1
|
Zhang Y, Liu H, Zhen W, Jiang T, Cui J. Advancement of drugs conjugated with GalNAc in the targeted delivery to hepatocytes based on asialoglycoprotein receptor. Carbohydr Res 2025; 552:109426. [PMID: 40068307 DOI: 10.1016/j.carres.2025.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 04/22/2025]
Abstract
The asialoglycoprotein receptor (ASGPR) is specifically expressed in hepatocytes. Sugar molecules, such as asialoglycoprotein, galactose, galactosamine, and N-acetyl galactosamine (GalNAc), have a high affinity for ASGPR. This review summarizes the structure of ASGPR, the distribution of this molecule in different cells, and the factors influencing the binding of GalNAc to ASGPR. We introduce the application of GalNAc in targeted delivery into hepatocytes by forming conjugated compounds with RNAs and small molecules, and the standard methods for synthesizing GalNAc are also briefly presented. This is to provide an overview of the current research on GalNAc and to shed light on the design of the new GalNAc.
Collapse
Affiliation(s)
- Yafang Zhang
- Baoding Key Laboratory for Precision Diagnosis and Treatment of Infectious Diseases in Children, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 071000, Hebei Province, China
| | - Hongliang Liu
- Pharmaron Beijing Co., Ltd. (China), Beijing, 100176, China
| | - Weina Zhen
- Baoding Key Laboratory for Precision Diagnosis and Treatment of Infectious Diseases in Children, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 071000, Hebei Province, China
| | - Tingting Jiang
- Baoding Key Laboratory for Precision Diagnosis and Treatment of Infectious Diseases in Children, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 071000, Hebei Province, China
| | - Jingxuan Cui
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Han B, He Y, Zhu M, Zhang M, Lu L, Xu X, He X, Yi H, Tang S. Association of Gene Polymorphisms and Serum Levels of ALAS1 with the Risk of Anti-Tuberculosis Drug-Induced Liver Injury. J Clin Pharmacol 2025; 65:197-205. [PMID: 39297668 DOI: 10.1002/jcph.6137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/08/2024] [Indexed: 01/28/2025]
Abstract
The accumulation of protoporphyrin IX in the liver caused by isoniazid and rifampicin through the disorder of heme biosynthesis was considered an important mechanism of anti-tuberculosis drug-induced liver injury (ATLI). Alanine synthase 1 (ALAS1) is a rate-limiting enzyme in the process of heme synthesis. This study aimed to investigate the association between ALAS1 gene polymorphism, serum ALAS1 level, and the risk of ATLI. This study was a case-control study including 58 ATLI cases and 192 controls. Four single nucleotide polymorphisms (SNPs) of the ALAS1 gene were selected for genotyping and serum ALAS1 concentrations were detected using ELISA kits. There was no significant difference in the genotype distribution of four SNPs between the ATLI cases and the controls under different genetic models. Patients carrying the GG genotype of SNP rs352163 in controls had higher baseline ALAS1 levels than those in ATLI cases (243.6 vs 290.2 ng/L, P = .034), and patients with baseline ALAS1 < 337.85 ng/L had a higher risk of ATLI than those with ALAS1 ≥ 337.85 ng/L (HR = 2.679, 95% CI: 1.360-5.278, P = .004). Our findings indicated that the serum ALAS1 concentrations in the ATLI cases were lower than those in the controls, and the lower baseline ALAS1 levels can be associated with higher ATLI risk.
Collapse
Affiliation(s)
- Bing Han
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yiwen He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Xiaoyan Xu
- Department of Tuberculosis, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Dickey AK, Leaf RK. Givosiran: a targeted treatment for acute intermittent porphyria. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:426-433. [PMID: 39644007 DOI: 10.1182/hematology.2024000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The acute hepatic porphyrias (AHPs) are a family of rare genetic diseases associated with attacks of abdominal pain, vomiting, weakness, neuropathy, and other neurovisceral symptoms. Pathogenic variants in 1 of 4 enzymes of heme synthesis are necessary for the development of AHP, and the onset of acute attacks also requires the induction of δ-aminolevulinic acid synthase 1 (ALAS1), the first and rate-limiting step of heme synthesis in the liver. Givosiran is an RNA interference medication that inhibits hepatic ALAS1 and was designed to treat AHP. In 2019 the US Food and Drug Administration approved givosiran for AHP based on positive results from a phase 3 clinical trial of 94 patients with AHP who demonstrated a marked improvement in AHP attacks and a substantial decrease in δ-aminolevulinic acid and porphobilinogen, the primary disease markers of AHP. A long-term follow-up study demonstrated continued improvement in AHP attack rates, biochemical measures of disease, and quality of life. Real-world studies have also confirmed these results. Common side effects include injection site reactions, hyperhomocysteinemia, and abnormalities of liver and renal biochemistries. This article reviews the studies that led to givosiran approval, discusses real-world clinical data, and highlights remaining questions in the treatment of AHP.
