1
|
Mousavi SO, Reshi QUA, Godakumara K, Kodithuwakku S, Fazeli A. Extracellular vesicles as mediators of stress response in embryo-maternal communication. Front Cell Dev Biol 2024; 12:1440849. [PMID: 39161594 PMCID: PMC11330882 DOI: 10.3389/fcell.2024.1440849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: The pivotal role of extracellular vesicles (EVs) in facilitating effective communication between the embryo and maternal cells during the preimplantation stage of pregnancy has been extensively explored. Nonetheless, inquiries persist regarding the alterations in EV cargo from endometrial cells under stress conditions and its potential to elicit specific stress responses in trophoblast cells. Thus, the aim of this study was to elucidate the involvement of EV miRNA miRNAs in transmitting stress signals from maternal cells to trophoblasts. Methods: The receptive endometrial epithelium analogue RL95-2 cells were subjected to stress induction with 200 µM CoCl2 for 24 h before EV isolation. JAr trophoblast spheroids, which serve as embryos, were subjected to treatment with stressed or unstressed EVs derived from RL95-2 cells for 24 h. Transcriptomic alterations in the treated JAr spheroids as well as in the untreated group, as a negative control, were investigated by mRNA sequencing. Furthermore, the changes in EV miRNAs were assessed by sequencing EV samples. Results: A comprehensive analysis comparing the miRNA profiles between stressed and unstressed EVs revealed significant changes in 25 miRNAs. Furthermore, transcriptomic analysis of JAr spheroids treated with stressed RL95-2EVs versus unstressed EVs or the untreated group demonstrated 6 and 27 differentially expressed genes, respectively. Pathway enrichment analysis showed that stressed EVs induce alterations in gene expression in trophoblast cells, which is partially mediated by EV microRNAs. Discussion: Our results suggest that EVs can transfer stress signals from endometrial cells to the embryo. These discoveries shed new light on the mechanism underlying implantation failures under stress conditions. Unraveling the role of EVs in transmitting stress signals, can extend our knowledge to pave the way for targeted interventions to manage stress-related implantation failures.
Collapse
Affiliation(s)
- Seyed Omid Mousavi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
3
|
Guo M, Wang L, Yin Z, Chen F, Lei P. Small extracellular vesicles as potential theranostic tools in central nervous system disorders. Biomed Pharmacother 2023; 167:115407. [PMID: 37683594 DOI: 10.1016/j.biopha.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Small extracellular vesicles(sEVs), a subset of extracellular vesicles with a bilateral membrane structure, contain biological cargoes, such as lipids, nucleic acids, and proteins. sEVs are crucial mediators of intercellular communications in the physiological and pathological processes of the central nervous system. Because of the special structure and complex pathogenesis of the brain, central nervous system disorders are characterized by high mortality and morbidity. Increasing evidence has focused on the potential of sEVs in clinical application for central nervous system disorders. sEVs are emerging as a promising diagnostic and therapeutic tool with high sensitivity, low immunogenicity, superior safety profile, and high transfer efficiency. This review highlighted the development of sEVs in central nervous system disorder clinical application. We also outlined the role of sEVs in central nervous system disorders and discussed the limitations of sEVs in clinical translation.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Colorimetric Assaying of Exosomal Metabolic Biomarkers. Molecules 2023; 28:molecules28041909. [PMID: 36838895 PMCID: PMC9962048 DOI: 10.3390/molecules28041909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Exosomes released into the extracellular matrix have been reported to contain metabolic biomarkers of various diseases. These intraluminal vesicles are typically found in blood, urine, saliva, breast milk, cerebrospinal fluid, semen, amniotic fluid, and ascites. Analysis of exosomal content with specific profiles of DNA, microRNA, proteins, and lipids can mirror their cellular origin and physiological state. Therefore, exosomal cargos may reflect the physiological processes at cellular level and can potentially be used as biomarkers. Herein, we report an optical detection method for assaying exosomal biomarkers that supersedes the state-of-the-art time consuming and laborious assays such as ELISA and NTA. The proposed assay monitors the changes in optical properties of poly(3-(4-methyl-3'-thienyloxy) propyltriethylammonium bromide) upon interacting with aptamers/peptide nucleic acids in the presence or absence of target biomarkers. As a proof of concept, this study demonstrates facile assaying of microRNA, DNA, and advanced glycation end products in exosomes isolated from human plasma with detection levels of ~1.2, 0.04, and 0.35 fM/exosome, respectively. Thus, the obtained results illustrate that the proposed methodology is applicable for rapid and facile detection of generic exosomal biomarkers for facilitating diseases diagnosis.
Collapse
|
5
|
Tripathi K, Bandari SK, Sanderson RD. Extracellular vesicles released during hypoxia transport heparanase and enhance macrophage migration, endothelial tube formation and cancer cell stemness. PROTEOGLYCAN RESEARCH 2023; 1:e1. [PMID: 37091070 PMCID: PMC10117102 DOI: 10.1002/pgr2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/30/2023]
Abstract
Heparanase is upregulated during the progression of most cancers and via its enzyme activity promotes extracellular matrix degradation, angiogenesis and cell migration. Heparanase expression is often associated with enhanced tumor aggressiveness and chemoresistance. We previously demonstrated that increased heparanase expression in tumor cells enhances secretion and alters the composition of tumor-released exosomes. In the present study, we discovered that extracellular vesicles (EVs) secreted by human multiple myeloma cells growing in hypoxic conditions exhibited elevated levels of heparanase cargo compared to EVs from cells growing in normoxic conditions. When macrophages (RAW 264.7 monocyte/macrophage-like cells) were exposed to EVs released by tumor cells growing in either hypoxic or normoxic conditions, macrophage migration and invasion was elevated by EVs from hypoxic conditions. The elevated invasion of macrophages was blocked by a monoclonal antibody that inhibits heparanase enzyme activity. Moreover, the heparanase-bearing EVs from hypoxic cells greatly enhanced endothelial cell tube formation consistent with the known role of heparanase in promoting angiogenesis. EVs from hypoxic tumor cells when compared with EVs from normoxic cells also enhanced cancer stemness properties of both CAG and RPMI 8226 human myeloma cells. Together these data indicate that under hypoxic conditions, tumor cells secrete EVs having an elevated level of heparanase as cargo. These EVs can act on both tumor and non-tumor cells, enhancing tumor progression and tumor cell stemness that likely supports chemoresistance and relapse of tumor.
Collapse
Affiliation(s)
- Kaushlendra Tripathi
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
- Present address:
Building 29B, Room 5NN Suite 22, Lab 5NN11, Molecular Pathology SectionLab of Immunogenetics, NIAID, NIH9000 Rockville PikeBethesdaMaryland20892USA
| | - Shyam K. Bandari
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
- Present address:
Exelixis1851 Harbor Bay ParkwayAlamedaCalifornia94502USA
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
6
|
EVs predict the outcomes in patients with acute myocardial infarction. Tissue Cell 2022; 77:101857. [DOI: 10.1016/j.tice.2022.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
|
7
|
Keulers TG, Libregts SF, Beaumont JE, Savelkouls KG, Bussink J, Duimel H, Dubois L, Zonneveld MI, López‐Iglesias C, Bezstarosti K, Demmers JA, Vooijs M, Wauben M, Rouschop KM. Secretion of pro-angiogenic extracellular vesicles during hypoxia is dependent on the autophagy-related protein GABARAPL1. J Extracell Vesicles 2021; 10:e12166. [PMID: 34859607 PMCID: PMC8640512 DOI: 10.1002/jev2.12166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Tumour hypoxia is a hallmark of solid tumours and contributes to tumour progression, metastasis development and therapy resistance. In response to hypoxia, tumour cells secrete pro-angiogenic factors to induce blood vessel formation and restore oxygen supply to hypoxic regions. Extracellular vesicles (EVs) are emerging as mediators of intercellular communication in the tumour microenvironment. Here we demonstrate that increased expression of the LC3/GABARAP protein family member GABARAPL1, is required for endosomal maturation, sorting of cargo to endosomes and the secretion of EVs. Silencing GABARAPL1 results in a block in the early endosomal pathway and impaired secretion of EVs with pro-angiogenic properties. Tumour xenografts of doxycycline inducible GABARAPL1 knockdown cells display impaired vascularisation that results in decreased tumour growth, elevated tumour necrosis and increased therapy efficacy. Moreover, our data show that GABARAPL1 is expressed on the EV surface and targeting GABARAPL1+ EVs with GABARAPL1 targeting antibodies results in blockade of pro-angiogenic effects in vitro. In summary, we reveal that GABARAPL1 is required for EV cargo loading and secretion. GABARAPL1+ EVs are detectable and targetable and are therefore interesting to pursue as a therapeutic target.
