1
|
Yan S, Lu J, Duan B, Zhang S, Liu D, Qin Y, Dimov AV, Cho J, Li Y, Zhu W, Wang Y. Potential Separation of Multiple System Atrophy and Parkinson's Disease by Susceptibility-derived Components. Neuroimage 2025:121241. [PMID: 40286829 DOI: 10.1016/j.neuroimage.2025.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Substantial evidence emphasizes the dysregulation of iron homeostasis, demyelination and oxidative stress in the neurodegenerative process of multiple system atrophy (MSA) and Parkinson's disease (PD), although its clinical implications remain unclear. Recent MRI post-processing techniques leveraging magnetic susceptibility properties provide a noninvasive means to characterize iron, myelin content and oxygen metabolism alterations. This study aims to investigate subcortical alterations of susceptibility-derived metrics in these two synucleinopathies. METHODS A cohort comprising 180 patients (122 with PD and 58 with MSA) and 77 healthy controls (HCs) underwent clinical evaluation and multi-echo gradient echo MRI scans. Susceptibility source separation, susceptibility-based oxygen extraction fraction (OEF) mapping and semiautomatic subcortical nuclei segmentation were utilized to derive parametric values of deep gray matter in all subjects. RESULTS MSA patients showed markedly elevated paramagnetic susceptibility values in the putamen, globus pallidus (GP) and thalamus; increased diamagnetic susceptibility values in the putamen and dentate nucleus; and reduced OEF values across all nuclei compared with PD patients and HCs. Whereas PD exhibited increased positive susceptibility values in the substantia nigra and enhancing negative values in the GP, similar to MSA. Notably, age-related reductions in OEF were evident in HCs, which was altered by the MSA pathology. Paramagnetic susceptibility was correlated with disease severity. Moreover, the susceptibility-derived metrics of striatum and midbrain nuclei proved to be effective predictors to distinguish PD from MSA (AUC = 0.833). CONCLUSION Susceptibility-derived metrics could detect pathological involvement distinct to each disease, offering significant potential for differentiating between MSA and PD in clinical settings.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China, 107 North Second Road
| | - Bingfang Duan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Şişman M, Nguyen TD, Roberts AG, Romano DJ, Dimov AV, Kovanlikaya I, Spincemaille P, Wang Y. Microstructure-Informed Myelin Mapping (MIMM) from routine multi-echo gradient echo data using multiscale physics modeling of iron and myelin effects and QSM. Magn Reson Med 2025; 93:1499-1515. [PMID: 39552224 PMCID: PMC11910495 DOI: 10.1002/mrm.30369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE Myelin quantification is used in the study of demyelination in neurodegenerative diseases. A novel noninvasive MRI method, Microstructure-Informed Myelin Mapping (MIMM), is proposed to quantify the myelin volume fraction (MVF) from a routine multi-gradient echo sequence (mGRE) using a multiscale biophysical signal model of the effects of microstructural myelin and iron. THEORY AND METHODS In MIMM, the effects of myelin are modeled based on the Hollow Cylinder Fiber Model accounting for anisotropy, while iron is considered as an isotropic paramagnetic point source. This model is used to create a dictionary of mGRE magnitude signal evolution and total voxel susceptibility using finite elements of size 0.2 μm. Next, voxel-by-voxel stochastic matching pursuit between acquired mGRE data (magnitude+QSM) and the pre-computed dictionary generates quantitative MVF and iron susceptibility maps. Dictionary matching was evaluated under three conditions: (1) without fiber orientation (basic), (2) with fiber orientation obtained using DTI, and (3) with fiber orientation obtained using an atlas (atlas). MIMM was compared with the three-pool complex fitting (3PCF) using T2-relaxometry myelin water fraction (MWF) map as reference. RESULTS The DTI MIMM and atlas MIMM approaches were equally effective in reducing the overestimation of MVF in certain white matter tracts observed in the basic MIMM approach, and they both showed good agreement with T2-relaxometry MWF. MIMM MVF reduced myelin overestimation of globus pallidus observed in 3PCF MWF. CONCLUSION MIMM processing of mGRE data can provide MVF maps from routine clinical scans without requiring special sequences.