Collapse
Affiliation(s)
- Amy K Dickey
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Rebecca K Leaf
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
4
|
Kubisch I, Wohmann N, Wissniowski TT, Stauch T, Oettel L, Diehl-Wiesenecker E, Somasundaram R, Stölzel U. German Real-World Experience of Patients with Diverse Features of Acute Intermittent Porphyria Treated with Givosiran. J Clin Med 2024; 13:6779. [PMID: 39597922 PMCID: PMC11594983 DOI: 10.3390/jcm13226779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Acute intermittent porphyria (AIP) is a metabolic disease characterised by neurovisceral crises with episodes of acute abdominal pain alongside life-altering, and often hidden, chronic symptoms. The elimination of precipitating factors, hemin therapy, and pain relief are strategies used to treat porphyria symptoms, but are often reserved for patients suffering recurrent, acute attacks. Givosiran (siRNA) is an emerging AIP therapy capable of silencing delta-aminolevulinic acid synthase-1 (ALAS1) and, in turn, reducing the accumulation of delta-aminolevulinic acid (ALA) and porphobilinogen (PBG) that precede porphyria symptoms. The aim of this study was to investigate the efficacy and safety of givosiran administration in patients with both acute and chronic AIP burden, who were poorly responsive to current therapies, using a personalised medicine approach. Methods: Real-world data were collected in consecutive patients treated with givosiran at an accredited German Porphyria Clinical Center. Biochemical, clinical, and HR-QoL outcomes were monitored alongside adverse events (AEs). Results: Twenty-eight patients treated between 2018 and 2024 were sub-categorised into groups corresponding to Ipnet terms 13 'Sporadic Attacks, 5 'Symptomatic High Excretors', 5 'Prophylactic Heme', and 5 "Recurrent Attacks'. The mean time from diagnosis to treatment was 9.2 years (range in months 1-324), and the mean duration of treatment was 30 months (range 3-68). After 6 months of monthly givosiran injection (2.5 mg/kg), all patients' ALA levels reached <2ULN, and 60% of patients attained PBG levels < 2ULN (p < 0.001). These biochemical responses were not different between sub-groups (p > 0.05). Clinically, 75% of patients' chronic and acute porphyria symptoms improved. The total patient populations' annualised attack ratio (AAR) improved; Historical AAR: 2.9 (0-12.0) vs. Givo AAR: 0.45 (0-3.0) (p < 0.01). During follow-up, nine patients experienced minor breakthrough episodes. Of these, three patients required hemin infusion. An association between clinical success and a shorter interim period between diagnosis and treatment was evident (r = -0.522, p = 0.0061). All patients' indices of HR-QoL improved under givosiran, including mental health (38%, p < 0.0001) and pain (38%, p < 0.0001). Patient-reported health (givosiran 77.9% vs. baseline 37.1%, p < 0.0001) and clinical outcome scores (86.9%: good-very good) were also positive. Two patients withdrew from treatment <6 months, citing fatigue, which was a common side effect. A mild elevation in liver enzymes (AST and/or ALT < 1.5ULN, 15.4%) and reduced glomerular filtration rates (GFR, 11.5%) were also evident, but no life-threatening adverse events (AEs) were attributed to givosiran treatment. Conclusions: Givosiran is effective in preventing severe acute attacks and reducing the chronic health burden in patients with acute intermittent porphyria. Importantly, HR-QoL improved in patients suffering chronic AIP burden with few incidences of historical attacks. All patients experienced substantially improved mental health, ease of living, and self-perceived health.
