VX-770 drugs in conditionally reprogrammed cells (CRC) of human nasal epithelium (HNE) from F508del/F508del patients based on SNP rs7512462 in the Solute Carrier Family 26, Member 9 (SLC26A9; MIM: 608481) gene. METHODS The Isc-eq measurements of primary nasal epithelial cells from F508del/F508del patients (n = 12) for CFTR function were performed in micro Ussing chambers and compared with non-CF controls (n = 2). Data were analyzed according to the rs7512462 genotype which were determined by real-time PCR. RESULTS The CRC-HNE cells from F508del/F508del patients evidenced high variability in the basal levels of CFTR function. Also, the rs7512462*C allele showed an increased basal CFTR function and higher responses to VX-809 + VX-770. The rs7512462*CC + CT genotypes together evidenced CFTR function levels of 14.89% relatively to wt/wt (rs7512462*CT alone-15.29%) i.e., almost double of rs7512462*TT (7.13%). Furthermore, sweat [Cl-] and body mass index of patients also evidenced an association with the rs7512462 genotype. CONCLUSION The CFTR function can be performed in F508del/F508del patient-derived CRC-HNEs and its function and responses to VX-809 + VX-770 combination as well as clinical data, are all associated with the rs7512462 variant, which partially sheds light on the generally inter-individual phenotypic variability and in personalized responses to CFTR modulator drugs.
Collapse
Affiliation(s)
- Arthur Kmit
- Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, University of Campinas, Brazil; Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Brazil.
| | - Fernando Augusto Lima Marson
- Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, University of Campinas, Brazil; Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Brazil.
| | - Stéphanie Villa-Nova Pereira
- Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, University of Campinas, Brazil
| | | | - Gabriela Silva Leite
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Brazil
| | | | - José Dirceu Ribeiro
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, Brazil
| | | | - Carmen Sílvia Bertuzzo
- Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, University of Campinas, Brazil.
| | - Margarida Duarte Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Portugal.
| |
Collapse
|
37
|
Matthes E, Goepp J, Martini C, Shan J, Liao J, Thomas DY, Hanrahan JW. Variable Responses to CFTR Correctors in vitro: Estimating the Design Effect in Precision Medicine. Front Pharmacol 2018; 9:1490. [PMID: 30618775 PMCID: PMC6305743 DOI: 10.3389/fphar.2018.01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Interest in precision medicine has grown in recent years due to the variable clinical benefit provided by some medications, their cost, and by new opportunities to tailor therapies to individual patients. In cystic fibrosis it may soon be possible to test several corrector drugs that improve the folding and functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) prospectively using cells from a patient to find the one that is best for that individual. Patient-to-patient variation in cell culture responses to correctors and the reproducibility of those responses has not been studied quantitatively. We measured the functional correction provided by lumacaftor (VX-809) using bronchial epithelial cells from 20 patients homozygous for the F508del-CFTR mutation. Significant differences were observed between individuals, supporting the utility of prospective testing. However, when correction of F508del-CFTR was measured repeatedly using cell aliquots from the same individuals, a design effect was observed that would impact statistical tests of significance. The results suggest that the sample size obtained from power calculations should be increased to compensate for group sampling when CFTR corrector drugs are compared in vitro for precision medicine.
Collapse
Affiliation(s)
- Elizabeth Matthes
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Julie Goepp
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Carolina Martini
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Jiajie Shan
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Jie Liao
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - David Y. Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
- Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
38
|
Fiorotto R, Amenduni M, Mariotti V, Cadamuro M, Fabris L, Spirli C, Strazzabosco M. Animal models for cystic fibrosis liver disease (CFLD). Biochim Biophys Acta Mol Basis Dis 2018; 1865:965-969. [PMID: 30071276 DOI: 10.1016/j.bbadis.2018.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Liver disease is a severe complication in patients with Cystic Fibrosis (CF), a genetic disease caused by mutations in the gene encoding for cystic fibrosis transmembrane conductance regulator (CFTR) channel. The sequence of events leading to CFLD is still unclear and has limited the development of more specific treatments other than the bile acid UDCA. However, in the last twenty years, several gaps have been filled, which have mainly been possible due to the availability of different animal models that mimic CF. CF mice, although they lack a spontaneous liver manifestation, have been essential to better understand the multiple functions of CFTR expression on the apical membrane of cholangiocytes, from chloride channel to regulator of epithelial innate immunity. Additionally, we have learned that the gut microbiota might be a pathogenetic factor for the development of liver disease. The recent creation of novel CF animal models (i.e. pig and ferret) that better reproduce the human disease, will allow for comparative studies with species that spontaneously develop the liver disease and will hopefully lead to novel therapeutic treatments. In this review, we have compared and summarized the main features of the current available CF animal models and their applicability for the study of the liver phenotype.
