1
|
Gan X, Chi B, Zhang X, Ren M, Bie H, Jia Q, Fu Y, Li C, Zhou H, He S, Wang Y, Chen Y, Zhang S, Zhang Q, Zhao Z, Sun W, Yangzong Q, Zhongga C, Pan R, Chen X, Jia E. CircBTBD7-420aa Encoded by hsa_circ_0000563 Regulates the Progression of Atherosclerosis and Construction of circBTBD7-420aa Engineered Exosomes. JACC Basic Transl Sci 2025; 10:131-147. [PMID: 40131148 PMCID: PMC11897471 DOI: 10.1016/j.jacbts.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 03/26/2025]
Abstract
Circular RNAs are associated with cardiovascular disease, including coronary artery disease, but the mechanisms have not been completely elucidated. We found a new protein, circBTBD7-420aa, encoded by hsa_circ_0000563. Our results suggest that circBTBD7-420aa may inhibit the abnormal proliferation and migration of human coronary artery smooth muscle cells by promoting SLC3A2 degradation through the ubiquitin-proteasome pathway. In addition, we constructed engineered exosomes loaded with circBTBD7-420aa that can target vascular smooth muscle cells by modifying peptide fragments targeting osteopontin. This study suggests that circBTBD7-420aa may inhibit the progression of atherosclerosis and serve as a new target for the diagnosis and treatment of coronary artery disease.
Collapse
Affiliation(s)
- Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Boyu Chi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mengmeng Ren
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hengjie Bie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuli Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhenyu Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weixin Sun
- Department of Cardiovascular Medicine, Yancheng Traditional Chinese Medicine Hospital affiliated with Nanjing University of Chinese Medicine, Yancheng, Jiangsu Province, China
| | - Qiangba Yangzong
- Department of Cardiovascular Medicine, Lhasa People's Hospital, Chengguan District, Lhasa, Tibet Autonomous Region, China
| | - Ciren Zhongga
- Department of Cardiovascular Medicine, Lhasa People's Hospital, Chengguan District, Lhasa, Tibet Autonomous Region, China
| | - Renyou Pan
- Department of Cardiovascular Medicine, Yancheng Traditional Chinese Medicine Hospital affiliated with Nanjing University of Chinese Medicine, Yancheng, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Järveläinen N, Halonen PJ, Nurro J, Kuivanen A, Pajula J, Tarkia M, Grönman M, Saraste A, Laakkonen J, Toivanen P, Nieminen T, Rissanen TT, Knuuti J, Ylä-Herttuala S. Low dose Adenoviral Vammin gene transfer induces myocardial angiogenesis and increases left ventricular ejection fraction in ischemic porcine heart. Sci Rep 2024; 14:30003. [PMID: 39623213 PMCID: PMC11611887 DOI: 10.1038/s41598-024-81773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
This preliminary study investigated if VEGFR-2 selective adenoviral Vammin (AdVammin) gene therapy could induce angiogenesis and increase perfusion in the healthy porcine myocardium. Also, we determined using a clinically relevant large animal model if AdVammin gene therapy could improve the function of a chronically ischemic heart. Low doses of AdVammin (dose range 2 × 109-2 × 1010 vp) gene transfers were performed into the porcine myocardium using an endovascular injection catheter. AdCMV was used as a control. The porcine model of chronic myocardial ischemia was used in the ischemic studies. The AdVammin enlarged the mean capillary area and stimulated pericyte coverage in the target area 6 days after the gene transfers. Using positron emission tomography 15O-radiowater imaging, we demonstrated that AdVammin gene therapy increased perfusion in healthy myocardium at rest. AdVammin treatment also increased ejection fraction at stress in the ischemic heart, as detected using left ventricular cine angiography. In addition, we demonstrated successful in vivo imaging of enhanced angiogenesis using [68Ga]NODAGA-RGD peptide. However, AdVammin also increased tissue permeability and was associated with significant pericardial fluid accumulation, limiting AdVammin's therapeutic potential and emphasizing the importance of correct dosage.
Collapse
Affiliation(s)
- Niko Järveläinen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Paavo J Halonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jussi Nurro
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Antti Kuivanen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Juho Pajula
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Miikka Tarkia
- University of Turku, Turku PET-Center, Turku, Finland
- University of Helsinki, Helsinki, Finland
| | - Maria Grönman
- University of Turku, Turku PET-Center, Turku, Finland
| | - Antti Saraste
- University of Turku, Turku PET-Center, Turku, Finland
| | - Johanna Laakkonen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Pyry Toivanen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Tiina Nieminen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
| | - Tuomas T Rissanen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland
- Heart Center, North Karelia Central Hospital, Joensuu, Finland
| | - Juhani Knuuti
- University of Turku, Turku PET-Center, Turku, Finland
| | - Seppo Ylä-Herttuala
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, P.O. Box 1627, 70211, Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
3
|
Desai D, Maheta DK, Agrawal SP, Patel M, Frishman WH, Aronow WS. Revolutionizing Cardiac Care: The Role of Gene Therapy in Treating Cardiomyopathy. Cardiol Rev 2024. [DOI: 10.1097/crd.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Gene therapy presents a method for addressing types of cardiomyopathies that play a substantial role in heart failure. This innovative approach, leveraging technologies such as clustered regularly interspaced short palindromic repeats/Cas9 for modifying genomes, holds promise for lasting treatments or potential cures that go beyond therapies. It is essential to grasp the workings of gene therapy, including gene silencing, clustered regularly interspaced short palindromic repeats genome editing, and enhancing sarcomere function to effectively apply it to treating cardiomyopathy. Examining current trials will shed light on the advancements and accomplishments in this field while also addressing the obstacles, uncertainties, and opportunities ahead. Delving into the possibilities of gene therapy involves exploring targets and inventive delivery methods that underscore the evolving landscape of research in this domain hinting at a future brimming with opportunities to transform care. The progress made in using gene therapy to treat cardiomyopathies represents the progress of medicine in driving forward scientific innovation to provide more precise and enduring solutions for patients. Continuously refining gene therapy techniques and deepening our knowledge of genetics are factors that will shape the future direction of cardiac care. The potential of gene therapy does not just benefit individuals with cardiomyopathy but also represents a move toward effective treatments for various genetic conditions. This signifies a step in the pursuit of holistic healthcare solutions.