Collapse
Affiliation(s)
- Ilja Kubisch
- Porphyria Center, Chemnitz Hospital, 09116 Chemnitz, Germany; (I.K.); (N.W.); (T.T.W.); (L.O.)
| | - Nils Wohmann
- Porphyria Center, Chemnitz Hospital, 09116 Chemnitz, Germany; (I.K.); (N.W.); (T.T.W.); (L.O.)
| | | | | | - Lucienne Oettel
- Porphyria Center, Chemnitz Hospital, 09116 Chemnitz, Germany; (I.K.); (N.W.); (T.T.W.); (L.O.)
| | - Eva Diehl-Wiesenecker
- Department of Emergency Medicine and Porphyria Clinic, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (E.D.-W.); (R.S.)
| | - Rajan Somasundaram
- Department of Emergency Medicine and Porphyria Clinic, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (E.D.-W.); (R.S.)
| | - Ulrich Stölzel
- Porphyria Center, Chemnitz Hospital, 09116 Chemnitz, Germany; (I.K.); (N.W.); (T.T.W.); (L.O.)
| |
Collapse
|
5
|
Guida CC, Nardella M, del Mar YS Perez A, Savino M, Ferrara G, Napolitano F, Crisetti A, Aucella F, Aucella F. Effectiveness and tolerability of givosiran for the management of acute hepatic porphyria: A monocenter real-life evaluation. Mol Genet Metab Rep 2024; 40:101111. [PMID: 39027010 PMCID: PMC11254832 DOI: 10.1016/j.ymgmr.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Acute hepatic porphyrias (AHPs) are a family of rare, autosomal, dominantly inherited conditions characterized by abnormalities in the production of heme. Advances in molecular engineering have provided new therapeutic possibilities for modifying the heme synthetic pathway in patients with porphyria. In particular, the RNA interference therapeutic givosiran was approved for the treatment of adults and adolescents with AHP aged >12 years based on the positive results of the phase III trial ENVISION. Despite the extended characterization of the activity of givosiran in clinical trials, reports on the long-term effects and effectiveness of the treatment in clinical practice are still scant. To fill this gap, this case series describes a monocentric Italian cohort of AHP patients treated with givosiran. Overall, our real-life experience supports the clinical evidence that long-term treatment with givosiran is well tolerated and able to provide sustained and continuous benefit to patients with acute intermittent porphyria, as reflected by the reduction in the frequency of attacks. In our series, givosiran treatment was also associated with improvement in assessments of quality of life, pain and fatigue.
Collapse
Affiliation(s)
- Claudio Carmine Guida
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Maria Nardella
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Aurora del Mar YS Perez
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Maria Savino
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Gaetano Ferrara
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Francesco Napolitano
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Annalisa Crisetti
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Francesco Aucella
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Filippo Aucella
- Scientific Institut for Research and Health Care, Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
6
|
Jericó D, Córdoba KM, Urigo F, Enríquez de Salamanca R, Anderson KE, Deybach JC, Ávila MA, Fontanellas A. Exploring current and emerging therapies for porphyrias. Liver Int 2024; 44:2174-2190. [PMID: 38813953 DOI: 10.1111/liv.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Porphyrias are rare, mostly inherited disorders resulting from altered activity of specific enzymes in the haem synthesis pathway that lead to accumulation of pathway intermediates. Photocutaneous symptoms occur when excess amounts of photoreactive porphyrins circulate in the blood to the skin, whereas increases in potentially neurotoxic porphyrin precursors are associated with neurovisceral symptoms. Current therapies are suboptimal and their mechanisms are not well established. As described here, emerging therapies address underlying disease mechanisms by introducing a gene, RNA or other specific molecule with the potential to cure or slow progression of the disease. Recent progress in nanotechnology and nanoscience, particularly regarding particle design and formulation, is expanding disease targets. More secure and efficient drug delivery systems have extended our toolbox for transferring specific molecules, especially into hepatocytes, and led to proof-of-concept studies in animal models. Repurposing existing drugs as molecular chaperones or haem synthesis inhibitors is also promising. This review summarizes key examples of these emerging therapeutic approaches and their application for hepatic and erythropoietic porphyrias.