Collapse
Affiliation(s)
- Romina Fiorotto
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Mariangela Amenduni
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Luca Fabris
- Department of Molecular Medicine, University of Padova School of Medicine, Padova, Italy
| | - Carlo Spirli
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Mario Strazzabosco
- Digestive Disease Section, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
39
|
Favalli V, Serio A, Giuliani LP, Arbustini E. 'Precision and personalized medicine,' a dream that comes true? J Cardiovasc Med (Hagerstown) 2018; 18 Suppl 1:e1-e6. [PMID: 27661611 DOI: 10.2459/jcm.0000000000000423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Valentina Favalli
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, Policlinico San Matteo, University Hospital, Pavia, Italy
| | | | | | | |
Collapse
|
40
|
Spear ED, Hsu ET, Nie L, Carpenter EP, Hrycyna CA, Michaelis S. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability. Dis Model Mech 2018; 11:dmm.033670. [PMID: 29794150 PMCID: PMC6078402 DOI: 10.1242/dmm.033670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
The human zinc metalloprotease ZMPSTE24 is an integral membrane protein crucial for the final step in the biogenesis of the nuclear scaffold protein lamin A, encoded by LMNA. After farnesylation and carboxyl methylation of its C-terminal CAAX motif, the lamin A precursor (prelamin A) undergoes proteolytic removal of its modified C-terminal 15 amino acids by ZMPSTE24. Mutations in LMNA or ZMPSTE24 that impede this prelamin A cleavage step cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), and the related progeroid disorders mandibuloacral dysplasia type B (MAD-B) and restrictive dermopathy (RD). Here, we report the development of a ‘humanized yeast system’ to assay ZMPSTE24-dependent cleavage of prelamin A and examine the eight known disease-associated ZMPSTE24 missense mutations. All mutations show diminished prelamin A processing and fall into three classes, with defects in activity, protein stability or both. Notably, some ZMPSTE24 mutants can be rescued by deleting the E3 ubiquitin ligase Doa10, involved in endoplasmic reticulum (ER)-associated degradation of misfolded membrane proteins, or by treatment with the proteasome inhibitor bortezomib. This finding may have important therapeutic implications for some patients. We also show that ZMPSTE24-mediated prelamin A cleavage can be uncoupled from the recently discovered role of ZMPSTE24 in clearance of ER membrane translocon-clogged substrates. Together with the crystal structure of ZMPSTE24, this humanized yeast system can guide structure-function studies to uncover mechanisms of prelamin A cleavage, translocon unclogging, and membrane protein folding and stability. Summary: The zinc metalloprotease ZMPSTE24 performs the final step of prelamin A processing. Here, a yeast-based system shows differences in protein stability and activity for alleles of ZMPSTE24 that cause progeria disease.
Collapse
Affiliation(s)
- Eric D Spear
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laiyin Nie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Price EP, Viberg LT, Kidd TJ, Bell SC, Currie BJ, Sarovich DS. Transcriptomic analysis of longitudinal Burkholderia pseudomallei infecting the cystic fibrosis lung. Microb Genom 2018; 4. [PMID: 29989529 PMCID: PMC6159556 DOI: 10.1099/mgen.0.000194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The melioidosis bacterium, Burkholderia pseudomallei, is increasingly being recognised as a pathogen in patients with cystic fibrosis (CF). We have recently catalogued genome-wide variation of paired, isogenic B. pseudomallei isolates from seven Australasian CF cases, which were collected between 4 and 55 months apart. Here, we extend this investigation by documenting the transcriptomic changes in B. pseudomallei in five cases. Following growth in an artificial CF sputum medium, four of the five paired isolates exhibited significant differential gene expression (DE) that affected between 32 and 792 genes. The greatest number of DE events was observed between the strains from patient CF9, consistent with the hypermutator status of the latter strain, which is deficient in the DNA mismatch repair protein MutS. Two patient isolates harboured duplications that concomitantly increased expression of the β-lactamase-encoding gene penA, and a 35 kb deletion in another abolished expression of 29 genes. Convergent expression profiles in the chronically-adapted isolates identified two significantly downregulated and 17 significantly upregulated loci, including the resistance-nodulation-division (RND) efflux pump BpeEF-OprC, the quorum-sensing hhqABCDE operon, and a cyanide- and pyocyanin-insensitive cytochrome bd quinol oxidase. These convergent pathoadaptations lead to increased expression of pathways that may suppress competing bacterial and fungal pathogens, and that enhance survival in oxygen-restricted environments, the latter of which may render conventional antibiotics less effective in vivo. Treating chronically adapted B. pseudomallei infections with antibiotics designed to target anaerobic infections, such as the nitroimidazole class of antibiotics, may significantly improve pathogen eradication attempts by exploiting this Achilles heel.