Collapse
Affiliation(s)
- Dev Desai
- Department of Medicine, Smt. NHLMMC, Ahmedabad, India
| | | | - Siddharth Pravin Agrawal
- Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI
| | - Monit Patel
- Department of Medicine, Touro College of Osteopathic Medicine, New York, NY
| | | | - Wilbert S. Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
4
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
5
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
6
|
Sabe SA, Harris DD, Broadwin M, Sellke FW. Cardioprotection in cardiovascular surgery. Basic Res Cardiol 2024; 119:545-568. [PMID: 38856733 DOI: 10.1007/s00395-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Since the invention of cardiopulmonary bypass, cardioprotective strategies have been investigated to mitigate ischemic injury to the heart during aortic cross-clamping and reperfusion injury with cross-clamp release. With advances in cardiac surgical and percutaneous techniques and post-operative management strategies including mechanical circulatory support, cardiac surgeons are able to operate on more complex patients. Therefore, there is a growing need for improved cardioprotective strategies to optimize outcomes in these patients. This review provides an overview of the basic principles of cardioprotection in the setting of cardiac surgery, including mechanisms of cardiac injury in the context of cardiopulmonary bypass, followed by a discussion of the specific approaches to optimizing cardioprotection in cardiac surgery, including refinements in cardiopulmonary bypass and cardioplegia, ischemic conditioning, use of specific anesthetic and pharmaceutical agents, and novel mechanical circulatory support technologies. Finally, translational strategies that investigate cardioprotection in the setting of cardiac surgery will be reviewed, with a focus on promising research in the areas of cell-based and gene therapy. Advances in this area will help cardiologists and cardiac surgeons mitigate myocardial ischemic injury, improve functional post-operative recovery, and optimize clinical outcomes in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Rhode Island Hospital, Alpert Medical School of Brown University, 2 Dudley Street, MOC 360, Providence, RI, 02905, USA.
| |
Collapse
|
7
|
van de Vlekkert D, Hu H, Weesner JA, Fremuth LE, Brown SA, Lu M, Gomero E, Campos Y, Sheppard H, d'Azzo A. AAV-mediated gene therapy for sialidosis. Mol Ther 2024; 32:2094-2112. [PMID: 38796704 PMCID: PMC11287007 DOI: 10.1016/j.ymthe.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.
Collapse
Affiliation(s)
| | - Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jason A Weesner
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leigh E Fremuth
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Devision of Comparative Pathology, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yvan Campos
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather Sheppard
- Devision of Comparative Pathology, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
8
|
Chen Y, Wei Y, Tang W. The role of hydrogen in the prevention and treatment of coronary atherosclerotic heart disease. Eur J Pharmacol 2024; 972:176586. [PMID: 38615891 DOI: 10.1016/j.ejphar.2024.176586] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Coronary atherosclerotic heart disease (CHD) is a primary cardiovascular disease caused by atherosclerosis (AS), which is characterized by chronic inflammation and lipid oxidative deposition. Molecular hydrogen (H2) is an effective anti-inflammatory agent and has potential to ameliorate glycolipid metabolism disorders, which is believed to exert beneficial effects on the prevention and treatment of CHD. It is suggested that H2 reduces inflammation in CHD by regulating multiple pathways, including NF-κB inflammatory pathway, pyroptosis, mitophagy, endoplasmic reticulum (ER) stress, and Nrf2 antioxidant pathway. Additionally, H2 may improve glycolipid metabolism by mediation of PI3K and AMPK signalling pathways, contributing to inhibition of the occurrence and development of CHD. This review elaborates pathogenesis of CHD and evaluates the role of H2 in CHD. Moreover, possible molecular mechanisms have been discussed and speculated, aiming to provide more strategies and directions for subsequent studies of H2 in CHD.
Collapse
Affiliation(s)
- Yunxi Chen
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China
| | - Youzhen Wei
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, PR China; Research Center for Translational Medicine, Jinan People's Hospital, Shandong First Medical University, Jinan, Shandong, 271100, PR China.