Collapse
Affiliation(s)
- Mert Şişman
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | - Alexandra G. Roberts
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | - Dominick J. Romano
- Department of Radiology, Weill Cornel Medicine, New York, New York
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Alexey V. Dimov
- Department of Radiology, Weill Cornel Medicine, New York, New York
| | | | | | - Yi Wang
- Department of Radiology, Weill Cornel Medicine, New York, New York
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
3
|
Gkotsoulias DG, Rullmann M, Schmitt S, Bujanow A, Zientek F, Messerschmidt K, Pampel A, Büttner AP, Schildan A, Sabri O, Müller-Vahl K, Barthel H, Möller HE. Abnormalities of iron homeostasis and the dopaminergic system in Tourette syndrome revealed by 7T MRI and PET. Brain Commun 2025; 7:fcaf104. [PMID: 40177529 PMCID: PMC11961303 DOI: 10.1093/braincomms/fcaf104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
While the implication of a dysfunctional dopaminergic system in Tourette syndrome (TS) is well established, the underlying pathophysiological mechanisms remain unclear. Apart from neurotransmitters, disturbed iron homeostasis and iron regulatory mechanisms are also suspected. Iron is a trace element of fundamental biological importance and is involved in the synthesis and metabolism of dopamine and its receptors and transporters. The goal of the current pre-registered, multi-modal, cross-sectional study was to investigate the relationship between potential iron homeostasis imbalances and dopaminergic system disturbances in patients with TS. Susceptibility-sensitive MRI at 7 Tesla was used to obtain surrogate measures for local brain iron in 25 patients with TS (age 30 ± 9 years, 6 female) and 40 matched control subjects. Additionally, dopamine D1 receptor availability was investigated with [11C]SCH23390 PET in a subgroup of 20 patients and 20 controls. Significantly reduced sub-cortical magnetic susceptibility, indicating reduced iron levels, was observed in TS patients in the caudate, pallidum, sub-thalamic nucleus, thalamus, red nucleus and substantia nigra. These reductions were accompanied by significant reductions of the [11C]SCH23390 binding potential indicating reduced availability of D1 receptors in the dorsal striatum. The D1 receptor abnormality correlated with tic severity. These results point to alterations of intra-synaptic dopamine release and reduced striatal D1 receptor binding, supporting the notion of disruption in multiple functional elements of the dopaminergic system. Such dopaminergic abnormalities appear to be associated with disturbances in iron homeostasis.
Collapse
Affiliation(s)
| | - Michael Rullmann
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Simon Schmitt
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover 30625, Germany
| | - Anna Bujanow
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Franziska Zientek
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | | | - André Pampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | | | - Andreas Schildan
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover 30625, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Center, Leipzig 04103, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
4
|
Jang M, Dimov AV, Kapse K, Murnick J, Grinspan Z, Wu A, RoyChoudhury A, Wang Y, Spincemaille P, Nguyen TD, Limperopoulos C, Zun Z. Quantitative Susceptibility Mapping with Source Separation in Normal Brain Development of Newborns. AJNR Am J Neuroradiol 2025; 46:380-389. [PMID: 39231612 PMCID: PMC11878958 DOI: 10.3174/ajnr.a8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping is an emerging method for characterizing tissue composition and studying myelination and iron deposition. However, accurate assessment of myelin and iron content in the neonate brain using this method is challenging because these 2 susceptibility sources of opposite signs (myelin, negative; iron, positive) occupy the same voxel, with minimal and comparable content in both sources. In this study, susceptibilities were measured in the healthy neonate brain using susceptibility source separation. MATERIALS AND METHODS Sixty-nine healthy neonates without clinical indications were prospectively recruited for MRI. All neonates underwent gradient-echo imaging for quantitative susceptibility mapping. Positive (paramagnetic) and negative (diamagnetic) susceptibility sources were separated using additional information from R2* with linear modeling performed for the neonate brain. Average susceptibility maps were generated by normalizing all susceptibility maps to an atlas space. Mean regional susceptibility measurements were obtained in the cortical GM, WM, deep GM, caudate nucleus, putamen, globus pallidus, thalamus, and the 4 brain lobes. RESULTS A total of 65 healthy neonates (mean postmenstrual age, 42.8 [SD, 2.3] weeks; 34 females) were studied. The negative susceptibility maps visually demonstrated high signals in the thalamus, brainstem, and potentially myelinated WM regions, whereas the positive susceptibility maps depicted high signals in the GM compared with all WM regions, including both myelinated and unmyelinated WM. The WM exhibited significantly lower mean positive susceptibility and significantly higher mean negative susceptibility than cortical GM and deep GM. Within the deep GM, the thalamus showed a significantly lower mean negative susceptibility than the other nuclei, and the putamen and globus pallidus showed significant associations with neonate age in positive and/or negative susceptibility. Among the 4 brain lobes, the occipital lobe showed a significantly higher mean positive susceptibility and a significantly lower mean negative susceptibility than the frontal lobe. CONCLUSIONS This study demonstrates regional variations and temporal changes in positive and negative susceptibilities of the neonate brain, potentially associated with myelination and iron deposition patterns in normal brain development. It suggests that quantitative susceptibility mapping with source separation may be used for early identification of delayed myelination or iron deficiency.