Collapse
Affiliation(s)
- Daniel Jericó
- Solid Tumors Program, Hepatology: Porphyrias & Carcinogenesis Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - Karol M Córdoba
- Solid Tumors Program, Hepatology: Porphyrias & Carcinogenesis Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - Francesco Urigo
- Solid Tumors Program, Hepatology: Porphyrias & Carcinogenesis Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - Rafael Enríquez de Salamanca
- Department of Internal Medicine, Reference Center for Inherited Metabolic Disease-MetabERN, University Hospital 12 de Octubre, UCM, Madrid, Spain
| | - Karl E Anderson
- Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jean-Charles Deybach
- French Porphyria Reference Center (CRMR Porphyries France), Université Paris, Paris, France
| | - Matías A Ávila
- Solid Tumors Program, Hepatology: Porphyrias & Carcinogenesis Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fontanellas
- Solid Tumors Program, Hepatology: Porphyrias & Carcinogenesis Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Traber GM, Yu AM. The Growing Class of Novel RNAi Therapeutics. Mol Pharmacol 2024; 106:13-20. [PMID: 38719476 PMCID: PMC11187687 DOI: 10.1124/molpharm.124.000895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024] Open
Abstract
The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro), lumasiran (Oxlumo), inclisiran (Leqvio), vutrisiran (Amvuttra), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term "RNAi" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action. SIGNIFICANCE STATEMENT: The common and unique chemistry and molecular pharmacology of six FDA-approved siRNA therapeutics are summarized, in which nedosiran is newly approved. We point out rather a surprisingly mechanistic action as miRNAs for five siRNA therapeutics and discuss the differences and similarities between siRNAs and miRNAs that supports using a general and unified term "RNAi" therapeutics to align with current drug nomenclature criteria in pharmacology based on mechanism of action and embraces broader forms and growing number of novel RNAi therapeutics.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California - Davis, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California - Davis, Sacramento, California
| |
Collapse
|
8
|
Hao L, Boehnke N, Elledge SK, Harzallah NS, Zhao RT, Cai E, Feng YX, Neaher S, Fleming HE, Gupta PB, Hammond PT, Bhatia SN. Targeting and monitoring ovarian cancer invasion with an RNAi and peptide delivery system. Proc Natl Acad Sci U S A 2024; 121:e2307802121. [PMID: 38437557 PMCID: PMC10945808 DOI: 10.1073/pnas.2307802121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.
Collapse
Affiliation(s)
- Liangliang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN55455
| | - Susanna K. Elledge
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Nour-Saïda Harzallah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Renee T. Zhao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eva Cai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard University–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Yu-Xiong Feng
- Department of Biology, Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Sofia Neaher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Heather E. Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard University–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard University–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA02142
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
9
|
Teodori L, Omer M, Kjems J. RNA nanostructures for targeted drug delivery and imaging. RNA Biol 2024; 21:1-19. [PMID: 38555519 PMCID: PMC10984137 DOI: 10.1080/15476286.2024.2328440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Wang AF, Ayyar VS. Pharmacodynamic Models of Indirect Effects and Irreversible Inactivation with Turnover: Applicability to Mechanism-Based Modeling of Gene Silencing and Targeted Protein Degradation. J Pharm Sci 2024; 113:191-201. [PMID: 37884193 DOI: 10.1016/j.xphs.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Indirect response (IDR) and turnover with inactivation (TI) comprise two arrays of mechanism-based pharmacodynamic (PD) models widely used to describe delayed drug effects. IDR Model-IV (stimulation of response loss) and TI (irreversible loss) have been described with discerning "signature" profiles; classical IDR-IV response-time profiles display slow declines where peak response shifts later with increasing dose, whereas TI profiles feature steep response declines with earlier-shifting nadirs. Herein, we demonstrate mathematical convergence of IDR-IV and TI models upon implementation with identical linear versus nonlinear pharmacologic effect terms. Time of peak response in IDR-IV can in fact shift earlier or later depending on PK or PD parameters (e.g., kel, Smax) and effect type. A generalized dynamic model linking mRNA and protein turnover is proposed. Applicability of IDR-IV and TI, with either linear or nonlinear terms acting on degradation/catabolism/loss of response, is demonstrated through model-fitting PK-PD effects of three proteolysis-targeting chimeras (PROTACs) and two ligand-conjugated small interfering RNAs (siRNA). This work clarifies mathematical properties, convergence, and expected responses of IDR-IV and TI, demonstrates their applicability for targeted gene-silencing and protein-degrading agents, and illustrates how well-designed in vivo studies covering broad dose ranges with richly sampled time-points can influence PK-PD model structure and parameter resolution.