Collapse
Affiliation(s)
- Erin P Price
- 1Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Linda T Viberg
- 2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Timothy J Kidd
- 3Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,4School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Scott C Bell
- 3Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,5QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,6Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, QLD, Australia
| | - Bart J Currie
- 2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,7Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- 1Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,2Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
42
|
Burgener EB, Moss RB. Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Curr Opin Pediatr 2018; 30:372-377. [PMID: 29538046 PMCID: PMC6398332 DOI: 10.1097/mop.0000000000000627] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to describe the newest development in cystic fibrosis (CF) care, CF transmembrane conductance regulator (CFTR) modulator therapies. RECENT FINDINGS Phase II results showing CFTR modulator triple therapies are more effective than current CFTR modulators. SUMMARY CFTR modulator therapy targets the protein defective in CF and boosts its function, but the drug must match mutation pathobiology. Ivacaftor, a CFTR potentiator, was the first modulator approved in 2012, with impressive improvement in lung function and other measures of disease in patients with gating and other residual function mutations (∼10% of CF patients). In 2015, the combination of lumacaftor, a CFTR corrector, and ivacaftor was approved for patients homozygous for the F508del mutation (∼40-50% of the CF population) with positive but less impressive clinical response and 10-20% incidence of intolerance. A next-generation CFTR corrector, tezacaftor, with ivacaftor equally effective and better tolerated than lumacaftor, has also received US Food and Drug Administration approval. Novel CFTR correctors, entering Phase 3 trials in triple modulator combination with tezacaftor-ivacaftor, appear substantially more effective for patients who are homozygous for the F508del mutation and can provide benefit for patients with a single F508del mutation. This offers promise of effective CFTR modulator therapy for nearly 90% of CF patients.
Collapse
|
43
|
Bolia R, Ooi CY, Lewindon P, Bishop J, Ranganathan S, Harrison J, Ford K, van der Haak N, Oliver MR. Practical approach to the gastrointestinal manifestations of cystic fibrosis. J Paediatr Child Health 2018; 54:609-619. [PMID: 29768684 DOI: 10.1111/jpc.13921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF) is the most common, life-shortening, genetic illness affecting children in Australia and New Zealand. The genetic abnormality results in abnormal anion transport across the apical membrane of epithelial cells in a number of organs, including the lungs, gastrointestinal tract, liver and genito-urinary tract. Thus, CF is a multi-system disorder that requires a multi-disciplinary approach. Respiratory disease is the predominant cause of both morbidity and mortality in patients with CF. However, there are significant and clinically relevant gastrointestinal, liver, pancreatic and nutritional manifestations that must be detected and managed in a timely and structured manner. The aim of this review is to provide evidence-based information and clinical algorithms to guide the nutritional and gastrointestinal management of patients with CF.