Collapse
Affiliation(s)
- Tom G. Keulers
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Sten F. Libregts
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - Joel E.J. Beaumont
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Kim G. Savelkouls
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Johan Bussink
- Department of Radiation OncologyRadboud University Medical CenterNijmegenNetherlands
| | - Hans Duimel
- Microscopy CORE LabMaastricht Multimodal Molecular Imaging InstituteFHML Division of NanoscopyUniversity of MaastrichtMaastrichtNetherlands
| | - Ludwig Dubois
- The M‐LabDepartment of Precision MedicineGROW ‐ School of OncologyMaastricht UniversityMaastrichtNetherlands
| | - Marijke I. Zonneveld
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Carmen López‐Iglesias
- Microscopy CORE LabMaastricht Multimodal Molecular Imaging InstituteFHML Division of NanoscopyUniversity of MaastrichtMaastrichtNetherlands
| | - Karel Bezstarosti
- Proteomics CenterErasmus University Medical CenterRotterdamNetherlands
| | - Jeroen A. Demmers
- Proteomics CenterErasmus University Medical CenterRotterdamNetherlands
| | - Marc Vooijs
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| | - Marca Wauben
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtNetherlands
| | - Kasper M.A. Rouschop
- Department of Radiation Oncology Radiation Oncology (Maastro) / GROW – School for Oncology and Developmental BiologyMaastricht University Medical Centre +MaastrichtNetherlands
| |
Collapse
|
8
|
Hariharan H, Kesavan Y, Raja NS. Impact of native and external factors on exosome release: understanding reactive exosome secretion and its biogenesis. Mol Biol Rep 2021; 48:7559-7573. [PMID: 34626311 DOI: 10.1007/s11033-021-06733-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023]
Abstract
Exosomes are minuscule vesicles secreted in the endolytic region of most mammalian cells. The release of exosomes from the cell engenders cell-to-cell signaling between cellular-compartments. The trading of exosomes between tumor and yonder cells plays a hypercritical role in tumor growth and progression. The exosome released from each tumor cell sequestrates a unique biogenetic pathway reflecting its cellular origin depending on the tumor type. However, treatment of tumor cells with certain physiological factors like drugs, chemotherapy, radiation, etc., enhance the release of exosomes and alters its biogenetic pathway compared with untreated tumor cells. In this review, we will discuss how the non-native physiological factors influence the release of exosomes and how these reactive exosomes orchestrate a unique patterning of a cargo sorting mechanism. We will also discuss the role of reactively secreted exosomes in mediating tumor metastasis, angiogenesis, and tumor progression.
Collapse
Affiliation(s)
- Harini Hariharan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Yasodha Kesavan
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India
| | - Natesan Sella Raja
- MPI Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu, India.
| |
Collapse
|
9
|
Alasztics B, Kovács ÁF, Molvarec A, Koller Á, Szabó G, Fekete N, Buzás EI, Pállinger É, Rigó J. Platelet-derived extracellular vesicles may contribute to the hypercoagulable state in preeclampsia. J Reprod Immunol 2021; 148:103380. [PMID: 34534879 DOI: 10.1016/j.jri.2021.103380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
It has previously been shown that preeclampsia is associated with disturbed hemostasis and that extracellular vesicles (EVs) play important role in the regulation of hemostatic homeostasis. Thus, we hypothesized that the altered procoagulant characteristics of circulating platelet-derived EVs may contribute to the disturbed hemostasis in preeclampsia. Using multicolor flow cytometry, we have analyzed both tissue factor expressing procoagulant EVs and platelet-derived EV subpopulations derived from resting and activated thrombocytes by examining them in plasma samples of preeclamptic patients and pregnancy-matched healthy individuals. Compared to pregnancy-matched healthy individuals in preeclamptic patients a significantly (p < 0.05) higher ratio of Annexin-V positive activated platelets and a higher number of CD142+ tissue factor bearing procoagulant EVs were found, whereas the absolute amount of circulating CD41a+ platelet-derived EVs and CD62P+/CD41a+ EVs produced by activated thrombocytes was significantly lower in the plasma of preeclamptic women. In the plasma samples, there was no significant difference in the amount of CD63+ platelet-derived EVs. We propose that increased platelet activation and tissue factor expression of platelet derived extracellular vesicles may contribute to the hypercoagulable state observed in preeclampsia.
Collapse
Affiliation(s)
- Bálint Alasztics
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | - Árpád Ferenc Kovács
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; 2(nd) Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Molvarec
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Koller
- Department of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary; Department of Physiology, New York Medical College, Valhalla, NY, 10595, USA
| | - Gábor Szabó
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nóra Fekete
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - János Rigó
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Department of Clinical Studies in Obstetrics and Gynecology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Abstract
The role of stem cells in augmenting reparative processes in the heart after ischemic injury has been successfully demonstrated in small and large animal models. However, the outcomes of cell therapy in clinical trials have been somewhat variable, with overall effects of autologous stem cell therapies demonstrating a modest improvement in cardiac structure and function. How stem cells repair the heart after cardiac injury is still not well understood. Most recent studies suggest that adult derived stem cells act primarily through paracrine signaling to exert beneficial effects, including modulation of immune response, stimulation of new blood vessel formation, or by inducing mature myocytes to transiently reenter the cell cycle, rather than robust direct differentiation of the transplanted cells into myocytes. In addition, data from multiple laboratory results confirmed clearance of stem cells themselves within a few days still leading to functional benefits further confirming the role of paracrine signaling in augmenting cardiac reparative processes rather than direct differentiation of cells. These findings rapidly evolved the field of extracellular vesicles specifically microvesicles (MVs) as they are active hubs of autocrine, paracrine, and endocrine signaling targeting different biological processes. The beneficial effects seen after stem cell transplantation could be linked to the cardioprotective factors packaged in the MVs secreted from stem cells. Therefore, stem cell MVs provide a new avenue for the treatment of cardiovascular disease through a multitude of mechanisms including cellular communication within the stem cell niches, delivery of genetic information, regulation of the immune system in the heart, and stimulation of angiogenesis which will be discussed in this review.
Collapse
|
11
|
Interplay between Hypoxia and Extracellular Vesicles in Cancer and Inflammation. BIOLOGY 2021; 10:biology10070606. [PMID: 34209290 PMCID: PMC8301089 DOI: 10.3390/biology10070606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Mounting evidence suggests a role for extracellular vesicles in cell-to-cell communication, in both physiological and pathological conditions. Moreover, the molecular content of vesicles can be exploited for diagnostic and therapeutic purposes. Inflamed tissues and tumors are often characterized by hypoxic areas, where oxygen levels drop dramatically. Several studies demonstrated that hypoxic stress affects the release of vesicles and their content. This review is intended to provide an exhaustive overview on the relationship between hypoxia and vesicles in inflammatory diseases and cancer. Abstract Hypoxia is a severe stress condition often observed in cancer and chronically inflamed cells and tissues. Extracellular vesicles play pivotal roles in these pathological processes and carry biomolecules that can be detected in many biofluids and may be exploited for diagnostic purposes. Several studies report the effects of hypoxia on extracellular vesicles’ release, molecular content, and biological functions in disease. This review summarizes the most recent findings in this field, highlighting the areas that warrant further investigation.
Collapse
|
12
|
Gao X, Shao L, Ge X, Zhang L, Chen D, He R. The Potential Role of Serum Exosomes in Preeclampsia. Curr Drug Metab 2021; 21:352-356. [PMID: 32484101 DOI: 10.2174/1389200221666200525152441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/05/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Abstract
Preeclampsia is a serious pregnancy-specific disease that affects about 5%-8% of pregnant women and is the main reason for the increase in maternal and perinatal mortality. Due to unknown etiology, preeclampsia is still the main cause of increased mortality in maternal and perinatal infants, which is mainly manifested by new hypertension after 20 weeks of pregnancy. As the pathogenesis has not been fully elucidated, early diagnosis and full treatment are lacking. Exosomes secreted from the placenta to the peripheral circulation may be involved in the pathogenesis of preeclampsia and can be detected from the plasma of pregnant women after 6 weeks of pregnancy. Related studies have shown that the levels of exosomes in preeclampsia have changed, and the protein and miRNA expression profiles are also different. Therefore, monitoring changes in plasma exosomes and expression profiles may provide new ideas and new perspectives for the prediction, diagnosis and treatment of preeclampsia.