Collapse
Affiliation(s)
- Angelia F Wang
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA
| | - Vivaswath S Ayyar
- Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA.
| |
Collapse
|
11
|
Brito Avô L, Pereira L, Oliveira A, Ferreira F, Filipe P, Coelho Rodrigues I, Couto E, Ferreira F, Airosa Pardal A, Morgado P, Moreira S. Portuguese Consensus on Acute Porphyrias: Diagnosis, Treatment, Monitoring and Patient Referral. ACTA MEDICA PORT 2023; 36:753-764. [PMID: 37924314 DOI: 10.20344/amp.20323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 11/06/2023]
Abstract
Acute porphyrias are a group of rare genetic metabolic disorders, caused by a defect in one of the enzymes involved in the heme biosynthesis, which results in an abnormally high accumulation of toxic intermediates. Acute porphyrias are characterized by potentially life-threatening attacks and, for some patients, by chronic manifestations that negatively impact daily functioning and quality of life. Clinical manifestations include a nonspecific set of gastrointestinal, neuropsychiatric, and/or cutaneous symptoms. Effective diagnostic methods are widely available, but due to their clinical heterogeneity and non-specificity, many years often elapse from symptom onset to diagnosis of acute porphyrias, delaying the treatment and increasing morbidity. Therefore, increased awareness of acute porphyrias among healthcare professionals is paramount to reducing disease burden. Treatment of acute porphyrias is centered on eliminating the potential precipitants, symptomatic treatment, and suppressing the hepatic heme pathway, through the administration of hemin or givosiran. Moreover, properly monitoring patients with acute porphyrias and their relatives is fundamental to preventing acute attacks, hospitalization, and long-term complications. Considering this, a multidisciplinary panel elaborated a consensus paper, aiming to provide guidance for an efficient and timely diagnosis of acute porphyrias, and evidence-based recommendations for treating and monitoring patients and their families in Portugal. To this end, all authors exhaustively reviewed and discussed the current scientific evidence on acute porphyrias available in the literature, between November 2022 and May 2023.
Collapse
Affiliation(s)
- Luís Brito Avô
- Serviço de Medicina Interna. Hospital CUF Tejo. Lisboa; Unidade de Doenças Raras. Hospital CUF Tejo. Lisboa; Nucleo de Estudos de Doenças Raras da Sociedade Portuguesa de Medicina Interna. Lisboa. Portugal
| | - Luísa Pereira
- Nucleo de Estudos de Doenças Raras da Sociedade Portuguesa de Medicina Interna. Lisboa; Unidade de Cuidados Paliativos. Hospital CUF Tejo. Lisboa. Portugal
| | - Anabela Oliveira
- Serviço de Medicina I. Centro de Referência de Doenças Hereditárias do Metabolismo. Centro Hospitalar Universitário Lisboa Norte. Lisboa. Portugal
| | - Filipa Ferreira
- Unidade de Rastreio Neonatal, Metabolismo e Genética. Departamento de Genética Humana. Instituto Nacional de Saúde Doutor Ricardo Jorge. Porto. Portugal
| | - Paulo Filipe
- Unidade de Investigação de Dermatologia. Instituto de Medicina Molecular João Lobo Antunes. Lisboa. Portugal
| | - Inês Coelho Rodrigues
- Serviço de Gastrenterologia. Centro Hospitalar e Universitário de Lisboa Norte. Lisboa. Portugal
| | - Eduarda Couto
- Departamento de Medicina Interna. Serviço de Hematologia Clínica. Centro Hospitalar Póvoa de Varzim - Vila do Conde. Póvoa de Varzim. Portugal
| | - Fátima Ferreira
- Serviço de Hematologia Clínica. Centro Hospitalar e Universitário de São João. Porto. Portugal
| | - André Airosa Pardal
- Serviço de Hematologia Clínica. Centro Hospitalar Universitário de São João. Porto. Portugal
| | - Pedro Morgado
- Instituto de Investigação em Ciências da Vida e Saúde. Escola de Medicina. Universidade do Minho. Braga; Laboratório Associado do Governo Português ICVS/3B's. Braga/Guimarães; Serviço de Psiquiatria. Hospital de Braga. Braga. Portugal
| | - Sónia Moreira
- Nucleo de Estudos de Doenças Raras da Sociedade Portuguesa de Medicina Interna. Lisboa; Serviço de Medicina Interna. Centro de Referência de Doenças Hereditárias do Metabolismo. Centro Hospitalar e Universitário de Coimbra. Coimbra; Faculdade de Medicina. Universidade de Coimbra. Coimbra. . Portugal
| |
Collapse
|
12
|