Collapse
Affiliation(s)
- MinJung Jang
- From the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
| | - Alexey V Dimov
- From the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
| | - Kushal Kapse
- Institute for the Developing Brain (K.K., J.M., C.L.), Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC
| | - Jonathan Murnick
- Institute for the Developing Brain (K.K., J.M., C.L.), Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC
- Department of Pediatrics (J.M., C.L.), School of Medicine and Health Sciences, George Washington University, Washington, DC
- Department of Radiology, School of Medicine and Health Sciences (J.M., C.L.), George Washington University, Washington, DC
| | - Zachary Grinspan
- Department of Pediatrics (Z.G.), Weill Cornell Medicine, New York, New York
| | - Alan Wu
- Department of Population Health Sciences (A.W., A.R.), Weill Cornell Medicine, New York, New York
| | - Arindam RoyChoudhury
- Department of Population Health Sciences (A.W., A.R.), Weill Cornell Medicine, New York, New York
| | - Yi Wang
- From the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
| | - Pascal Spincemaille
- From the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
| | - Thanh D Nguyen
- From the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
| | - Catherine Limperopoulos
- Institute for the Developing Brain (K.K., J.M., C.L.), Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC
- Department of Pediatrics (J.M., C.L.), School of Medicine and Health Sciences, George Washington University, Washington, DC
- Department of Radiology, School of Medicine and Health Sciences (J.M., C.L.), George Washington University, Washington, DC
- Division of Fetal and Transitional Medicine (C.L.), Children's National Hospital, Washington, DC
| | - Zungho Zun
- From the Department of Radiology (M.J., A.V.D., Y.W., P.S., T.D.N., Z.Z.), Weill Cornell Medicine, New York, New York
| |
Collapse
|
5
|
Kim M, Ji S, Kim J, Min K, Jeong H, Youn J, Kim T, Jang J, Bilgic B, Shin H, Lee J. χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation. Hum Brain Mapp 2025; 46:e70136. [PMID: 39835664 PMCID: PMC11748151 DOI: 10.1002/hbm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation (R 2 ' = R 2 * - R 2 $$ {R}_2^{\prime }={R}_2^{\ast }-{R}_2 $$ ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition forR 2 $$ {R}_2 $$ (e.g., multi-echo spin-echo) in addition to multi-echo GRE data forR 2 * $$ {R}_2^{\ast } $$ . To address these challenges, we develop a new deep learning network, χ-sepnet, and propose two deep learning-based susceptibility source separation pipelines, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ for inputs with multi-echo GRE and multi-echo spin-echo (or turbo spin-echo) and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ for input with multi-echo GRE only. The neural network is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality χ-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from the conventional regularization-based reconstruction methods. In quantitative analysis, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ achieves the best outcomes followed by χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ , outperforming the conventional methods. When the lesions of multiple sclerosis patients are classified into subtypes, most lesions are identified as the same subtype in the maps from χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ (paramagnetic susceptibility: 99.6% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.