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China; Research Institute of Regenerative Medicine, East Hospital, Tongji University, 1800 Yuntai Road, Shanghai, 200123, PR China.
| |
Collapse
|
9
|
Bains S, Giudicessi JR, Odening KE, Ackerman MJ. State of Gene Therapy for Monogenic Cardiovascular Diseases. Mayo Clin Proc 2024; 99:610-629. [PMID: 38569811 DOI: 10.1016/j.mayocp.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024]
Abstract
Over the past 2 decades, significant efforts have been made to advance gene therapy into clinical practice. Although successful examples exist in other fields, gene therapy for the treatment of monogenic cardiovascular diseases lags behind. In this review, we (1) highlight a brief history of gene therapy, (2) distinguish between gene silencing, gene replacement, and gene editing technologies, (3) discuss vector modalities used in the field with a special focus on adeno-associated viruses, (4) provide examples of gene therapy approaches in cardiomyopathies, channelopathies, and familial hypercholesterolemia, and (5) present current challenges and limitations in the gene therapy field.
Collapse
Affiliation(s)
- Sahej Bains
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN.
| |
Collapse
|
10
|
Jiao L, Sun Z, Sun Z, Liu J, Deng G, Wang X. Nanotechnology-based non-viral vectors for gene delivery in cardiovascular diseases. Front Bioeng Biotechnol 2024; 12:1349077. [PMID: 38303912 PMCID: PMC10830866 DOI: 10.3389/fbioe.2024.1349077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Gene therapy is a technique that rectifies defective or abnormal genes by introducing exogenous genes into target cells to cure the disease. Although gene therapy has gained some accomplishment for the diagnosis and therapy of inherited or acquired cardiovascular diseases, how to efficiently and specifically deliver targeted genes to the lesion sites without being cleared by the blood system remains challenging. Based on nanotechnology development, the non-viral vectors provide a promising strategy for overcoming the difficulties in gene therapy. At present, according to the physicochemical properties, nanotechnology-based non-viral vectors include polymers, liposomes, lipid nanoparticles, and inorganic nanoparticles. Non-viral vectors have an advantage in safety, efficiency, and easy production, possessing potential clinical application value when compared with viral vectors. Therefore, we summarized recent research progress of gene therapy for cardiovascular diseases based on commonly used non-viral vectors, hopefully providing guidance and orientation for future relevant research.
Collapse
Affiliation(s)
- Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Wal P, Aziz N, Singh CP, Rasheed A, Tyagi LK, Agrawal A, Wal A. Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders. Curr Gene Ther 2024; 24:356-376. [PMID: 38288826 DOI: 10.2174/0115665232268840231222035423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | | | - Azhar Rasheed
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Lalit Kumar Tyagi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Ankur Agrawal
- School of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
12
|
Fairuz S, Ang CW, Mraiche F, Goh JK. Current Targets and Future Directions of Positive Inotropes for Heart Failure. Curr Med Chem 2024; 31:6971-6991. [PMID: 37909442 DOI: 10.2174/0109298673262360231018193823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023]
Abstract
While a congestive heart failure patient will ultimately need an assist device or even a replacement heart as the disease progresses, not every patient is qualified for such advanced therapy. Such patients awaiting better circulatory support benefit from positive inotropes in the meantime as palliative care. These agents are often prescribed in patients with acute decompensated heart failure, with reduced left ventricular ejection fraction and symptoms of organ dysfunction. Although positive inotropes, for example, digoxin, dobutamine, milrinone, levosimendan, etc., are successfully marketed and in use, a lot of their adverse effects, like arrhythmias, hypotension, and even sudden cardiac death, are rather encouraging further research on the development of novel positive inotropes. This review has investigated the molecular mechanisms of some of these adverse effects in terms of the proteins they target, followed by research on newer targets. Studies from 2013-2023 that have reported new small molecules with positive inotropic effects have been revisited in order to determine the progress made so far in drug discovery.
Collapse
Affiliation(s)
- Shadreen Fairuz
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Fatima Mraiche
- Department of Pharmacology, University of Alberta, 116 St & 85 Ave, Edmonton, ABT6G 2R3, Canada
| | - Joo Kheng Goh
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
13
|
Hosseini SY, Mallick R, Mäkinen P, Ylä-Herttuala S. Navigating the prime editing strategy to treat cardiovascular genetic disorders in transforming heart health. Expert Rev Cardiovasc Ther 2024; 22:75-89. [PMID: 38494784 DOI: 10.1080/14779072.2024.2328642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION After understanding the genetic basis of cardiovascular disorders, the discovery of prime editing (PE), has opened new horizons for finding their cures. PE strategy is the most versatile editing tool to change cardiac genetic background for therapeutic interventions. The optimization of elements, prediction of efficiency, and discovery of the involved genes regulating the process have not been completed. The large size of the cargo and multi-elementary structure makes the in vivo heart delivery challenging. AREAS COVERED Updated from recent published studies, the fundamentals of the PEs, their application in cardiology, potentials, shortcomings, and the future perspectives for the treatment of cardiac-related genetic disorders will be discussed. EXPERT OPINION The ideal PE for the heart should be tissue-specific, regulatable, less immunogenic, high transducing, and safe. However, low efficiency, sup-optimal PE architecture, the large size of required elements, the unclear role of transcriptomics on the process, unpredictable off-target effects, and its context-dependency are subjects that need to be considered. It is also of great importance to see how beneficial or detrimental cell cycle or epigenomic modifier is to bring changes into cardiac cells. The PE delivery is challenging due to the size, multi-component properties of the editors and liver sink.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
14
|
Leikas AJ, Ylä-Herttuala S, Hartikainen JEK. Adenoviral Gene Therapy Vectors in Clinical Use-Basic Aspects with a Special Reference to Replication-Competent Adenovirus Formation and Its Impact on Clinical Safety. Int J Mol Sci 2023; 24:16519. [PMID: 38003709 PMCID: PMC10671366 DOI: 10.3390/ijms242216519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Adenoviral vectors are commonly used in clinical gene therapy. Apart from oncolytic adenoviruses, vector replication is highly undesired as it may pose a safety risk for the treated patient. Thus, careful monitoring for the formation of replication-competent adenoviruses (RCA) during vector manufacturing is required. To render adenoviruses replication deficient, their genomic E1 region is deleted. However, it has been known for a long time that during their propagation, some viruses will regain their replication capability by recombination in production cells, most commonly HEK293. Recently developed RCA assays have revealed that many clinical batches contain more RCA than previously assumed and allowed by regulatory authorities. The clinical significance of the higher RCA content has yet to be thoroughly evaluated. In this review, we summarize the biology of adenovirus vectors, their manufacturing methods, and the origins of RCA formed during HEK293-based vector production. Lastly, we share our experience using minimally RCA-positive serotype 5 adenoviral vectors based on observations from our clinical cardiovascular gene therapy studies.