Di Pierro E, Perrone M, Franco M, Granata F, Duca L, Lattuada D, De Luca G, Graziadei G. Mitochondrial DNA Copy Number Drives the Penetrance of Acute Intermittent Porphyria. Life (Basel) 2023; 13:1923. [PMID: 37763326 PMCID: PMC10532762 DOI: 10.3390/life13091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
No published study has investigated the mitochondrial count in patients suffering from acute intermittent porphyria (AIP). In order to determine whether mitochondrial content can influence the pathogenesis of porphyria, we measured the mitochondrial DNA (mtDNA) copy number in the peripheral blood cells of 34 patients and 37 healthy individuals. We found that all AIP patients had a low number of mitochondria, likely as a result of a protective mechanism against an inherited heme synthesis deficiency. Furthermore, we identified a close correlation between disease penetrance and decreases in the mitochondrial content and serum levels of PERM1, a marker of mitochondrial biogenesis. In a healthy individual, mitochondrial count is usually modulated to fit its ability to respond to various environmental stressors and bioenergetic demands. In AIP patients, coincidentally, the phenotype only manifests in response to endogenous and exogenous triggers factors. Therefore, these new findings suggest that a deficiency in mitochondrial proliferation could affect the individual responsiveness to stimuli, providing a new explanation for the variability in the clinical manifestations of porphyria. However, the metabolic and/or genetic factors responsible for this impairment remain to be identified. In conclusion, both mtDNA copy number per cell and mitochondrial biogenesis seem to play a role in either inhibiting or promoting disease expression. They could serve as two novel biomarkers for porphyria.
Collapse
Affiliation(s)
- Elena Di Pierro
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Miriana Perrone
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Milena Franco
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Granata
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Lorena Duca
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Debora Lattuada
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| | - Giacomo De Luca
- School of Internal Medicine, University of Milan, 20122 Milan, Italy;
| | - Giovanna Graziadei
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (F.G.); (L.D.); (D.L.); (G.G.)
| |
Collapse
|
13
|
Patel P, Midha S, Shukla S, Dhamija D, Bello AO, Khan S. Evaluating the Efficacy of a Small Interfering Ribonucleic Acid Molecule, Givosiran, in Treating Acute Intermittent Porphyria: A Systematic Review. Cureus 2023; 15:e40585. [PMID: 37469824 PMCID: PMC10353265 DOI: 10.7759/cureus.40585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023] Open
Abstract
Acute intermittent porphyria (AIP) is a severe multiorgan dysfunction disorder that can be fatal if not treated promptly. The newest treatment modality involving small interfering RNA (siRNA) molecules, givosiran, is administered for AIP. Although it has very beneficial effects in treating attacks of AIP, it comes with an extensive side effect profile that is not fully understood or studied. Hence, this novel drug model treatment's risk-benefit evaluation is still necessary. For relevant medical literature, we explored medical databases such as PubMed/Medline, PubMed Central, Cochrane Library, Internet Archive Scholar, Google Scholar, and Wiley Online Library. The selected papers were screened based on eligibility criteria and filtered through quality appraisal tools, and 13 finalized research papers were included in the study. Of the 13 identified papers, three were clinical trials, and 10 were review articles. The selected papers all discussed the effectiveness and side effects of givosiran in acute and recurrent attacks of AIP. The research papers showed decreased rates of acute attacks of AIP with givosiran and terminating recurrent attacks. But there are certain non-serious side effects, like fatigue and nausea. Also, there are some severe side effects, like pain. There is limited information on renal and liver function impairment using givosiran and the use of givosiran in patients with kidney and liver disease, for which further studies are required.