Collapse
Affiliation(s)
- Minjun Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- Division of Computer EngineeringHankuk University of Foreign StudiesYonginRepublic of Korea
| | - Jiye Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hwihun Jeong
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jonghyo Youn
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Taechang Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jinhee Jang
- Department of RadiologySeoul St Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Institute for Precision HealthUniversity of CaliforniaIrvineCaliforniaUSA
| | - Berkin Bilgic
- Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Hyeong‐Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
6
|
Lu Y, Zhang Z. Improving the Understanding of Iron and Myelin Changes in Patients with Multiple Sclerosis through χ-Separation Imaging. Acad Radiol 2025; 32:1000-1001. [PMID: 39706754 DOI: 10.1016/j.acra.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Yinping Lu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China (Y.L., Z.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.L., Z.Z.)
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China (Y.L., Z.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.L., Z.Z.).
| |
Collapse
|
7
|
Xie Y, Zhang Y, Wu S, Zhang S, Zhu H, Zhu W, Wang Y. Atrophy-Independent and Dependent Iron and Myelin Changes in Deep Gray Matter of Multiple Sclerosis: A Longitudinal Study Using χ-Separation Imaging. Acad Radiol 2025; 32:988-999. [PMID: 39084936 DOI: 10.1016/j.acra.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
RATIONALE AND OBJECTIVES To investigate iron and myelin changes in deep gray matter (DGM) of relapsing-remitting multiple sclerosis (RRMS) patients and their relationship to atrophy by χ-separation imaging. MATERIALS AND METHODS 33 RRMS patients and 34 healthy controls (HC) were included in this study. The χ-separation map reconstructed from a 3D multi-echo gradient echo scan was used to measure the positive susceptibility (χpos) and negative susceptibility (χneg) of DGM. To take into account the effect of atrophy, susceptibility mass of DGM was calculated by multiplying volume by the mean bulk susceptibility. Differences in MRI metrics between baseline patients, follow-up patients, and HC were compared respectively. RESULTS Compared to HC, χpos of basal ganglia were significantly increased in follow-up patients (P < 0.05). The χpos of pallidum was significantly higher in follow-up patients than that in baseline patients (P = 0.006). The χneg of caudate, pallidum and hippocampus in baseline and follow-up patients was significantly higher than that in HC (P < 0.05). When taking into account the effect of atrophy, there was a significant decrease in χpos mass and a significant increase in χneg mass of thalamus, accumbens and amygdala in follow-up patients compared to HC (P < 0.05). The χpos mass of the thalamus was further decreased in follow-up patients compared to baseline patients (P = 0.006). CONCLUSION χ-separation imaging could generate independent information on iron and myelin changes in RRMS patients, showing atrophy-dependent iron increase in basal ganglia and atrophy-independent iron and myelin decrease in thalamus.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolong Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA; Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Gillen KM, Nguyen TD, Dimov A, Kovanlikaya I, Luu HM, Demmon E, Markowitz DM, Bagnato F, Pitt D, Gauthier SA, Wang Y. Quantitative susceptibility mapping is more sensitive and specific than phase imaging in detecting chronic active multiple sclerosis lesion rims: pathological validation. Brain Commun 2025; 7:fcaf011. [PMID: 39916751 PMCID: PMC11800486 DOI: 10.1093/braincomms/fcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Quantitative susceptibility mapping and phase imaging are used to identify multiple sclerosis lesions with paramagnetic rims that slowly expand over time and are associated with earlier progression to disability, decreased brain volume and increased frequency of clinical relapse. However, the presence of iron-laden microglia/macrophages at the lesion rim and demyelination within the lesion both contribute to phase and quantitative susceptibility mapping images. Therefore, simultaneous pathological validation is needed to assess accuracies in identifying iron-positive lesions. MRI was performed on 15 multiple sclerosis brain slabs; 32 lesions of interest were processed for myelin, iron and microglial markers. Three experienced readers classified lesions as rim positive or negative on quantitative susceptibility mapping and phase; these classifications were compared with Perls' stain as the gold standard. All 10 of the quantitative susceptibility mapping-positive lesions had iron-positive rims on histology. Of the 16 phase-positive lesions, only 10 had iron-positive rims on histology. Using Perls' stain as the ground truth, the positive predictive value was 100% for quantitative susceptibility mapping and 63% for phase; the negative predictive value was 95% for quantitative susceptibility mapping and 94% for phase. Post-mortem imaging results demonstrate that quantitative susceptibility mapping is a more reliable indicator of an iron-positive rim compared with phase imaging.