Collapse
Affiliation(s)
- Xuelin Gao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Lulu Shao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xinying Ge
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Zhang
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Dexin Chen
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, Third Hospital of Xian, Shaanxi Province, China
| | - Rongxia He
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Moyano A, Serrano-Pertierra E, Duque JM, Ramos V, Teruel-Barandiarán E, Fernández-Sánchez MT, Salvador M, Martínez-García JC, Sánchez L, García-Flórez L, Rivas M, Blanco-López MDC. Magnetic Lateral Flow Immunoassay for Small Extracellular Vesicles Quantification: Application to Colorectal Cancer Biomarker Detection. SENSORS 2021; 21:s21113756. [PMID: 34071520 PMCID: PMC8199047 DOI: 10.3390/s21113756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death and the fourth most common cancer in the world. Colonoscopy is the most sensitive test used for detection of CRC; however, their procedure is invasive and expensive for population mass screening. Currently, the fecal occult blood test has been widely used as a screening tool for CRC but displays low specificity. The lack of rapid and simple methods for mass screening makes the early diagnosis and therapy monitoring difficult. Extracellular vesicles (EVs) have emerged as a novel source of biomarkers due to their contents in proteins and miRNAs. Their detection would not require invasive techniques and could be considered as a liquid biopsy. Specifically, it has been demonstrated that the amount of CD147 expressed in circulating EVs is significant higher for CRC cell lines than for normal colon fibroblast cell lines. Moreover, CD147-containing EVs have been used as a biomarker to monitor response to therapy in patients with CRC. Therefore, this antigen could be used as a non-invasive biomarker for the detection and monitoring of CRC in combination with a Point-of-Care platform as, for example, Lateral Flow Immunoassays (LFIAs). Here, we propose the development of a quantitative lateral flow immunoassay test based on the use of magnetic nanoparticles as labels coupled to inductive sensor for the non-invasive detection of CRC by CD147-positive EVs. The results obtained for quantification of CD147 antigen embedded in EVs isolated from plasma sample have demonstrated that this device could be used as a Point-of-Care tool for CRC screening or therapy monitoring thanks to its rapid response and easy operation.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - José María Duque
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Virginia Ramos
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Estefanía Teruel-Barandiarán
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - María Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology & Institute of Biotechnology of Asturias, University of Oviedo, 33006 Oviedo, Spain;
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Luis Sánchez
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Luis García-Flórez
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Department of Surgery and medical-surgical specialties, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - María del Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
- Correspondence:
| |
Collapse
|
14
|
Lin Y, Anderson JD, Rahnama LMA, Gu SV, Knowlton AA. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol Heart Circ Physiol 2020; 319:H1162-H1180. [PMID: 32986962 PMCID: PMC7792703 DOI: 10.1152/ajpheart.00075.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are a subtype of extracellular vesicles. They range from 30 to 150 nm in diameter and originate from intraluminal vesicles. Exosomes were first identified as the mechanism for releasing unnecessary molecules from reticulocytes as they matured to red blood cells. Since then, exosomes have been shown to be secreted by a broad spectrum of cells and play an important role in the cardiovascular system. Different stimuli are associated with increased exosome release and result in different exosome content. The release of harmful DNA and other molecules via exosomes has been proposed as a mechanism to maintain cellular homeostasis. Because exosomes contain parent cell-specific proteins on the membrane and in the cargo that is delivered to recipient cells, exosomes are potential diagnostic biomarkers of various types of diseases, including cardiovascular disease. As exosomes are readily taken up by other cells, stem cell-derived exosomes have been recognized as a potential cell-free regenerative therapy to repair not only the injured heart but other tissues as well. The objective of this review is to provide an overview of the biological functions of exosomes in heart disease and tissue regeneration. Therefore, state-of-the-art methods for exosome isolation and characterization, as well as approaches to assess exosome functional properties, are reviewed. Investigation of exosomes provides a new approach to the study of disease and biological processes. Exosomes provide a potential "liquid biopsy," as they are present in most, if not all, biological fluids that are released by a wide range of cell types.
Collapse
Affiliation(s)
- Yun Lin
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | | | - Lily M A Rahnama
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Shenwen V Gu
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Anne A Knowlton
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| |
Collapse
|
15
|
Gao X, Shao L, Ge X, Zhang L, Chen D, He R. The Potential Role of Serum Exosomes in Preeclampsia. Curr Drug Metab 2020. [DOI: 10.2174/1389200221666200525152441 dali liu (guest editor) loyola university chicago, chicago, il 60660, usa xiangkai li (guest editor) school of life sciences, lanzhou university, gansu] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia is a serious pregnancy-specific disease that affects about 5%-8% of pregnant women and is
the main reason for the increase in maternal and perinatal mortality. Due to unknown etiology, preeclampsia is still
the main cause of increased mortality in maternal and perinatal infants, which is mainly manifested by new
hypertension after 20 weeks of pregnancy. As the pathogenesis has not been fully elucidated, early diagnosis and full
treatment are lacking. Exosomes secreted from the placenta to the peripheral circulation may be involved in the
pathogenesis of preeclampsia and can be detected from the plasma of pregnant women after 6 weeks of pregnancy.
Related studies have shown that the levels of exosomes in preeclampsia have changed, and the protein and miRNA
expression profiles are also different. Therefore, monitoring changes in plasma exosomes and expression profiles
may provide new ideas and new perspectives for the prediction, diagnosis and treatment of preeclampsia.
Collapse
Affiliation(s)
- Xuelin Gao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Lulu Shao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xinying Ge
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Zhang
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Dexin Chen
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rongxia He
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 2020; 30:839-855. [PMID: 31203262 DOI: 10.1515/revneuro-2019-0002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related mortality and morbidity in the USA and around the world. The survivors may suffer from cognitive and memory deficits, vision and hearing loss, movement disorders, and different psychological problems. The primary insult causes neuronal damage and activates astrocytes and microglia which evokes immune responses causing further damage to the brain. Clinical trials of drugs to recover the neuronal loss are not very successful. Regenerative approaches for TBI using mesenchymal stem cells (MSCs) seem promising. Results of preclinical research have shown that transplantation of MSCs reduced secondary neurodegeneration and neuroinflammation, promoted neurogenesis and angiogenesis, and improved functional outcome in the experimental animals. The functional improvement is not necessarily related to cell engraftment; rather, immunomodulation by molecular factors secreted by MSCs is responsible for the beneficial effects of this therapy. However, MSC therapy has a few drawbacks including tumor formation, which can be avoided by the use of MSC-derived exosomes. This review has focused on the research works published in the field of regenerative therapy using MSCs after TBI and its future direction.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
17
|
He N, Zhang Y, Zhang S, Wang D, Ye H. Exosomes: Cell-Free Therapy for Cardiovascular Diseases. J Cardiovasc Transl Res 2020; 13:713-721. [PMID: 32333198 DOI: 10.1007/s12265-020-09966-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases (CVDs) are an important cause of death and disease worldwide. Because injured cardiac tissue cannot be repaired itself, it is urgent to develop other alternate therapies. Stem cells can be differentiated into cardiomyocytes, endothelial cells, and vascular smooth muscle cells for the treatment of CVDs. Therefore, cell therapy has recently been considered a viable treatment option that can significantly improve cardiac function. Nonetheless, implanted stem cells rarely survive in the recipient heart, suggesting that the benefits of stem cell therapy may involve other mechanisms. Exosomes derived from stem cells have a myocardial protection function after myocardial injury, and may be a promising and effective therapy for CVDs. Here, we discuss the application and mechanism of exosomes derived from stem cells in the diagnosis and treatment of CVDs and provide evidence for the application of exosomes in CVDs. Graphical Abstract.