Collapse
Affiliation(s)
- Priyansh Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Medical College Baroda, Baroda, IND
| | - Sidharth Midha
- Radiology, Bharati Vidyapeeth University, Pune, IND
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Surmai Shukla
- Medicine and Surgery, Qingdao University College of Medical Science, Qingdao, CHN
- Medicine and Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Divyanshu Dhamija
- Medicine, Government Medical College Amritsar, Amritsar, IND
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adedamola O Bello
- Psychiatry, St. Martinus University, Pontiac, USA
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Lissing M, Vassiliou D, Floderus Y, Harper P, Yan J, Hagström H, Sardh E, Wahlin S. Risk for incident comorbidities, nonhepatic cancer and mortality in acute hepatic porphyria: A matched cohort study in 1244 individuals. J Inherit Metab Dis 2023; 46:286-299. [PMID: 36546345 DOI: 10.1002/jimd.12583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The acute hepatic porphyrias (AHP) are associated with long-term complications such as primary liver cancer, hypertension, and chronic kidney disease. Data on other related comorbidities are scarce. In this register-based, matched cohort study, we assessed the risks of nonhepatic cancers, cardiovascular diseases, renal diseases, psychiatric disorders, and mortality in relation to porphyria type, sex, and biochemical disease activity. All patients in the Swedish porphyria register with a verified AHP diagnosis during 1987-2015 were included. The biochemical activity of acute intermittent porphyria was assessed using recorded maximal urinary porphobilinogen (U-PBG). Data on incident comorbidities and mortality were collected from national health registries. Cumulative incidences, rates, and hazards were compared to reference individuals from the general population, matched 1:10 by age, sex, and county. We identified 1244 patients with AHP with a median follow-up of 19 years. Health registries identified 149 AHP-subjects (12.0%) with nonhepatic cancer, similar to 1601 (13.0%) in the matched reference population (n = 12 362). Patients with AHP had a higher risk of kidney cancer (0.8% vs. 0.2%, p < 0.001), hypertension, and chronic kidney disease but no increase in risk for cardiovascular disease, except for cerebrovascular disease in patients with elevated U-PBG, (aHR = 1.40 [95% CI:1.06-1.85]). Mortality risk during follow-up was higher among patients with AHP (21% vs. 18%, p = 0.001), and associated with primary liver cancer, female sex, and biochemical activity. In conclusion, AHP is associated with an increased risk of kidney cancer, hypertension, chronic kidney disease, and mortality but not with cardiovascular disease or other nonhepatic cancers.
Collapse
Affiliation(s)
- Mattias Lissing
- Hepatology Division, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Daphne Vassiliou
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ylva Floderus
- Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauline Harper
- Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jacinth Yan
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Hepatology Division, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eliane Sardh
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Wahlin
- Hepatology Division, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Ramzan A, Cao JJL, Frazer JS, Stein P, Ahmad S. A Case of Acute Intermittent Porphyria Leading to Severe Disability in a Young 21-Year-Old Female. Cureus 2023; 15:e34757. [PMID: 36909084 PMCID: PMC10005849 DOI: 10.7759/cureus.34757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Acute intermittent porphyria (AIP) is a rare metabolic disorder that is challenging to diagnose and treat. Symptoms are nonspecific and severe acute attacks may be life-threatening. This is a case of a previously healthy 21-year-old woman diagnosed with an acute attack of AIP following recurrent hospitalizations with undiagnosed abdominal pain over a 12-month period with gradual onset of motor neuropathy which resulted in complete paralysis and respiratory failure. Through our case, we will highlight the challenges in AIP diagnosis and management, its potential severity, and how an early diagnosis could have prevented severe disability.
Collapse
Affiliation(s)
- Adil Ramzan
- Stroke Medicine, Whipps Cross Hospital, London, GBR.,Endocrinology and Diabetes, Peterborough City Hospital, Peterborough, GBR
| | | | - John S Frazer
- Intensive Care Unit, Peterborough City Hospital, Peterborough, GBR
| | - Penelope Stein
- Hematology, King's College Hospital NHS Foundation Trust, London, GBR
| | - Shakeel Ahmad
- Acute/Internal Medicine, Peterborough City Hospital, Peterborough, GBR
| |
Collapse
|
16
|
Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther 2023; 384:133-154. [PMID: 35680378 PMCID: PMC9827509 DOI: 10.1124/jpet.122.001234] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/26/2023] Open
Abstract