Collapse
Affiliation(s)
- Aleksi J. Leikas
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juha E. K. Hartikainen
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
15
|
van de Vlekkert D, Hu H, Fremuth LE, Brown SA, Weesner JA, Gomero E, Campos Y, d'Azzo A. AAV-mediated gene therapy for Sialidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566667. [PMID: 38014061 PMCID: PMC10680618 DOI: 10.1101/2023.11.10.566667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sialidosis is a glycoprotein storage disease caused by deficiency of the lysosomal sialidase NEU1, which leads to pathogenic accumulation of sialylated glycoproteins and oligosaccharides in tissues and body fluids. The disease belongs to the group of orphan disorders with no therapy currently available. Here, we have tested the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis in a mouse model of the disease. One-month-old Neu1 -/- mice were co-injected with two scAAV2/8 vectors, expressing NEU1 and its chaperone PPCA, and sacrificed at 3 months post-injection. Treated mice were phenotypically indistinguishable from their WT controls. Histopathologically, they showed diminished or absent vacuolization in cells of visceral organs, including the kidney, as well as the choroid plexus and other areas of the brain. This was accompanied by restoration of NEU1 activity in most tissues, reversal of sialyl-oligosacchariduria, and normalization of lysosomal exocytosis in the CSF and serum of treated mice. AAV injection prevented the occurrence of generalized fibrosis, which is a prominent contributor of disease pathogenesis in Neu1 -/- mice and likely in patients. Overall, this therapeutic strategy holds promise for the treatment of sialidosis and may be applicable to adult forms of human idiopathic fibrosis with low NEU1 expression.
Collapse
|
16
|
Pulkkinen HH, Kivistö-Rahnasto A, Korpela H, Heikkilä M, Järveläinen N, Siimes S, Kilpeläinen L, Laham-Karam N, Ylä-Herttuala S, Laakkonen JP. BMP2 gene transfer induces pericardial effusion and inflammatory response in the ischemic porcine myocardium. Front Cardiovasc Med 2023; 10:1279613. [PMID: 38028463 PMCID: PMC10655027 DOI: 10.3389/fcvm.2023.1279613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Pro-angiogenic gene therapy is being developed to treat coronary artery disease (CAD). We recently showed that bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor-A synergistically regulate endothelial cell sprouting in vitro. BMP2 was also shown to induce endocardial angiogenesis in neonatal mice post-myocardial infarction. In this study, we investigated the potential of BMP2 gene transfer to improve cardiomyocyte function and neovessel formation in a pig chronic myocardial infarction model. Ischemia was induced in domestic pigs by placing a bottleneck stent in the proximal part of the left anterior descending artery 14 days before gene transfer. Intramyocardial gene transfers with adenovirus vectors (1 × 1012 viral particles/pig) containing either human BMP2 (AdBMP2) or beta-galactosidase (AdLacZ) control gene were performed using a needle injection catheter. BMP2 transgene expression in the myocardium was detected with immunofluorescence staining in the gene transfer area 6 days after AdBMP2 administration. BMP2 gene transfer did not induce angiogenesis or cardiomyocyte proliferation in the ischemic pig myocardium as determined by the quantitations of CD31 or Ki-67 stainings, respectively. Accordingly, no changes in heart contractility were detected in left ventricular ejection fraction and strain measurements. However, BMP2 gene transfer induced pericardial effusion (AdBMP2: 9.41 ± 3.17 mm; AdLacZ: 3.07 ± 1.33 mm) that was measured by echocardiography. Furthermore, an increase in the number of immune cells and CD3+ T cells was found in the BMP2 gene transfer area. No changes were detected in the clinical chemistry analysis of pig serum or histology of the major organs, implicating that the gene transfer did not induce general toxicity, myocardial injury, or off-target effects. Finally, the levels of fibrosis and cardiomyocyte apoptosis detected by Sirius red or caspase 3 stainings, respectively, remained unaltered between the groups. Our results demonstrate that BMP2 gene transfer causes inflammatory changes and pericardial effusion in the adult ischemic myocardium, which thus does not support its therapeutic use in chronic CAD.