Collapse
Affiliation(s)
- Nana He
- Department of Cardiology, HwaMei Hospital (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, 41 Xibei Street, Ningbo, 315010, Zhejiang, China
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yuelin Zhang
- Department of Medicine, University of Ningbo, Ningbo, China
| | - Shun Zhang
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Dongjuan Wang
- Department of Cardiology, HwaMei Hospital (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, 41 Xibei Street, Ningbo, 315010, Zhejiang, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital (previously named Ningbo No. 2 Hospital), University of Chinese Academy of Sciences, 41 Xibei Street, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
18
|
Yaghoubi S, Najminejad H, Dabaghian M, Karimi MH, Abdollahpour-Alitappeh M, Rad F, Mahi-Birjand M, Mohammadi S, Mohseni F, Sobhani Lari M, Teymouri GH, Rigi Yousofabadi E, Salmani A, Bagheri N. How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment? IUBMB Life 2020; 72:1286-1305. [PMID: 32196941 DOI: 10.1002/iub.2275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as natural occurring vesicles, play highly important roles in the behavior and fate of ischemic diseases and different tumors. Secretion, composition, and function of exosomes are remarkably influenced by hypoxia in ischemic diseases and tumor microenvironment. Exosomes secreted from hypoxic cells affect development, growth, angiogenesis, and progression in ischemic diseases and tumors through a variety of signaling pathways. In this review article, we discuss how hypoxia affects the quantity and quality of exosomes, and review the mechanisms by which hypoxic cell-derived exosomes regulate ischemic cell behaviors in both cancerous and noncancerous cells.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Sobhani Lari
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | | | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
19
|
Cavallari C, Figliolini F, Tapparo M, Cedrino M, Trevisan A, Positello L, Rispoli P, Solini A, Migliaretti G, Camussi G, Brizzi MF. miR-130a and Tgfβ Content in Extracellular Vesicles Derived from the Serum of Subjects at High Cardiovascular Risk Predicts their In-Vivo Angiogenic Potential. Sci Rep 2020; 10:706. [PMID: 31959759 PMCID: PMC6971269 DOI: 10.1038/s41598-019-55783-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Serum-derived extracellular vesicles (sEV) from healthy donors display in-vivo pro-angiogenic properties. To identify patients that may benefit from autologous sEV administration for pro-angiogenic purposes, sEV angiogenic capability has been evaluated in type 2 diabetic (T2DM) subjects (D), in obese individuals with (OD) and without (O) T2DM, and in subjects with ischemic disease (IC) (9 patients/group). sEV display different angiogenic properties in such cluster of individuals. miRNomic profile and TGFβ content in sEV were evaluated. We found that miR-130a and TGFβ content correlates with sEV in-vitro and in-vivo angiogenic properties, particularly in T2DM patients. Ingenuity Pathway Analysis (IPA) identified a number of genes as among the most significant miR-130a interactors. Gain-of-function experiments recognized homeoboxA5 (HOXA5) as a miR-130a specific target. Finally, ROC curve analyses revealed that sEV ineffectiveness could be predicted (Likelihood Ratio+ (LH+) = 3.3 IC 95% from 2.6 to 3.9) by comparing miR-130a and TGFβ content 'in Series'. We demonstrate that sEV from high cardiovascular risk patients have different angiogenic properties and that miR-130a and TGFβ sEV content predicts 'true ineffective sEVs'. These results provide the rationale for the use of these assays to identify patients that may benefit from autologous sEV administration to boost the angiogenetic process.
Collapse
Affiliation(s)
| | | | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Pietro Rispoli
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Giuseppe Migliaretti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- 2i3T Scarl, University of Turin, Turin, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Maria Felice Brizzi
- 2i3T Scarl, University of Turin, Turin, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
20
|
Guo XY, Xiao F, Li J, Zhou YN, Zhang WJ, Sun B, Wang G. Exosomes and pancreatic diseases: status, challenges, and hopes. Int J Biol Sci 2019; 15:1846-1860. [PMID: 31523187 PMCID: PMC6743302 DOI: 10.7150/ijbs.35823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic disease, including pathologies such as acute pancreatitis (AP), chronic pancreatitis (CP), and pancreatic cancer (PC), is a complicated and dangerous clinical condition involving the disruption of exocrine or endocrine function. PC has one of the highest mortality rates among cancers due to insufficient diagnosis in early stages. Furthermore, efficient treatment options for the disease etiologies of AP and CP are lacking. Thus, the identification of new therapeutic targets and reliable biomarkers is required. As essential couriers in intercellular communication, exosomes have recently been confirmed to play an important role in pancreatic disease, but the specific underlying mechanisms are unknown. Herein, we summarize the current knowledge of exosomes in pancreatic disease with respect to diagnosis, molecular mechanisms, and treatment, proposing new ideas for the study of pancreatic disease.
Collapse
Affiliation(s)
- Xiao-Yu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fan Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jie Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yi-Nan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
21
|
A tumorsphere model of glioblastoma multiforme with intratumoral heterogeneity for quantitative analysis of cellular migration and drug response. Exp Cell Res 2019; 379:73-82. [DOI: 10.1016/j.yexcr.2019.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
|
22
|
Liu Z, Xu Y, Wan Y, Gao J, Chu Y, Li J. Exosomes from adipose-derived mesenchymal stem cells prevent cardiomyocyte apoptosis induced by oxidative stress. Cell Death Discov 2019; 5:79. [PMID: 30911413 PMCID: PMC6425027 DOI: 10.1038/s41420-019-0159-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Exosomes from bone marrow stem cells or cardiac progenitor cells can reduce apoptosis in myocardial cells after ischemia and reperfusion injury. However, there is little known about the effects of exosomes from adipose-derived stem cells (ADSCs), which are more abundant and have a lower risk of side effects. The aim of this study was to characterize exosomes from ADSCs and evaluate their cardioprotective actions against ischemia reperfusion injury. The exosomes were isolated from ADSCs and analyzed by protein marker expression, transmission electron microscopy, and nanoparticle tracking analysis. The ADSC-exosomes were then used for ex vivo investigation of the cardioprotective effects on cardiomyocytes after exposure to oxidative stress. Exosomes from ADSCs exhibited a diameter of 150 nm and expressed the marker proteins, CD9 and CD29. ADSC-exosomes had no effect on proliferation of untreated cardiomyocytes. In contrast, ADSC-derived exosomes reduced apoptosis in myocardial cells subjected to oxidative stress. This study confirms that exosomes originating from ADSCs can protect cardiomyocytes from oxidative stress.
Collapse
Affiliation(s)
- Zhi Liu
- 1Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueqiao Xu
- 2Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yungao Wan
- 1Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Gao
- 1Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanyan Chu
- 1Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- 1Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Bjørnetrø T, Redalen KR, Meltzer S, Thusyanthan NS, Samiappan R, Jegerschöld C, Handeland KR, Ree AH. An experimental strategy unveiling exosomal microRNAs 486-5p, 181a-5p and 30d-5p from hypoxic tumour cells as circulating indicators of high-risk rectal cancer. J Extracell Vesicles 2019; 8:1567219. [PMID: 30728923 PMCID: PMC6352936 DOI: 10.1080/20013078.2019.1567219] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 12/17/2022] Open
Abstract
Tumour hypoxia contributes to poor treatment outcome in locally advanced rectal cancer (LARC) and circulating extracellular vesicles (EVs) as potential biomarkers of tumour hypoxia and adverse prognosis have not been fully explored. We examined EV miRNAs from hypoxic colorectal cancer cell lines as template for relevant miRNAs in LARC patients participating in a prospective biomarker study (NCT01816607). Five cell lines were cultured under normoxia (21% O2) or hypoxia (0.2% O2) for 24 h, and exosomes were isolated by differential ultracentrifugation. Using a commercial kit, exosomes were precipitated from 24 patient plasma samples collected at the time of diagnosis. Exosome size distribution and protein cargo were determined by cryo-electron microscopy, nanoparticle tracking analysis, immunoblotting and flow cytometry. The vesicles harboured strong cell line-specific miRNA profiles with 35 unique miRNAs differentially expressed between hypoxic and normoxic cells. Six of these miRNAs were considered candidate-circulating markers of tumour hypoxia in the patients based on the frequency or magnitude of variance in hypoxic versus normoxic cell line experiments and prevalence in patient plasma. Of these, low plasma levels of exosomal miR-486-5p and miR-181a-5p were associated with organ-invasive primary tumour (p = 0.029) and lymph node metastases (p = 0.024), respectively, both attributes of adverse LARC prognosis. In line with this, the plasma level of exosomal miR-30d-5p was elevated in patients who experienced metastatic progression (p = 0.036). Our strategy confirmed that EVs from colorectal cancer cell lines were exosomes containing the oxygen-sensitive miRNAs 486-5p, 181a-5p and 30d-5p, which were retrieved as circulating markers of high-risk LARC.