RNA interference (RNAi) provides researchers with a versatile means to modulate target gene expression. The major forms of RNAi molecules, genome-derived microRNAs (miRNAs) and exogenous small interfering RNAs (siRNAs), converge into RNA-induced silencing complexes to achieve posttranscriptional gene regulation. RNAi has proven to be an adaptable and powerful therapeutic strategy where advancements in chemistry and pharmaceutics continue to bring RNAi-based drugs into the clinic. With four siRNA medications already approved by the US Food and Drug Administration (FDA), several RNAi-based therapeutics continue to advance to clinical trials with functions that closely resemble their endogenous counterparts. Although intended to enhance stability and improve efficacy, chemical modifications may increase risk of off-target effects by altering RNA structure, folding, and biologic activity away from their natural equivalents. Novel technologies in development today seek to use intact cells to yield true biologic RNAi agents that better represent the structures, stabilities, activities, and safety profiles of natural RNA molecules. In this review, we provide an examination of the mechanisms of action of endogenous miRNAs and exogenous siRNAs, the physiologic and pharmacokinetic barriers to therapeutic RNA delivery, and a summary of the chemical modifications and delivery platforms in use. We overview the pharmacology of the four FDA-approved siRNA medications (patisiran, givosiran, lumasiran, and inclisiran) as well as five siRNAs and several miRNA-based therapeutics currently in clinical trials. Furthermore, we discuss the direct expression and stable carrier-based, in vivo production of novel biologic RNAi agents for research and development. SIGNIFICANCE STATEMENT: In our review, we summarize the major concepts of RNA interference (RNAi), molecular mechanisms, and current state and challenges of RNAi drug development. We focus our discussion on the pharmacology of US Food and Drug Administration-approved RNAi medications and those siRNAs and miRNA-based therapeutics that entered the clinical investigations. Novel approaches to producing new true biological RNAi molecules for research and development are highlighted.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California (UC) Davis School of Medicine, Sacramento, California
| |
Collapse
|
17
|
Dental and Periodontal Health in Acute Intermittent Porphyria. Life (Basel) 2022; 12:life12081270. [PMID: 36013449 PMCID: PMC9410213 DOI: 10.3390/life12081270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
In the inherited metabolic disorder acute intermittent porphyria (AIP), high sugar intake prevents porphyric attacks due to the glucose effect and the following high insulin levels that may lower AIP disease activity. Insulin resistance is a known risk factor for periodontitis and sugar changes diabetogenic hormones and affects dental health. We hypothesized differences in homeostasis model assessment (HOMA) scores for insulin resistance in AIP cases vs. controls and in those with periodontitis. Our aim was to systematically study dental health in AIP as poor dental health was previously only described in case reports. Further, we aimed to examine if poor dental health and kidney failure might worsen AIP as chronic inflammation and kidney failure might increase disease activity. In 47 AIP cases and 47 matched controls, X-rays and physical examination of clinical attachment loss (CAL), probing pocket depth (PPD), and decayed missing filled teeth (DMFT) were performed. Dietary intake was evaluated through a diet logbook. Plasma cytokines and diabetogenic hormones were measured using multiplex technology and urine porphobilinogen and kidney and liver function by routine methods. An excel spreadsheet from the University of Oxford was used to estimate HOMA scores; beta cell function, HOMA%B (%B), insulin sensitivity, HOMA%S (%S), and insulin resistance HOMA-IR (IR), based on glucose and plasma (P) C-peptide. The Wilcoxon matched-pairs signed rank test, the Mann−Whitney U-test, and Spearman’s non-parametric correlation were used. Insulin (p = 0.007) and C-peptide (p = 0.006) were higher in the AIP cases with periodontitis versus those without. In AIP patients, the liver fibrosis index 4 correlated with DMFT (p < 0.001) and CAL ≥4 mm (p = 0.006); the estimated glomerular filtration rate correlated with DMFT (p < 0.001) and CAL ≥4 mm (p = 0.02). CAL ≥4 mm was correlated with chemokine ligand 11 and interleukin (IL)-13 (p = 0.04 for both), and PPD >5 mm was correlated with plasminogen activator inhibitor-1 (p = 0.003) and complement component 3 (p = 0.02). In conclusion, dental health in AIP cases was correlated with insulin resistance, inflammatory markers, and biomarkers of kidney and liver function, demonstrating that organ damage in the kidney and liver are associated with poorer dental health.
Collapse
|
18
|
Photodermatoses: what's new. Curr Opin Pediatr 2022; 34:374-380. [PMID: 35836395 DOI: 10.1097/mop.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize and highlight the recent literature in photodermatoses. In the past year, there have been many developments in this heterogeneous group of conditions. RECENT FINDINGS This review is divided by photodermatoses type, which include idiopathic photodermatoses, photodermatoses secondary to exogenous agents, photodermatoses secondary to endogenous agents (the porphyrias), and genodermatoses. The idiopathic photodermatoses section focuses on case series and reports highlighting new disease presentations or further disease characterization and new treatment strategies for these disorders. The second section discusses a unique case and has a brief update on photoallergens. Clinical, diagnostic, and treatment updates for porphyrias are discussed in Section 3. For genodermatoses, we discuss complications and neoplastic risk of xeroderma pigmentosum and a few highlights from other rare disorders. Finally, we conclude with a brief overview of photoprotection updates, from assessing sun-damaged skin to the most effective photoprotective agents. SUMMARY Up-to-date information will help providers identify and manage this rare group of disorders.
Collapse
|