Collapse
Affiliation(s)
- Kelly M Gillen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ha Manh Luu
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily Demmon
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel M Markowitz
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francesca Bagnato
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
9
|
Kataike VM, Desmond PM, Steward C, Mitchell PJ, Davey C, Yassi N, Bivard A, Parsons MW, Campbell BCV, Ng F, Venkatraman V. Iron changes within infarct tissue in ischemic stroke patients after successful reperfusion quantified using QSM. Neuroradiology 2024; 66:2233-2242. [PMID: 39172165 PMCID: PMC11611990 DOI: 10.1007/s00234-024-03444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE For nearly half of patients who undergo Endovascular Thrombectomy following ischemic stroke, successful recanalisation does not guarantee a good outcome. Understanding the underlying tissue changes in the infarct tissue with the help of biomarkers specific to ischemic stroke could offer valuable insights for better treatment and patient management decisions. Using quantitative susceptibility mapping (QSM) MRI to measure cerebral iron concentration, this study aims to track the progression of iron within the infarct lesion after successful reperfusion. METHODS In a prospective study of 87 ischemic stroke patients, successfully reperfused patients underwent MRI scans at 24-to-72 h and 3 months after reperfusion. QSM maps were generated from gradient-echo MRI images. QSM values, measured in parts per billion (ppb), were extracted from ROIs defining the infarct and mirror homolog in the contralateral hemisphere and were compared cross-sectionally and longitudinally. RESULTS QSM values in the infarct ROIs matched those of the contralateral ROIs at 24-to-72 h, expressed as median (interquartile range) ppb [0.71(-7.67-10.09) vs. 2.20(-10.50-14.05) ppb, p = 0.55], but were higher at 3 months [10.68(-2.30-21.10) vs. -1.27(-12.98-9.82) ppb, p < 0.001]. The infarct QSM values at 3 months were significantly higher than those at 24-to-72 h [10.41(-2.50-18.27) ppb vs. 1.68(-10.36-12.25) ppb, p < 0.001]. Infarct QSM at 24-to-72 h and patient outcome measured at three months did not demonstrate a significant association. CONCLUSION Following successful endovascular reperfusion, iron concentration in infarct tissue, as measured by QSM increases over time compared to that in healthy tissue. However, its significance warrants further investigation.
Collapse
Affiliation(s)
| | - Patricia M Desmond
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christopher Steward
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Peter J Mitchell
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christian Davey
- Statistical Consulting Centre, School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Nawaf Yassi
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Andrew Bivard
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Mark W Parsons
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Neurology, University of New South Wales Southwestern Sydney Clinical School, Ingham Institute for Applied Medical Research, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Bruce C V Campbell
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix Ng
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Vijay Venkatraman
- Department of Radiology, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Medical Imaging, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
10
|
Hong G, Khazaee T, Cobos SF, Christiansen SD, Liu J, Drangova M, Holdsworth DW. Characterizing diffusion-controlled release of small-molecules using quantitative MRI in view of applications to orthopedic infection. NMR IN BIOMEDICINE 2024; 37:e5254. [PMID: 39358036 DOI: 10.1002/nbm.5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024]
Abstract
Calcium sulfate is an established carrier for localized drug delivery, but a means to non-invasively measure drug release, which would improve our understanding of localized delivery, remains an unmet need. We aim to quantitatively estimate the diffusion-controlled release of small molecules loaded into a calcium sulfate carrier through a gadobutrol-based contrast agent, which acts as a surrogate small molecule. A central cylindrical core made of calcium sulfate, either alone or within a metal scaffold, is loaded with contrast agents that release into agar. Multi-echo scans are acquired at multiple time points over 4 weeks and processed into R2* and quantitative susceptibility mapping (QSM) maps. Mean R2* values are fit to a known drug delivery model, which are then compared with the decrease in core QSM. Fitting R2* measurements of calcium sulfate core while constraining constants to a drug release model results in an R2-value of 0.991, yielding a diffusion constant of 4.59 × 10-11 m2 s-1. Incorporating the carrier within a metal scaffold results in a slower release. QSM shows the resulting loss of susceptibility in the non-metal core but is unreliable around metal. R2* characterizes the released gadobutrol, and QSM detects the resulting decrease in core susceptibility. The addition of a porous metal scaffold slows the release of gadobutrol, as expected.