Collapse
Affiliation(s)
- Tonje Bjørnetrø
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathrine Røe Redalen
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Ghafarian F, Pashirzad M, Khazaei M, Rezayi M, Hassanian SM, Ferns GA, Avan A. The clinical impact of exosomes in cardiovascular disorders: From basic science to clinical application. J Cell Physiol 2018; 234:12226-12236. [PMID: 30536994 DOI: 10.1002/jcp.27964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) is the major cause of death globally; therefore, there is a need for the identification of a valid biomarker that accurately predicts the risk of developing CVD, and novel therapeutic approaches for its treatment. Exosomes are very small extracellular vesicles containing protein, lipid, transcription factors, messenger RNAs, noncoding RNA, and nucleic acid contents that are important players in intercellular communication, and that act via long-range signals or cell-to-cell contact. The discovery of exosomes provides potential strategies for the diagnosis and treatment of CVD. In the current review, we have explored the potential impact of exosomes on cardiovascular physiology, and their therapeutic potential in cardiovascular disorders with an emphasis on the existing preclinical studies.
Collapse
Affiliation(s)
- Farzaneh Ghafarian
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Pashirzad
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
26
|
Saba F, Soleimani M, Abroun S. New role of hypoxia in pathophysiology of multiple myeloma through miR-210. EXCLI JOURNAL 2018; 17:647-662. [PMID: 30108468 PMCID: PMC6088223 DOI: 10.17179/excli2018-1109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
Bone is one of the most common sites of complication in multiple myeloma (MM) progression and bone remodeling gets definitively perturbed during disease progression. Hypoxia and miR-210 play an important role in hematological malignancies. In an attempt to elucidate the specificity of the pathways of hypoxia and miR-210 in suppression of osteoblastic differentiation in MM patients, we examined the effect of miR-210 and hypoxia on expression of important cytokines and genes of myeloma cells. Differentiation of BM-MSCs towards osteoblastic cells in response to microvesicles (MVs) was also investigated. Finally, we proposed a molecular model on how HIF-1α may promote bone lesions in MM patients. To validate the effect of miR-210 and HIF-1α on targeted genes, the shRNA of HIF-1α and off-hsa-miR-210 were transfected into RPMI-8226 cells. BM-MSCs were cultured in osteoblastic inducer and 50 µg/mL of MVs derived from both hypoxic and normoxic myeloma cells. We designed an in vitro study to establish the effects of HIF-1α and miR-210 on the crosstalk between MM and osteoblasts. We here showed that hypoxia-induced miR-210 increased the mRNA expression of VLA-4, CXCR4, IL-6 and TGF-β in myeloma cells. MiR-210 is mandatory for the hypoxia-increased resistance of MM cells to melphalan. Moreover, MVs derived from hypoxic myeloma cells substantially decreased osteoblast differentiation. Considered comprehensively, our findings explain one of the reasons of bone loss that occurs at the sites of MM and a nascent crosstalk model in MM pathogenesis.
Collapse
Affiliation(s)
- Fakhredin Saba
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| |
Collapse
|
27
|
Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci Rep 2018; 8:9182. [PMID: 29907748 PMCID: PMC6004016 DOI: 10.1038/s41598-018-27451-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Malassezia sympodialis is a dominant commensal fungi in the human skin mycobiome but is also associated with common skin disorders including atopic eczema (AE). M. sympodialis releases extracellular vesicles, designated MalaEx, which are carriers of small RNAs and allergens, and they can induce inflammatory cytokine responses. Here we explored how MalaEx are involved in host-microbe interactions by comparing protein content of MalaEx with that of the parental yeast cells, and by investigating interactions of MalaEx with cells in the skin. Cryo-electron tomography revealed a heterogeneous population of MalaEx. iTRAQ based quantitative proteomics identified in total 2439 proteins in all replicates of which 110 were enriched in MalaEx compared to the yeast cells. Among the MalaEx enriched proteins were two of the M. sympodialis allergens, Mala s 1 and s 7. Functional experiments indicated an active binding and internalization of MalaEx into human keratinocytes and monocytes, and MalaEx were found in close proximity of the nuclei using super-resolution fluorescence 3D-SIM imaging. Our results provides new insights into host-microbe interactions, supporting that MalaEx may have a role in the sensitization and maintenance of inflammation in AE by containing enriched amounts of allergens and with their ability to interact with skin cells.
Collapse
|
28
|
Samuel P, Mulcahy LA, Furlong F, McCarthy HO, Brooks SA, Fabbri M, Pink RC, Carter DRF. Cisplatin induces the release of extracellular vesicles from ovarian cancer cells that can induce invasiveness and drug resistance in bystander cells. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0065. [PMID: 29158318 DOI: 10.1098/rstb.2017.0065] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer has a poor overall survival that is partly caused by resistance to drugs such as cisplatin. Resistance can be acquired as a result of changes to the tumour or due to altered interactions within the tumour microenvironment. Extracellular vesicles (EVs), small lipid-bound vesicles that are loaded with macromolecular cargo and released by cells, are emerging as mediators of communication in the tumour microenvironment. We previously showed that EVs mediate the bystander effect, a phenomenon in which stressed cells can communicate with neighbouring naive cells leading to various effects including DNA damage; however, the role of EVs released following cisplatin treatment has not been tested. Here we show that treatment of cells with cisplatin led to the release of EVs that could induce invasion and increased resistance when taken up by bystander cells. This coincided with changes in p38 and JNK signalling, suggesting that these pathways may be involved in mediating the effects. We also show that EV uptake inhibitors could prevent this EV-mediated adaptive response and thus sensitize cells in vitro to the effects of cisplatin. Our results suggest that preventing pro-tumourigenic EV cross-talk during chemotherapy is a potential therapeutic target for improving outcome in ovarian cancer patients.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Priya Samuel
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Laura Ann Mulcahy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Fiona Furlong
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Susan Ann Brooks
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Muller Fabbri
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and Molecular Microbiology & Immunology, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90027, USA
| | - Ryan Charles Pink
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| |
Collapse
|
29
|
Chen J, Chopp M. Exosome Therapy for Stroke. Stroke 2018; 49:1083-1090. [PMID: 29669873 PMCID: PMC6028936 DOI: 10.1161/strokeaha.117.018292] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Geriatrics, Tianjin Medical University General Hospital, China (J.C.)
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, China (J.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Physics, Oakland University, Rochester, MI (M.C.)
| |
Collapse
|
30
|
Castro-Marrero J, Serrano-Pertierra E, Oliveira-Rodríguez M, Zaragozá MC, Martínez-Martínez A, Blanco-López MDC, Alegre J. Circulating extracellular vesicles as potential biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis: an exploratory pilot study. J Extracell Vesicles 2018; 7:1453730. [PMID: 29696075 PMCID: PMC5912186 DOI: 10.1080/20013078.2018.1453730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic Fatigue Syndrome (CFS), also known as Myalgic Encephalomyelitis (ME) is an acquired, complex and multisystem condition of unknown etiology, no established diagnostic lab tests and no universally FDA-approved drugs for treatment. CFS/ME is characterised by unexplicable disabling fatigue and is often also associated with numerous core symptoms. A growing body of evidence suggests that extracellular vesicles (EVs) play a role in cell-to-cell communication, and are involved in both physiological and pathological processes. To date, no data on EV biology in CFS/ME are as yet available. The aim of this study was to isolate and characterise blood-derived EVs in CFS/ME. Blood samples were collected from 10 Spanish CFS/ME patients and 5 matched healthy controls (HCs), and EVs were isolated from the serum using a polymer-based method. Their protein cargo, size distribution and concentration were measured by Western blot and nanoparticle tracking analysis. Furthermore, EVs were detected using a lateral flow immunoassay based on biomarkers CD9 and CD63. We found that the amount of EV-enriched fraction was significantly higher in CFS/ME subjects than in HCs (p = 0.007) and that EVs were significantly smaller in CFS/ME patients (p = 0.014). Circulating EVs could be an emerging tool for biomedical research in CFS/ME. These findings provide preliminary evidence that blood-derived EVs may distinguish CFS/ME patients from HCs. This will allow offer new opportunities and also may open a new door to identifying novel potential biomarkers and therapeutic approaches for the condition.