Collapse
Affiliation(s)
- Rishi Bolia
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Chee Y Ooi
- School of Women and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,miCF Research Centre and Department of Gastroenterology, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Peter Lewindon
- Department of Gastroenterology, Lady Cilento Children's Hospital and Queensland Liver Transplant Service, Brisbane, Queensland, Australia
| | - Jonathan Bishop
- Department of Paediatric Gastroenterology, Starship Children's Hospital, Auckland, New Zealand
| | - Sarath Ranganathan
- Department of Respiratory Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Infection and Immunity Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jo Harrison
- Department of Respiratory Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Infection and Immunity Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristyn Ford
- Department of Nutrition and Dietetics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Natalie van der Haak
- Department of Nutrition and Dietetics, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Mark R Oliver
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Assembly and Functional Analysis of an S/MAR Based Episome with the Cystic Fibrosis Transmembrane Conductance Regulator Gene. Int J Mol Sci 2018; 19:ijms19041220. [PMID: 29673202 PMCID: PMC5979583 DOI: 10.3390/ijms19041220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022] Open
Abstract
Improving the efficacy of gene therapy vectors is still an important goal toward the development of safe and efficient gene therapy treatments. S/MAR (scaffold/matrix attached region)-based vectors are maintained extra-chromosomally in numerous cell types, which is similar to viral-based vectors. Additionally, when established as an episome, they show a very high mitotic stability. In the present study we tested the idea that addition of an S/MAR element to a CFTR (cystic fibrosis transmembrane conductance regulator) expression vector, may allow the establishment of a CFTR episome in bronchial epithelial cells. Starting from the observation that the S/MAR vector pEPI-EGFP (enhanced green fluorescence protein) is maintained as an episome in human bronchial epithelial cells, we assembled the CFTR vector pBQ-S/MAR. This vector, transfected in bronchial epithelial cells with mutated CFTR, supported long term wt CFTR expression and activity, which in turn positively impacted on the assembly of tight junctions in polarized epithelial cells. Additionally, the recovery of intact pBQ-S/MAR, but not the parental vector lacking the S/MAR element, from transfected cells after extensive proliferation, strongly suggested that pBQ-S/MAR was established as an episome. These results add a new element, the S/MAR, that can be considered to improve the persistence and safety of gene therapy vectors for cystic fibrosis pulmonary disease.
Collapse
|
45
|
Conese M, Beccia E, Castellani S, Di Gioia S, Colombo C, Angiolillo A, Carbone A. The long and winding road: stem cells for cystic fibrosis. Expert Opin Biol Ther 2017; 18:281-292. [PMID: 29216777 DOI: 10.1080/14712598.2018.1413087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic syndrome with a high mortality rate due to severe lung disease. Despite having several drugs targeting specific mutated CFTR proteins already in clinical trials, new therapies, based on stem cells, are also emerging to treat those patients. AREAS COVERED The authors review the main sources of stem cells, including embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), gestational stem cells, and adult stem cells, such as mesenchymal stem cells (MSCs) in the context of CF. Furthermore, they describe the main animal and human models of lung physiology and pathology, involved in the optimization of these stem cell-applied therapies in CF. EXPERT OPINION ESCs and iPSCs are emerging sources for disease modeling and drug discovery purposes. The allogeneic transplant of healthy MSCs, that acts independently to specific mutations, is under intense scrutiny due to their secretory, immunomodulatory, anti-inflammatory and anti-bacterial properties. The main challenge for future developments will be to get exogenous stem cells into the appropriate lung location, where they can regenerate endogenous stem cells and act as inflammatory modulators. The clinical application of stem cells for the treatment of CF certainly warrants further insight into pre-clinical models, including large animals, organoids, decellularized organs and lung bioengineering.
Collapse
Affiliation(s)
- Massimo Conese
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Elisa Beccia
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy.,b Department of Medicine and Health Sciences 'V. Tiberio' , University of Molise , Campobasso , Italy
| | - Stefano Castellani
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Sante Di Gioia
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Carla Colombo
- c Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation , University of Milan , Milan , Italy
| | - Antonella Angiolillo
- b Department of Medicine and Health Sciences 'V. Tiberio' , University of Molise , Campobasso , Italy
| | - Annalucia Carbone
- d Division of Internal Medicine and Chronobiology Unit , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo (FG) , Italy
| |
Collapse
|
46
|
Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ 2017; 24:1825-1844. [PMID: 28937684 PMCID: PMC5635223 DOI: 10.1038/cdd.2017.126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Etiological therapies aim at repairing the underlying cause of cystic fibrosis (CF), which is the functional defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein owing to mutations in the CFTR gene. Among these, the F508del CFTR mutation accounts for more than two thirds of CF cases worldwide. Two somehow antinomic schools of thought conceive CFTR repair in a different manner. According to one vision, drugs should directly target the mutated CFTR protein to increase its plasma membrane expression (correctors) or improve its ion transport function (potentiators). An alternative strategy consists in modulating the cellular environment and proteostasis networks in which the mutated CFTR protein is synthesized, traffics to its final destination, the plasma membrane, and is turned over. We will analyze distinctive advantages and drawbacks of these strategies in terms of their scientific and clinical dimensions, and we will propose a global strategy for CF research and development based on a reconciliatory approach. Moreover, we will discuss the utility of preclinical biomarkers that may guide the personalized, patient-specific implementation of CF therapies.