Collapse
Affiliation(s)
- Greg Hong
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Tina Khazaee
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Santiago F Cobos
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Spencer D Christiansen
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Junmin Liu
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Maria Drangova
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Min K, Sohn B, Kim WJ, Park CJ, Song S, Shin DH, Chang KW, Shin NY, Kim M, Shin HG, Lee PH, Lee J. A human brain atlas of χ-separation for normative iron and myelin distributions. NMR IN BIOMEDICINE 2024; 37:e5226. [PMID: 39162295 DOI: 10.1002/nbm.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024]
Abstract
Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for a healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as χ-separation (pronounced as "chi"-separation), has been proposed, successfully disentangling paramagnetic iron from diamagnetic myelin. This method provided a new opportunity for generating high-resolution iron and myelin maps of the brain. Utilizing this technique, this study constructs a normative χ-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei, thalamic nuclei, and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.
Collapse
Affiliation(s)
- Kyeongseon Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Sohn
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woo Jung Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | | | | | - Kyung Won Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Na-Young Shin
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minjun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeong-Geol Shin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Stirnberg R, Deistung A, Reichenbach JR, Breteler MMB, Stöcker T. Rapid submillimeter QSM and R 2* mapping using interleaved multishot 3D-EPI at 7 and 3 Tesla. Magn Reson Med 2024; 92:2294-2311. [PMID: 38988040 DOI: 10.1002/mrm.30216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE To explore the high signal-to-noise ratio (SNR) efficiency of interleaved multishot 3D-EPI with standard image reconstruction for fast and robust high-resolution whole-brain quantitative susceptibility (QSM) andR 2 ∗ $$ {R}_2^{\ast } $$ mapping at 7 and 3T. METHODS Single- and multi-TE segmented 3D-EPI is combined with conventional CAIPIRINHA undersampling for up to 72-fold effective gradient echo (GRE) imaging acceleration. Across multiple averages, scan parameters are varied (e.g., dual-polarity frequency-encoding) to additionally correct forB 0 $$ {\mathrm{B}}_0 $$ -induced artifacts, geometric distortions and motion retrospectively. A comparison to established GRE protocols is made. Resolutions range from 1.4 mm isotropic (1 multi-TE average in 36 s) up to 0.4 mm isotropic (2 single-TE averages in approximately 6 min) with whole-head coverage. RESULTS Only 1-4 averages are needed for sufficient SNR with 3D-EPI, depending on resolution and field strength. Fast scanning and small voxels together with retrospective corrections result in substantially reduced image artifacts, which improves susceptibility andR 2 ∗ $$ {R}_2^{\ast } $$ mapping. Additionally, much finer details are obtained in susceptibility-weighted image projections through significantly reduced partial voluming. CONCLUSION Using interleaved multishot 3D-EPI, single-TE and multi-TE data can readily be acquired 10 times faster than with conventional, accelerated GRE imaging. Even 0.4 mm isotropic whole-head QSM within 6 min becomes feasible at 7T. At 3T, motion-robust 0.8 mm isotropic whole-brain QSM andR 2 ∗ $$ {R}_2^{\ast } $$ mapping with no apparent distortion in less than 7 min becomes clinically feasible. Stronger gradient systems may allow for even higher effective acceleration rates through larger EPI factors while maintaining optimal contrast.