Collapse
Affiliation(s)
- Jesús Castro-Marrero
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Myriam Oliveira-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Oviedo, Spain
| | - Maria Cleofé Zaragozá
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Clinical Research Department, Laboratorios Viñas, Barcelona, Spain
| | - Alba Martínez-Martínez
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - José Alegre
- CFS/ME Unit, Internal Medicine Service, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Gross JC, Zelarayán LC. The Mingle-Mangle of Wnt Signaling and Extracellular Vesicles: Functional Implications for Heart Research. Front Cardiovasc Med 2018; 5:10. [PMID: 29564334 PMCID: PMC5850280 DOI: 10.3389/fcvm.2018.00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Wnt signaling is an important pathway in health and disease and a key regulator of stem cell maintenance, differentiation, and proliferation. During heart development, Wnt signaling controls specification, proliferation and differentiation of cardiovascular cells. In this regard, the role of activated Wnt signaling in cardiogenesis is well defined. However, the knowledge about signaling transmission has been challenged. Recently, the packaging of hydrophobic Wnt proteins on extracellular vesicles (EVs) has emerged as a mechanism to facilitate their extracellular spreading and their functioning as morphogens. EVs spread systemically and therefore can have pleiotropic effects on very different cell types. They are heavily studied in tumor biology where they affect tumor growth and vascularization and can serve as biomarkers in liquid biopsies. In this review we will highlight recent discoveries of factors involved in the release of Wnts on EVs and its potential implications in the communication between physiological and pathological heart cells.
Collapse
Affiliation(s)
- Julia Christina Gross
- Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany.,Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Cecilia Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| |
Collapse
|
32
|
EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma. Oncotarget 2018; 9:13193-13205. [PMID: 29568350 PMCID: PMC5862571 DOI: 10.18632/oncotarget.24149] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting tumor angiogenesis is a common strategy against human hepatocellular carcinoma (HCC). However, identification of molecular targets as biomarker for elevating therapeutic efficacy is critical to prolong HCC patient survival. Here, we showed that EIF3C (eukaryotic translation initiation factor 3 subunit C) is upregulated during HCC tumor progression and associated with poor patient survival. Expression of EIF3C did not alter proliferation and expression of other tumor progressive genes such as HIF1A, TGFβ1 and VEGF, but reduced cell migration in HCC cells. Nevertheless, expression of EIF3C in HCC cells significantly increase secretion of extracellular exosomes confirmed by increased exosomes labelling by PKH26 fluorescent dye, vesicles in exosome size detected by electronic microscopy and nanoparticle tracking analysis, and expression of divergent exosome markers. The EIF3C-increased exosomes were oncogenic to potentiate tumor angiogenesis via tube formation of HUVEC cells and growth of vessels by plugs assays on nude mice. Subcutaneous inoculation of EIF3C-exosomes mixed with Huh7 HCC cells not only promoted growth of vessels but also increased expression of EIF3C in tumors. Conversely, treatment of exosome inhibitor GW4869 reversed aforementioned oncogenic assays. We identified EIF3C activated expression of S100A11 involved in EIF3C-exosome increased tube formation in angiogenesis. Simultaneous high expression of EIF3C and S100A11 in human HCC tumors for RNA level in TCGA and protein level by IHC are associated with poor survival of HCC patients. Collectively, our results demonstrated that EIF3C overexpression is a potential target of angiogenesis for treatment with exosome inhibitor or S100A11 reduction to suppress HCC angiogenesis and tumorigenesis.
Collapse
|
33
|
Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Front Cardiovasc Med 2017; 4:77. [PMID: 29326946 PMCID: PMC5741657 DOI: 10.3389/fcvm.2017.00077] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis (AT) is a progressive chronic disease involving lipid accumulation, fibrosis, and inflammation in medium and large-sized arteries, and it is the main cause of cardiovascular disease (CVD). AT is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Despite lipid-lowering drugs have shown to decrease the risk of cardiovascular events (CVEs), there is a significant burden of AT-related morbidity and mortality. Identification of subjects at increased risk for CVE as well as discovery of novel therapeutic targets for improved treatment strategies are still unmet clinical needs in CVD. Microvesicles (MVs), small extracellular plasma membrane particles shed by activated and apoptotic cells have been widely linked to the development of CVD. MVs from vascular and resident cells by facilitating exchange of biological information between neighboring cells serve as cellular effectors in the bloodstream and play a key role in all stages of disease progression. This article reviews the current knowledge on the role of MVs in AT and CVD. Attention is focused on novel aspects of MV-mediated regulatory mechanisms from endothelial dysfunction, vascular wall inflammation, oxidative stress, and apoptosis to coagulation and thrombosis in the progression and development of atherothrombosis. MV contribution to vascular remodeling is also discussed, with a particular emphasis on the effect of MVs on the crosstalk between endothelial cells and smooth muscle cells, and their role regulating the active process of AT-driven angiogenesis and neovascularization. This review also highlights the latest findings and main challenges on the potential prognostic, diagnostic, and therapeutic value of cell-derived MVs in CVD. In summary, MVs have emerged as new regulators of biological functions in atherothrombosis and might be instrumental in cardiovascular precision medicine; however, significant efforts are still needed to translate into clinics the latest findings on MV regulation and function.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| |
Collapse
|
34
|
Serum-derived extracellular vesicles (EVs) impact on vascular remodeling and prevent muscle damage in acute hind limb ischemia. Sci Rep 2017; 7:8180. [PMID: 28811546 PMCID: PMC5557987 DOI: 10.1038/s41598-017-08250-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Serum is an abundant and accessible source of circulating extracellular vesicles (EVs). Serum-EV (sEV) pro-angiogenic capability and mechanisms are herein analyzed using an in vitro assay which predicts sEV angiogenic potential in vivo. Effective sEVs (e-sEVs) also improved vascular remodeling and prevented muscle damage in a mouse model of acute hind limb ischemia. e-sEV angiogenic proteomic and transcriptomic analyses show a positive correlation with matrix-metalloproteinase activation and extracellular matrix organization, cytokine and chemokine signaling pathways, Insulin-like Growth Factor and platelet pathways, and Vascular Endothelial Growth Factor signaling. A discrete gene signature, which highlights differences in e-sEV and ineffective-EV biological activity, was identified using gene ontology (GO) functional analysis. An enrichment of genes associated with the Transforming Growth Factor beta 1 (TGFβ1) signaling cascade is associated with e-sEV administration but not with ineffective-EVs. Chromatin immunoprecipitation analysis on the inhibitor of DNA binding I (ID1) promoter region, and the knock-down of small mother against decapentaplegic (SMAD)1–5 proteins confirmed GO functional analyses. This study demonstrates sEV pro-angiogenic activity, validates a simple, sEV pro-angiogenic assay which predicts their biological activity in vivo, and identifies the TGFβ1 cascade as a relevant mediator. We propose serum as a readily available source of EVs for therapeutic purposes.