Collapse
|
47
|
Abstract
Pulmonary disease is the major cause of morbidity and mortality in patients with cystic fibrosis, a disease caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Heterogeneity in CFTR genotype–phenotype relationships in affected individuals plus the escalation of drug discovery targeting specific mutations highlights the need to develop robust in vitro platforms with which to stratify therapeutic options using relevant tissue. Toward this goal, we adapted a fluorescence plate reader assay of apical CFTR-mediated chloride conductance to enable profiling of a panel of modulators on primary nasal epithelial cultures derived from patients bearing different CFTR mutations. This platform faithfully recapitulated patient-specific responses previously observed in the “gold-standard” but relatively low-throughput Ussing chamber. Moreover, using this approach, we identified a novel strategy with which to augment the response to an approved drug in specific patients. In proof of concept studies, we also validated the use of this platform in measuring drug responses in lung cultures differentiated from cystic fibrosis iPS cells. Taken together, we show that this medium throughput assay of CFTR activity has the potential to stratify cystic fibrosis patient-specific responses to approved drugs and investigational compounds in vitro in primary and iPS cell-derived airway cultures. A new method for evaluating drug responses in patient-derived respiratory tissue promises to help determine the best treatment for each patient with cystic fibrosis (CF). CF patients are highly susceptible to lung infections due to the build-up of thick mucus in the airways. Over 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified in patients with CF, which partly explains their varied response to treatment. Saumel Ahmadi, Christine E. Bear, and colleagues at the Hospital for Sick Children in Toronto developed a fluorescence-based method for measuring improvements in mutant CFTR function in patient-derived nasal and induced pluripotent stem cell-derived lung tissue. This method enables comparison of approved and investigational drugs on airway cells from each individual patient and in the longer term will accelerate the development of personalized therapeutic strategies.
Collapse
|
48
|
van der Woerd WL, Houwen RHJ, van de Graaf SFJ. Current and future therapies for inherited cholestatic liver diseases. World J Gastroenterol 2017; 23:763-775. [PMID: 28223721 PMCID: PMC5296193 DOI: 10.3748/wjg.v23.i5.763] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Familial intrahepatic cholestasis (FIC) comprises a group of rare cholestatic liver diseases associated with canalicular transport defects resulting predominantly from mutations in ATP8B1, ABCB11 and ABCB4. Phenotypes range from benign recurrent intrahepatic cholestasis (BRIC), associated with recurrent cholestatic attacks, to progressive FIC (PFIC). Patients often suffer from severe pruritus and eventually progressive cholestasis results in liver failure. Currently, first-line treatment includes ursodeoxycholic acid in patients with ABCB4 deficiency (PFIC3) and partial biliary diversion in patients with ATP8B1 or ABCB11 deficiency (PFIC1 and PFIC2). When treatment fails, liver transplantation is needed which is associated with complications like rejection, post-transplant hepatic steatosis and recurrence of disease. Therefore, the need for more and better therapies for this group of chronic diseases remains. Here, we discuss new symptomatic treatment options like total biliary diversion, pharmacological diversion of bile acids and hepatocyte transplantation. Furthermore, we focus on emerging mutation-targeted therapeutic strategies, providing an outlook for future personalized treatment for inherited cholestatic liver diseases.