Collapse
Affiliation(s)
- H. H. Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A. Kivistö-Rahnasto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H. Korpela
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M. Heikkilä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Järveläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Siimes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L. Kilpeläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - J. P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Peng X, Zhang K, Yang Z, Jiang L, Nie X, Zuo H, Wang L. Expression profiles and potential functions of microRNAs in heart failure patients from the Uyghur population. Gene 2023:147623. [PMID: 37423398 DOI: 10.1016/j.gene.2023.147623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Existing studies have shown that circulating miRNA can be used as biomarkers of heart failure (HF). However, the circulating miRNA expression profile in Uyghur HF patients is unclear. In this study, we identified the miRNA profiles in the plasma of Uyghur HF patients and preliminarily explored their potential functions to provide new ideas for the diagnosis and treatment of HF. METHODS Totally, 33 Uyghur patients with HF with reduced ejection fraction (<40%) were included in the HF group and 18 Uyghur patients without HF were included in the control group. First, high-throughput sequencing was used to identify differentially expressed miRNAs in the plasma of heart failure patients (n = 3) and controls (n = 3). Second, the differentially expressed miRNAs were annotated with online software and bioinformatics analysis was used to explore the critical roles of these circulating miRNAs in HF. Moreover, four selected differentially expressed miRNAs were validated by quantitative real-time PCR (qRT-PCR) in 15 controls and 30 HF patients. The diagnostic value of three successfully validated miRNAs for heart failure was assessed using receiver operating characteristic curve (ROC) analysis. Finally, to explore the expression levels of the three successfully validated miRNAs in HF hearts, thoracic aortic constriction (TAC) mice models were constructed and their expression in mice hearts was detected by qRT-PCR. RESULTS Sixty-three differentially expressed miRNAs were identified by high-throughput sequencing. Of these 63 miRNAs, most were located on chromosome 14, and the OMIM database showed that 14 miRNAs were associated with HF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the target genes were mostly involved in ion or protein binding, the calcium signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, inositol phosphate metabolism, autophagy, and focal adhesion. Of the four selected miRNAs, hsa-miR-378d, hsa-miR-486-5p and hsa-miR-210-3p were successfully validated in the validation cohort and hsa-miR-210-3p had the highest diagnostic value for HF. Meanwhile, miR-210-3p was found to be significantly upregulated in the hearts of TAC mice. CONCLUSION A reference set of potential miRNA biomarkers that may be involved in HF is constructed. Our study may provide new ideas for the diagnosis and treatment of HF.
Collapse
Affiliation(s)
- Xiangyang Peng
- The 3rd Department of Cardiology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang,832008, P. R. China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; NHC Key laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, Xinjiang, 832008, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan 430030, Hubei Province, China
| | - Kaiyue Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan 430030, Hubei Province, China
| | - Zhenjia Yang
- The 3rd Department of Cardiology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang,832008, P. R. China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; NHC Key laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, Xinjiang, 832008, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan 430030, Hubei Province, China
| | - Luying Jiang
- The 3rd Department of Cardiology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang,832008, P. R. China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; NHC Key laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, Xinjiang, 832008, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan 430030, Hubei Province, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan 430030, Hubei Province, China
| | - Houjuan Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan 430030, Hubei Province, China
| | - Li Wang
- The 3rd Department of Cardiology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang,832008, P. R. China; NHC Key laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, Xinjiang, 832008, China.
| |
Collapse
|
18
|
Ghani U, Farooq O, Aziz S, Alam S, Khan MJ, Rahim O. The Spectrum of Heart Failure Management. Cureus 2023; 15:e40587. [PMID: 37469814 PMCID: PMC10353487 DOI: 10.7759/cureus.40587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2023] [Indexed: 07/21/2023] Open
Abstract
Heart failure, a complex cardiovascular condition, is a huge burden on patients, caregivers, and healthcare systems and it is prevalent worldwide. Heart failure is caused by a wide variety of underlying conditions that include both cardiac and non-cardiac pathologies. Identifying the underlying cause enables us to apply etiology-based interventions. The spectrum of heart failure management ranges from classification to transplantation. In addition to its classification and monitoring, this article reviews various management strategies, including both conventional methods and the latest innovations. These include lifestyle interventions, pharmacotherapy, device therapy, transplantation, and regenerative medicine.