Collapse
|
35
|
Wang N, Chen C, Yang D, Liao Q, Luo H, Wang X, Zhou F, Yang X, Yang J, Zeng C, Wang WE. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2085-2092. [PMID: 28249798 DOI: 10.1016/j.bbadis.2017.02.023] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Abstract
Mesenchymal stem cells (MSCs) exert therapeutic effect on treating acute myocardial infarction. Recent evidence showed that paracrine function rather than direct differentiation predominately contributes to the beneficial effects of MSCs, but how the paracrine factors function are not fully elucidated. In the present study, we tested if extracellular vesicles (EVs) secreted by MSC promotes angiogenesis in infracted heart via microRNAs. Immunostaining of CD31 and matrigel plug assay were performed to detect angiogenesis in a mouse myocardial infarction (MI) model. The cardiac function and structure was examined with echocardiographic analysis. Capillary-like tube formation, migration and proliferation of human umbilical vein endothelial cells (HUVECs) were determined. As a result, MSC-EVs significantly improved angiogenesis and cardiac function in post-MI heart. MSC-EVs increased the proliferation, migration and tube formation capacity of HUVECs. MicroRNA (miR)-210 was found to be enriched in MSC-EVs. The EVs collected from MSCs with miR-210 silence largely lost the pro-angiogenic effect both in-vitro and in-vivo. The miR-210 target gene Efna3, which plays a role in angiogenesis, was down-regulated by MSC-EVs treatment in HUVECs. In conclusion, MSC-EVs are sufficient to improve angiogenesis and exert therapeutic effect on MI, its pro- angiogenesis effect might be associated with a miR-210-Efna3 dependent mechanism. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Na Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dezhong Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiao Liao
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hao Luo
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xinquan Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Faying Zhou
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoli Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jian Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Wei Eric Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
36
|
Rayner S, Bruhn S, Vallhov H, Andersson A, Billmyre RB, Scheynius A. Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Sci Rep 2017; 7:39742. [PMID: 28051166 PMCID: PMC5209728 DOI: 10.1038/srep39742] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022] Open
Abstract
Malassezia is the dominant fungus in the human skin mycobiome and is associated with common skin disorders including atopic eczema (AE)/dermatitis. Recently, it was found that Malassezia sympodialis secretes nanosized exosome-like vesicles, designated MalaEx, that carry allergens and can induce inflammatory cytokine responses. Extracellular vesicles from different cell-types including fungi have been found to deliver functional RNAs to recipient cells. In this study we assessed the presence of small RNAs in MalaEx and addressed if the levels of these RNAs differ when M. sympodialis is cultured at normal human skin pH versus the elevated pH present on the skin of patients with AE. The total number and the protein concentration of the released MalaEx harvested after 48 h culture did not differ significantly between the two pH conditions nor did the size of the vesicles. From small RNA sequence data, we identified a set of reads with well-defined start and stop positions, in a length range of 16 to 22 nucleotides consistently present in the MalaEx. The levels of small RNAs were not significantly differentially expressed between the two different pH conditions indicating that they are not influenced by the elevated pH level observed on the AE skin.
Collapse
Affiliation(s)
- Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Norway
| | - Sören Bruhn
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital Stockholm, Sweden
| | - Helen Vallhov
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Anna Andersson
- Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital Stockholm, Sweden
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden
| |
Collapse
|
37
|
Koh YQ, Peiris HN, Vaswani K, Reed S, Rice GE, Salomon C, Mitchell MD. Characterization of exosomal release in bovine endometrial intercaruncular stromal cells. Reprod Biol Endocrinol 2016; 14:78. [PMID: 27829441 PMCID: PMC5103490 DOI: 10.1186/s12958-016-0207-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cell-to-cell communication between the blastocyst and endometrium is critical for implantation. In recent years, evidence has emerged from studies in humans and several other animal species that exosomes are secreted from the endometrium and trophoblast cells and may play an important role in cell-to-cell communication maternal-fetal interface during early pregnancy. Exosomes are stable extracellular lipid bilayer vesicles that encapsulate proteins, miRNAs, and mRNAs, with the ability to deliver their cargo to near and distant sites, altering cellular function(s). Furthermore, the exosomal cargo can be altered in response to environmental cues (e.g. hypoxia). The current study aims to develop an in vitro system to evaluate maternal-embryo interactions via exosomes (and exosomal cargo) produced by bovine endometrial stromal cells (ICAR) using hypoxia as a known stimulus associated with the release of exosomes and alterations to biological responses (e.g. cell proliferation). METHODS ICAR cells cultured under 8 % O2 or 1 % O2 for 48 h and changes in cell function (i.e. migration, proliferation and apoptosis) were evaluated. Exosome release was determined following the isolation (via differential centrifugation) and characterization of exosomes from ICAR cell-conditioned media. Exosomal proteomic content was evaluated by mass spectrometry. RESULTS Under hypoxic conditions (i.e. 1 % O2), ICAR cell migration and proliferation was decreased (~20 and ~32 %, respectively) and apoptotic protein caspase-3 activation was increased (∼1.6 fold). Hypoxia increased exosome number by ~3.6 fold compared with culture at 8 % O2. Mass spectrometry analysis identified 128 proteins unique to exosomes of ICAR cultured at 1 % O2 compared with only 46 proteins unique to those of ICAR cultured at 8 % O2. Differential production of proteins associated with specific biological processes and molecular functions were identified, most notably ADAM10, pantetheinase and kininogen 2. CONCLUSIONS In summary, we have shown that a stimulus such as hypoxia can alter both the cellular function and exosome release of ICAR cells. Alterations to exosome release and exosomal content in response to stimuli may play a crucial role in maternal-fetal crosstalk and could also affect placental development.
Collapse
Affiliation(s)
- Yong Qin Koh
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Hassendrini N. Peiris
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Kanchan Vaswani
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Sarah Reed
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Gregory E. Rice
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Carlos Salomon
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| | - Murray D. Mitchell
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland Australia
| |
Collapse
|
38
|
Chen X, Xiong W, Li H. Comparison of microRNA expression profiles in K562-cells-derived microvesicles and parental cells, and analysis of their roles in leukemia. Oncol Lett 2016; 12:4937-4948. [PMID: 28105201 PMCID: PMC5228523 DOI: 10.3892/ol.2016.5308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Microvesicles (MVs) are 30-1,000-nm extracellular vesicles that are released from a multitude of cell types and perform diverse cellular functions, including intercellular communication, antigen presentation, and transfer of proteins, messenger RNA and microRNA (also known as miR). MicroRNAs have been demonstrated to be aberrantly expressed in leukemia, and the overall microRNA expression profile may differentiate normal blood cells vs. leukemia cells. MVs containing microRNAs may enable intercellular cross-talk in vivo. This prompted us to investigate specific variations of microRNA expression patterns in MVs derived from leukemia cells. The present study examined the microRNA expression profile of MVs from chronic myeloid leukemia K562 cells and that of MVs from normal human volunteers' peripheral blood cells. The potential targets of the differentially expressed microRNAs were predicted using computational searches. Bioinformatic analyses of the predicted target genes were performed for further evaluation. The present study analyzed microRNAs of MVs derived from leukemia and normal cells, and characterized specific microRNAs expression. The results revealed that MVs derived from K562 cells expressed 181 microRNAs of the 888 microRNAs assessed. Further analysis revealed that 16 microRNAs were downregulated, while 7 were upregulated in these MVs. In addition, significant differences in microRNA expression profiles between MVs derived from K562 cells and K562 cells were identified. The present results revealed that 77 and 122 microRNAs were only expressed in MVs derived from K562 cells and in K562 cells, respectively. There were 104 microRNAs co-expressed in MVs derived from K562 cells and in K562 cells. Target gene-related pathway analyses demonstrated that the majority of the dysregulated microRNAs were involved in pathways associated with leukemia, particularly the mitogen-activated protein kinase (MAPK) and the p53 signaling pathways. By further conducting microRNA gene network analysis, the present study revealed that the miR-15a/b, miR-16, miR-17 and miR-30 families were likely to play a role in the regulation of the MAPK signaling pathway. Since K562 cells presented the t(9;22) translocation, the current study further examined the predicted function of 12 microRNAs located in chromosomes 9 [Homo sapiens (hsa)-let-7a, hsa-let-7f, miR-126, miR-126*, miR-23b, miR-24, miR-27b and miR-7] and 22 (hsa-let-7b, miR-1249, miR-130b and miR-185), which were expressed both in MVs derived from K562 cells and in K562 cells. The present study identified microRNAs of MVs from leukemia and normal cells, and characterized the expression of specific microRNAs. The current study is also the first to identify and characterize distinct microRNA expression between MVs derived from K562 cells and K562 cells. These findings highlight that a number of microRNAs from leukemia-derived MVs may contribute to the development of hematopoietic malignancies. Further investigation may reveal the function of these differentially expressed microRNAs and may provide potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomei Chen
- Center for Biotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wei Xiong
- Center of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine at Binjiang, Hangzhou, Zhejiang 310009, P.R. China
| | - Huiyu Li
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
39
|
Almendros I, Khalyfa A, Trzepizur W, Gileles-Hillel A, Huang L, Akbarpour M, Andrade J, Farré R, Gozal D. Tumor Cell Malignant Properties Are Enhanced by Circulating Exosomes in Sleep Apnea. Chest 2016; 150:1030-1041. [PMID: 27568581 DOI: 10.1016/j.chest.2016.08.1438] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/16/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND OSA is associated with increased cancer incidence and mortality. Exosomes are vesicles secreted by most cells. They are released into the bloodstream and play a role in tumor progression and metastasis. We evaluated whether the chronic intermittent hypoxia (IH) that characterizes OSA leads to release of tumor-promoting exosomes in the circulation. METHODS C57/B6 male mice were randomized to 6 weeks of IH or room air (RA). A subgroup was injected with TC1 lung carcinoma cells in the left flank after 2 weeks of IH. Exosomes from mouse plasma and from 10 adult human patients with OSA before and after treatment for 6 weeks were cocultured with mouse TC1 and human adenocarcinoma cells lines. Malignant tumor properties such as proliferation, migration, invasion, and endothelial monolayer disruption were assessed, as was micro-RNA (miRNA), exosomal content, and transcriptomic effects of exosomes on TC1 cells in vitro to identify target genes. RESULTS Application of IH-induced exosomes from either IH-exposed tumor-bearing (IH+) or non-tumor-bearing (IH-) mice significantly promoted TC1 malignant properties. Similarly, before adherent treatment, exosomes from patients with OSA significantly enhanced proliferation and migration of human adenocarcinoma cells compared with after adherent treatment. Eleven distinct miRNAs emerged in IH-exposed mice, and their gene targets in TC1 cells were identified. CONCLUSIONS Circulating exosomes released under IH conditions in vivo selectively enhance specific properties of lung tumor cell cultures. Thus, plasma exosomes participate in the increased tumor aggressiveness observed in patients with OSA.