Collapse
|
49
|
Ferrari E, Monzani R, Villella VR, Esposito S, Saluzzo F, Rossin F, D'Eletto M, Tosco A, De Gregorio F, Izzo V, Maiuri MC, Kroemer G, Raia V, Maiuri L. Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation. Cell Death Dis 2017; 8:e2544. [PMID: 28079883 PMCID: PMC5386380 DOI: 10.1038/cddis.2016.476] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/17/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022]
Abstract
Cystic fibrosis (CF), the most common lethal monogenic disease in Caucasians, is characterized by recurrent bacterial infections and colonization, mainly by Pseudomonas aeruginosa, resulting in unresolved airway inflammation. CF is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a chloride channel in epithelial cells, macrophages, and other cell types. Impaired bacterial handling by macrophages is a feature of CF airways, although it is still debated how defective CFTR impairs bacterial killing. Recent evidence indicates that a defective autophagy in CF macrophages leads to alterations of bacterial clearance upon infection. Here we use bone marrow-derived macrophages from transgenic mice to provide the genetic proof that defective CFTR compromises both uptake and clearance of internalized Pseudomonas aeruginosa. We demonstrate that the proteostasis regulator cysteamine, which rescues the function of the most common F508del-CFTR mutant and hence reduces lung inflammation in CF patients, can also repair the defects of CF macrophages, thus restoring both bacterial internalization and clearance through a process that involves upregulation of the pro-autophagic protein Beclin 1 and re-establishment of the autophagic pathway. Altogether these results indicate that cysteamine restores the function of several distinct cell types, including that of macrophages, which might contribute to its beneficial effects on CF.
Collapse
Affiliation(s)
- Eleonora Ferrari
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, European Institute for Research in Cystic Fibrosis, Milan 20132, Italy
| | - Romina Monzani
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, European Institute for Research in Cystic Fibrosis, Milan 20132, Italy
| | - Valeria R Villella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, European Institute for Research in Cystic Fibrosis, Milan 20132, Italy
| | - Speranza Esposito
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, European Institute for Research in Cystic Fibrosis, Milan 20132, Italy
| | - Francesca Saluzzo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, European Institute for Research in Cystic Fibrosis, Milan 20132, Italy
| | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Antonella Tosco
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, FedericoII University Naples 80131, Italy
| | - Fabiola De Gregorio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, European Institute for Research in Cystic Fibrosis, Milan 20132, Italy.,Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, FedericoII University Naples 80131, Italy
| | - Valentina Izzo
- Equipe11 labellisée Ligue Nationale contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Maria C Maiuri
- Equipe11 labellisée Ligue Nationale contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Guido Kroemer
- Equipe11 labellisée Ligue Nationale contrele Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôlede Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, Franceand.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, FedericoII University Naples 80131, Italy
| | - Luigi Maiuri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, European Institute for Research in Cystic Fibrosis, Milan 20132, Italy.,SCDU of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
50
|
Levy JF, Rosenberg MA, Farrell PM. Innovative assessment of inpatient and pulmonary drug costs for children with cystic fibrosis. Pediatr Pulmonol 2016; 51:1295-1303. [PMID: 27740724 PMCID: PMC9359810 DOI: 10.1002/ppul.23554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Previous estimates of the cost of care for pediatric Cystic fibrosis (CF) showed wide variation, without specific summary of pulmonary drug costs. METHODS Enrolled CF children from the Wisconsin newborn screening trial were evaluated quarterly per protocol. Assessments systematically included all treatments, hospitalizations, and nutritional and pulmonary outcomes. Direct medical costs from hospital billing and medical records from 1989 to 2010 were used to describe costs by age-ranges and subgroups throughout follow-up. Outpatient drugs were separated by category (pulmonary/otherwise). Inpatient and drug costs were examined by clinical risk factors (presence of meconium ileus, pancreatic insufficiency, and expected severity of genetic mutations). RESULTS Seventy-three children were followed for an average of 12.9 years with an average annual total cost of care of $24,768. Outpatient drug costs (53%) and hospitalizations (32%) represented the majority of costs. Drug costs were 48% for pulmonary indications and 52% for non-pulmonary. Pulmonary drug costs for children taking dornase were 54% of their drug costs while pulmonary drug costs were only 31% for children not taking dornase. Significant differences in frequency of inpatient stays existed for children with pancreatic insufficiency. Substantial differences in treatment costs exist as children age and by clinical risk factor. CONCLUSION This study provides more accurate longitudinal estimates of CF care costs throughout childhood and shows that increasing age, pancreatic insufficiency, use of dornase, and hospitalizations are key determinants of cost. These estimates can be included in evaluations of the cost-effectiveness of new, highly expensive treatments being introduced for any CF population. Pediatr Pulmonol. 2016;51:1295-1303. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph F Levy
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Marjorie A Rosenberg
- Department of Risk and Insurance, University of Wisconsin School of Business, Madison, Wisconsin
| | - Philip M Farrell
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.,Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|