Collapse
Affiliation(s)
- Usman Ghani
- Cardiology, Northwest General Hospital and Research Center, Peshawar, PAK
| | - Omer Farooq
- Internal Medicine, Ascension Saint Francis Hospital, Evanston, USA
| | - Sundal Aziz
- Cardiology, Northwest General Hospital and Research Center, Peshawar, PAK
| | - Sundus Alam
- Acute Medicine, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, GBR
| | - Muhammad Junaid Khan
- Orthopaedic Surgery, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, GBR
| | - Omar Rahim
- Cardiology, Naseer Teaching Hospital, Peshawar, PAK
| |
Collapse
|
19
|
Pajula J, Lähteenvuo J, Lähteenvuo M, Honkonen K, Halonen P, Hätinen OP, Kuivanen A, Heikkilä M, Nurro J, Hartikainen J, Ylä-Herttuala S. Adenoviral VEGF-D ΔN ΔC gene therapy for myocardial ischemia. Front Bioeng Biotechnol 2022; 10:999226. [PMID: 36619378 PMCID: PMC9817830 DOI: 10.3389/fbioe.2022.999226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Cardiovascular diseases are the leading cause of death globally. In spite of the availability of improved treatments, there is still a large group of chronic ischemia patients who suffer from significant symptoms and disability. Thus, there is a clear need to develop new treatment strategies for these patients. Therapeutic angiogenesis is a novel therapy method which has shown promising results in preclinical studies. In this study, we evaluated safety and efficacy of adenoviral (Ad) VEGF-DΔNΔC gene transfer for the treatment of myocardial ischemia in a pig model. Methods: Adenoviral VEGF-DΔNΔC gene transfer was given to pigs (n = 26) via intramyocardial injections using an electromechanical injection catheter. Angiogenic effects were evaluated in an acute myocardial infarction model (n = 18) and functionality of the lymphatic vessels were tested in healthy porcine myocardium (n = 8). AdLacZ was used as a control. Results: AdVEGF-DΔNΔC induced safe and effective myocardial angiogenesis by inducing a four-fold increase in mean capillary area at the edge of the myocardial infarct six days after the gene transfer relative to the control AdLacZ group. The effect was sustained over 21 days after the gene transfer, and there were no signs of vessels regression. AdVEGF-DΔNΔC also increased perfusion 3.4-fold near the infarct border zone relative to the control as measured by fluorescent microspheres. Ejection fraction was 8.7% higher in the AdVEGF-DΔNΔC treated group 21 days after the gene transfer relative to the AdLacZ control group. Modified Miles assay detected a transient increase in plasma protein extravasation after the AdVEGF-DΔNΔC treatment and a mild accumulation of pericardial effusate was observed at d6. However, AdVEGF-DΔNΔC also induced the growth of functional lymphatic vasculature, and the amount of pericardial fluid and level of vascular permeability had returned to normal by d21. Conclusion: Endovascular intramyocardial AdVEGF-DΔNΔC gene therapy proved to be safe and effective in the acute porcine myocardial infarction model and provides a new potential treatment option for patients with severe coronary heart disease.
Collapse
Affiliation(s)
- Juho Pajula
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Markku Lähteenvuo
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Krista Honkonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Paavo Halonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Antti Kuivanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Minja Heikkilä
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jussi Nurro
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juha Hartikainen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland,*Correspondence: Seppo Ylä-Herttuala,
| |
Collapse
|
20
|
The Efficacy of HGF/VEGF Gene Therapy for Limb Ischemia in Mice with Impaired Glucose Tolerance: Shift from Angiogenesis to Axonal Growth and Oxidative Potential in Skeletal Muscle. Cells 2022; 11:cells11233824. [PMID: 36497083 PMCID: PMC9737863 DOI: 10.3390/cells11233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Combined non-viral gene therapy (GT) of ischemia and cardiovascular disease is a promising tool for potential clinical translation. In previous studies our group has developed combined gene therapy by vascular endothelial growth factor 165 (VEGF165) + hepatocyte growth factor (HGF). Our recent works have demonstrated that a bicistronic pDNA that carries both human HGF and VEGF165 coding sequences has a potential for clinical application in peripheral artery disease (PAD). The present study aimed to test HGF/VEGF combined plasmid efficacy in ischemic skeletal muscle comorbid with predominant complications of PAD-impaired glucose tolerance and type 2 diabetes mellitus (T2DM). METHODS Male C57BL mice were housed on low-fat (LFD) or high-fat diet (HFD) for 10 weeks and metabolic parameters including FBG level, ITT, and GTT were evaluated. Hindlimb ischemia induction and plasmid administration were performed at 10 weeks with 3 weeks for post-surgical follow-up. Limb blood flow was assessed by laser Doppler scanning at 7, 14, and 21 days after ischemia induction. The necrotic area of m.tibialis anterior, macrophage infiltration, angio- and neuritogenesis were evaluated in tissue sections. The mitochondrial status of skeletal muscle (total mitochondria content, ETC proteins content) was assessed by Western blotting of muscle lysates. RESULTS At 10 weeks, the HFD group demonstrated impaired glucose tolerance in comparison with the LFD group. HGF/VEGF plasmid injection aggravated glucose intolerance in HFD conditions. Blood flow recovery was not changed by HGF/VEGF plasmid injection either in LFD or HFD conditions. GT in LFD, but not in HFD conditions, enlarged the necrotic area and CD68+ cells infiltration. However, HGF/VEGF plasmid enhanced neuritogenesis and enlarged NF200+ area on muscle sections. In HFD conditions, HGF/VEGF plasmid injection significantly increased mitochondria content and ETC proteins content. CONCLUSIONS The current study demonstrated a significant role of dietary conditions in pre-clinical testing of non-viral GT drugs. HGF/VEGF combined plasmid demonstrated a novel aspect of potential participation in ischemic skeletal muscle regeneration, through regulation of innervation and bioenergetics of muscle. The obtained results made HGF/VEGF combined plasmid a very promising tool for PAD therapy in impaired glucose tolerance conditions.