Collapse
Affiliation(s)
- Isaac Almendros
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Abdelnaby Khalyfa
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Wojciech Trzepizur
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Alex Gileles-Hillel
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Lei Huang
- Center for Research Informatics, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Mahzad Akbarpour
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Jorge Andrade
- Center for Research Informatics, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL.
| |
Collapse
|
40
|
Oliveira-Rodríguez M, Serrano-Pertierra E, García AC, López-Martín S, Yañez-Mo M, Cernuda-Morollón E, Blanco-López MC. Point-of-care detection of extracellular vesicles: Sensitivity optimization and multiple-target detection. Biosens Bioelectron 2016; 87:38-45. [PMID: 27517736 DOI: 10.1016/j.bios.2016.08.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanovesicles delivered by different cellular lineages under physiological and pathological conditions. Although these vesicles have shown relevance as biomarkers for a number of diseases, their isolation and detection still has several technical drawbacks, mainly related with problems of sensitivity and time-consumed. Here, we reported a rapid and multiple-targeted lateral flow immunoassay (LFIA) system for the detection of EVs isolated from human plasma. A range of different labels (colloidal gold, carbon black and magnetic nanoparticles) was compared as detection probe in LFIA, being gold nanoparticles that showed better results. Using this platform, we demonstrated that improvements may be carried out by incorporating additional capture lines with different antibodies. The device exhibited a limit of detection (LOD) of 3.4×106EVs/µL when anti-CD81 and anti-CD9 were selected as capture antibodies in a multiple-targeted format, and anti-CD63 labeled with gold nanoparticles was used as detection probe. This LFIA, coupled to EVs isolation kits, could become a rapid and useful tool for the point-of-care detection of EVs, with a total analysis time of two hours.
Collapse
Affiliation(s)
- Myriam Oliveira-Rodríguez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006 Spain
| | - Esther Serrano-Pertierra
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006 Spain
| | - Agustín Costa García
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006 Spain
| | - Soraya López-Martín
- Unidad de Investigación, Hospital St Cristina, Instituto de Investigación Sanitaria Princesa (IS-IP), Madrid, Spain
| | - María Yañez-Mo
- Unidad de Investigación, Hospital St Cristina, Instituto de Investigación Sanitaria Princesa (IS-IP), Madrid, Spain; Departamento de Biología Molecular, UAM/CBM-SO, Madrid, Spain
| | - Eva Cernuda-Morollón
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - M C Blanco-López
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, Oviedo, 33006 Spain.
| |
Collapse
|
41
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
42
|
Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, Chaput N, Chatterjee D, Court FA, Del Portillo HA, O'Driscoll L, Fais S, Falcon-Perez JM, Felderhoff-Mueser U, Fraile L, Gho YS, Görgens A, Gupta RC, Hendrix A, Hermann DM, Hill AF, Hochberg F, Horn PA, de Kleijn D, Kordelas L, Kramer BW, Krämer-Albers EM, Laner-Plamberger S, Laitinen S, Leonardi T, Lorenowicz MJ, Lim SK, Lötvall J, Maguire CA, Marcilla A, Nazarenko I, Ochiya T, Patel T, Pedersen S, Pocsfalvi G, Pluchino S, Quesenberry P, Reischl IG, Rivera FJ, Sanzenbacher R, Schallmoser K, Slaper-Cortenbach I, Strunk D, Tonn T, Vader P, van Balkom BWM, Wauben M, Andaloussi SE, Théry C, Rohde E, Giebel B. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4:30087. [PMID: 26725829 PMCID: PMC4698466 DOI: 10.3402/jev.v4.30087] [Citation(s) in RCA: 1048] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
Collapse
Affiliation(s)
- Thomas Lener
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Mario Gimona
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ludwig Aigner
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Giovanni Camussi
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US23 Inserm, Villejuif, France
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
| | - Devasis Chatterjee
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Felipe A Court
- Department of Physiology, Faculty of Biology, Pontificia-Universidad Católica de Chile, Santiago, Chile
| | - Hernando A Del Portillo
- ICREA at Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefano Fais
- Anti-Tumor Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (ISS), Rome, Italy
| | - Juan M Falcon-Perez
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ursula Felderhoff-Mueser
- Department of Paediatrics I, Neonatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lorenzo Fraile
- Departament de Producció Animal, ETSEA, Universitat de Lleida, Lleida, Spain
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Boris W Kramer
- Experimental Perinatology/Neonatology, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology and Focus Program Translational Neurosciences, University of Mainz, Mainz, Germany
| | - Sandra Laner-Plamberger
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Saara Laitinen
- Research and Cell Services, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Tommaso Leonardi
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Magdalena J Lorenowicz
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Casey A Maguire
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio Marcilla
- Dpto. Biología Celular y Parasitologia, Facultat de Farmacia, Universitat de Valencia, Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Universitat de València-Health Research Institute La Fe, Valencia, Spain
| | - Irina Nazarenko
- Institute for Environmental Health Sciences and Hospital Infection Control Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Shona Pedersen
- Centre for Cardiovascular Research, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Quesenberry
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
- The Alpert Medical School of Brown University, Providence, RI, USA
| | - Ilona G Reischl
- BASG - Bundesamt für Sicherheit im Gesundheitswesen - Federal Office for Safety in Health Care, AGES - Agentur für Gesundheit und Ernährungssicherheit - Austrian Agency for Health and Food Safety, Institut Überwachung - Institute Surveillance, Wien, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Ralf Sanzenbacher
- Ralf Sanzenbacher, Paul-Ehrlich-Institut, Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
| | - Ineke Slaper-Cortenbach
- Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marca Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Clotilde Théry
- Centre of Clinical Investigation in Biotherapy CICBT 1248, Institut Gustave Roussy, Villejuif, France
- INSERM U932, Institut Curie, Paris, France
| | - Eva Rohde
- Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
- Department of Blood Group Serology and Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria;
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
| |
Collapse
|
43
|
Abstract
Currently, gliomas are diagnosed by neuroimaging, and refined diagnosis requires resection or biopsy to obtain tumour tissue for histopathological classification and grading. Blood-derived biomarkers, therefore, would be useful as minimally invasive markers that could support diagnosis and enable monitoring of tumour growth and response to treatment. Such circulating biomarkers could distinguish true progression from therapy-associated changes such as radiation necrosis, and help evaluate the persistence or disappearance of a therapeutic target, such as an oncoprotein or a targetable gene mutation, after targeted therapy. Unlike for other tumours, circulating biomarkers for gliomas are still being defined and are not yet in use in clinical practice. Circulating tumour DNA (ctDNA) isolated from plasma has been shown to reflect the mutational status of glioblastoma, and extracellular vesicles (EVs) containing ctDNA, microRNA and proteins function as rapidly adapting reservoirs for glioma biomarkers such as typical DNA mutations, regulatory microRNAs and oncoproteins. Ideally, circulating tumour cells could enable profiling of the whole-tumour genome, but they are difficult to detect and can reflect only a single cell type of the heterogeneous tumour composition, whereas EVs reflect the complex heterogeneity of the whole tumour, as well as its adaptations to therapy. Although all categories of potential blood-derived biomarkers need to be developed further, findings from other tumour types suggest that EVs are the most promising biomarkers.
Collapse
|