Collapse
|
21
|
Wen H, Niu X, Hu L, Sun N, Zhao R, Wang Q, Li Y. Dietary copper intake and risk of myocardial infarction in US adults: A propensity score-matched analysis. Front Cardiovasc Med 2022; 9:942000. [PMID: 36440048 PMCID: PMC9685336 DOI: 10.3389/fcvm.2022.942000] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Objectives Most studies have examined the association between serum copper and myocardial infarction, but there is little evidence of the association between dietary copper intake and myocardial infarction. Materials and methods The study included a total of 14,876 participants from the 2011 to 2018 National Health and Nutrition Examination Survey (NHANES). Multivariate logistic regression model was used to analyze the association between dietary copper intake and the risk of myocardial infarction. To reduce selection bias, we use nearest neighbor propensity score matching (PSM) in a 1:2 ratio. Restricted cubic spline (RCS) method is used to study the non-linear relationship. Subgroup stratification was used to further investigate the association between copper intake and myocardial infarction. Results The median dietary copper intake was 1.0825 mg/day. A myocardial infarction had occurred in approximately 4.4% (655) of the participants. Before and after matching, multivariate logistic regression models revealed a negative correlation between dietary copper intake and the risk of myocardial infarction. The higher quartile of subjects had a noticeably lower risk of myocardial infarction in comparison to those in the first quartile of copper intake. According to RCS findings, dietary copper intake and myocardial infarction have a non-linear and dose-response relationship. According to stratified analysis, the dietary copper intake was a substantial protective element for those who were ≥ 50 years old, female, 25 ≤BMI <30, with history of smoking, hypertension, diabetes and ortholiposis. Conclusion Increased dietary copper intake was associated with a lower risk of myocardial infarction. It is especially significant in elderly-aged women, overweight individuals, smokers, hypertension, and diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiuhe Wang
- Department of Cardiology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| |
Collapse
|
22
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
23
|
Hu Y, Lu H, Li H, Ge J. Molecular basis and clinical implications of HIFs in cardiovascular diseases. Trends Mol Med 2022; 28:916-938. [PMID: 36208988 DOI: 10.1016/j.molmed.2022.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Oxygen maintains the homeostasis of an organism in a delicate balance in different tissues and organs. Under hypoxic conditions, hypoxia-inducible factors (HIFs) are specific and dominant factors in the spatiotemporal regulation of oxygen homeostasis. As the most basic functional unit of the heart at the cellular level, the cardiomyocyte relies on oxygen and nutrients delivered by the microvasculature to keep the heart functioning properly. Under hypoxic stress, HIFs are involved in acute and chronic myocardial pathology because of their spatiotemporal specificity, thus granting them therapeutic potential. Most adult animals lack the ability to regenerate their myocardium entirely following injury, and complete regeneration has long been a goal of clinical treatment for heart failure. The precise manipulation of HIFs (considering their dynamic balance and transformation) and the development of HIF-targeted drugs is therefore an extremely attractive cardioprotective therapy for protecting against myocardial ischemic and hypoxic injury, avoiding myocardial remodeling and heart failure, and promoting recovery of cardiac function.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Alhajri N, Rustom M, Adegbile A, Ahmed W, Kilidar S, Afify N. Deciphering the Basis of Molecular Biology of Selected Cardiovascular Diseases: A View on Network Medicine. Int J Mol Sci 2022; 23:ijms231911421. [PMID: 36232723 PMCID: PMC9569471 DOI: 10.3390/ijms231911421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death across the world. For decades, researchers have been studying the causes of cardiovascular disease, yet many of them remain undiscovered or poorly understood. Network medicine is a recently expanding, integrative field that attempts to elucidate this issue by conceiving of disease as the result of disruptive links between multiple interconnected biological components. Still in its nascent stages, this revolutionary application of network science facilitated a number of important discoveries in complex disease mechanisms. As methodologies become more advanced, network medicine harbors the potential to expound on the molecular and genetic complexities of disease to differentiate how these intricacies govern disease manifestations, prognosis, and therapy. This is of paramount importance for confronting the incredible challenges of current and future cardiovascular disease research. In this review, we summarize the principal molecular and genetic mechanisms of common cardiac pathophysiologies as well as discuss the existing knowledge on therapeutic strategies to prevent, halt, or reverse these pathologies.
Collapse
Affiliation(s)
- Noora Alhajri
- Department of Internal Medicine, Cleveland Clinic Abu Dhabi (CCAD), Abu Dhabi P.O. Box 112412, United Arab Emirates
- Correspondence:
| | - Mohammad Rustom
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Adedayo Adegbile
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Weshah Ahmed
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Salsabeel Kilidar
- Department of Emergency Medicine, Sheikh Shakhbout Medical City SSMC, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Nariman Afify
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
25
|
Kawajiri K, Ihara K, Sasano T. Gene therapy to terminate tachyarrhythmias. Expert Rev Cardiovasc Ther 2022; 20:431-442. [PMID: 35655364 DOI: 10.1080/14779072.2022.2085686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION To date, the treatment option for tachyarrhythmia is classified into drug therapy, catheter ablation, and implantable device therapy. However, the efficacy of the antiarrhythmic drugs is limited. Although the indication of catheter ablation is expanding, several fatal tachyarrhythmias are still refractory to ablation. Implantable cardioverter-defibrillator increases survival, but it is not a curable treatment. Therefore, a novel therapy for tachyarrhythmias refractory to present treatments is desired. Gene therapy is being developed as a promising candidate for this purpose, and basic research and translational research have been accumulated in recent years. AREAS COVERED This paper reviews the current state of gene therapy for arrhythmias, including susceptible arrhythmias, the route of administration to the heart, and the type of vector to use. We also discuss the latest progress in the technology of gene delivery and genome editing. EXPERT OPINION Gene therapy is one of the most promising technologies for arrhythmia treatment. However, additional technological innovation to achieve safe, localized, homogeneous, and long-lasting gene transfer is required for its clinical application.
Collapse
Affiliation(s)
- Kohei Kawajiri
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
26
|
Zhang C, He H, Dai J, Li Y, He J, Yang W, Dai J, Han F, Kong W, Wang X, Zheng X, Zhou J, Pan W, Chen Z, Singhal M, Zhang Y, Guo F, Hu J. KANK4 Promotes Arteriogenesis by Potentiating VEGFR2 Signaling in a TALIN-1-Dependent Manner. Arterioscler Thromb Vasc Biol 2022; 42:772-788. [PMID: 35477278 DOI: 10.1161/atvbaha.122.317711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arteriogenesis plays a critical role in maintaining adequate tissue blood supply and is related to a favorable prognosis in arterial occlusive diseases. Strategies aimed at promoting arteriogenesis have thus far not been successful because the factors involved in arteriogenesis remain incompletely understood. Previous studies suggest that evolutionarily conserved KANK4 (KN motif and ankyrin repeat domain-containing proteins 4) might involve in vertebrate vessel development. However, how the KANK4 regulates vessel function remains unknown. We aim to determine the role of endothelial cell-specifically expressed KANK4 in arteriogenesis. METHODS The role of KANK4 in regulating arteriogenesis was evaluated using Kank4-/- and KANK4iECOE mice. Molecular mechanisms underlying KANK4-potentiated arteriogenesis were investigated by employing RNA transcriptomic profiling and mass spectrometry analysis. RESULTS By analyzing Kank4-EGFP reporter mice, we showed that KANK4 was specifically expressed in endothelial cells. In particular, KANK4 displayed a dynamic expression pattern from being ubiquitously expressed in all endothelial cells of the developing vasculature to being explicitly expressed in the endothelial cells of arterioles and arteries in matured vessels. In vitro microfluidic chip-based vascular morphology analysis and in vivo hindlimb ischemia assays using Kank4-/- and KANK4iECOE mice demonstrated that deletion of KANK4 impaired collateral artery growth and the recovery of blood perfusion, whereas KANK4 overexpression leads to increased vessel caliber and blood perfusion. Bulk RNA sequencing and Co-immunoprecipitation/mass spectrometry (Co-IP/MS) analysis identified that KANK4 promoted EC proliferation and collateral artery remodeling through coupling VEGFR2 (vascular endothelial growth factor receptor 2) to TALIN-1, which augmented the activation of the VEGFR2 signaling cascade. CONCLUSIONS This study reveals a novel role for KANK4 in arteriogenesis in response to ischemia. KANK4 links VEGFR2 to TALIN-1, resulting in enhanced VEGFR2 activation and increased EC proliferation, highlighting that KANK4 is a potential therapeutic target for promoting arteriogenesis for arterial occlusive diseases.
Collapse
Affiliation(s)
- Chonghe Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Jianing Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | | | - Jing He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Jialin Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Feng Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | - Wenyan Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu)
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China (X.W., X.Z.)
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, China (X.W., X.Z.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing (J.Z.)
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China (W.P.)
| | - Zhongwen Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany (M.S.).,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany (M.S.)
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.G.)
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China (C.Z., H.H., J.D., J. He, W.Y., J.D., F.H., W.K., Z.C., Y.Z., J. Hu).,University of Chinese Academy of Sciences, Beijing, China (C.Z., H.H., J.H., W.Y., J.D., Z.C., Y.Z., J. Hu)
| |
Collapse
|
27
|
Abstract
Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita, 870-1192, Japan.
| |
Collapse
|
28
|
Kim Y, Zharkinbekov Z, Sarsenova M, Yeltay G, Saparov A. Recent Advances in Gene Therapy for Cardiac Tissue Regeneration. Int J Mol Sci 2021; 22:9206. [PMID: 34502115 PMCID: PMC8431496 DOI: 10.3390/ijms22179206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are responsible for enormous socio-economic impact and the highest mortality globally. The standard of care for CVDs, which includes medications and surgical interventions, in most cases, can delay but not prevent the progression of disease. Gene therapy has been considered as a potential therapy to improve the outcomes of CVDs as it targets the molecular mechanisms implicated in heart failure. Cardiac reprogramming, therapeutic angiogenesis using growth factors, antioxidant, and anti-apoptotic therapies are the modalities of cardiac gene therapy that have led to promising results in preclinical studies. Despite the benefits observed in animal studies, the attempts to translate them to humans have been inconsistent so far. Low concentration of the gene product at the target site, incomplete understanding of the molecular pathways of the disease, selected gene delivery method, difference between animal models and humans among others are probable causes of the inconsistent results in clinics. In this review, we discuss the most recent applications of the aforementioned gene therapy strategies to improve cardiac tissue regeneration in preclinical and clinical studies as well as the challenges associated with them. In addition, we consider ongoing gene therapy clinical trials focused on cardiac regeneration in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (Y.K.); (Z.Z.); (M.S.); (G.Y.)
| |
Collapse
|
29
|
Lau M, Hsin MKY. Commentary: Can the new synthetic adeno-associated virus vector deliver the promise of cardiac gene therapy? J Thorac Cardiovasc Surg 2021; 164:e446-e447. [PMID: 34226049 DOI: 10.1016/j.jtcvs.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Lau
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong, China
| | - Michael K Y Hsin
- Department of Cardiothoracic Surgery, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|