Collapse
Affiliation(s)
- Rüdiger Stirnberg
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andreas Deistung
- Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), University Medicine Halle, Halle (Saale), Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Faculty of Medicine, Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University of Bonn, Bonn, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Nakashima M, Kan H, Kawai T, Matsumoto K, Kawaguchi T, Uchida Y, Matsukawa N, Hiwatashi A. Quantitative susceptibility mapping analyses of white matter in Parkinson's disease using susceptibility separation technique. Parkinsonism Relat Disord 2024; 128:107135. [PMID: 39278120 DOI: 10.1016/j.parkreldis.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION To apply susceptibility separation on quantitative susceptibility mapping (QSM) images of Parkinson's disease (PD) patients to obtain more accurate images and gain pathophysiological insights. METHODS This retrospective study included subjects who underwent head MRI, including QSM between March 2016 and March 2018. Patients with PD were categorized as having mild cognitive impairment (PD-MCI), or normal cognition (PD-CN); healthy controls (HC) were also enrolled. Susceptibility separation generated positive (QSM+) and negative susceptibility (QSM-) labels. Voxel-based whole-brain susceptibility and atlas-based susceptibility were compared among groups on white matter. Correlations between susceptibility and Montreal Cognitive Assessment (MoCA) scores were analyzed. RESULTS Overall, 65 subjects (mean age 72 years ±6, 35 men) were included. White-matter regions with significant (P < 0.05) group differences were found for QSM+ (HC > PD-MCI, PD-CN > PD-MCI) and QSM- (PD-MCI > HC, PD-MCI > PD-CN). In the atlas-based analyses, PD-MCI exhibited lower QSM + values (vs. HC; P = 0.002, vs. PD-CN; P = 0.001), and higher QSM-values (vs. HC; P = 0.02, vs. PD-CN; P = 0.03) in the genu of corpus callosum (gCC). QSM+ and QSM-showed significant positive and negative correlations with MoCA (P < 0.05). In the gCC, partial correlation analyses revealed a positive correlation between QSM+ and MoCA (R = 0.458, P < 0.001) and a negative correlation between QSM- and MoCA (R = -0.316, P = 0.01). CONCLUSION QSM utilizing susceptibility separation is valuable for assessing white matter in PD patients, where nerve fiber loss potentially influences cognitive function.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan.
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Kazuhisa Matsumoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takatsune Kawaguchi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Japan; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
14
|
Yao J, Li Z, Zhou Z, Bao A, Wang Z, Wei H, He H. Distinct regional vulnerability to Aβ and iron accumulation in post mortem AD brains. Alzheimers Dement 2024; 20:6984-6997. [PMID: 39175425 PMCID: PMC11485316 DOI: 10.1002/alz.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION The paramagnetic iron, diamagnetic amyloid beta (Aβ) plaques and their interaction are crucial in Alzheimer's disease (AD) pathogenesis, complicating non-invasive magnetic resonance imaging for prodromal AD detection. METHODS We used a state-of-the-art sub-voxel quantitative susceptibility mapping method to simultaneously measure Aβ and iron levels in post mortem human brains, validated by histology. Further transcriptomic analysis using Allen Human Brain Atlas elucidated the underlying biological processes. RESULTS Regional increased paramagnetic and diamagnetic susceptibility were observed in medial prefrontal, medial parietal, and para-hippocampal cortices associated with iron deposition (R = 0.836, p = 0.003) and Aβ accumulation (R = 0.853, p = 0.002) in AD brains. Higher levels of gene expression relating to cell cycle, post-translational protein modifications, and cellular response to stress were observed. DISCUSSION These findings provide quantitative insights into the variable vulnerability of cortical regions to higher levels of Aβ aggregation, iron overload, and subsequent neurodegeneration, indicating changes preceding clinical symptoms. HIGHLIGHTS The vulnerability of distinct brain regions to amyloid beta (Aβ) and iron accumulation varies. Histological validation was performed on stained sections of ex-vivo human brains. Regional variations in susceptibility were linked to gene expression profiles. Iron and Aβ levels in ex-vivo brains were simultaneously quantified.
Collapse
Affiliation(s)
- Junye Yao
- Center for Brain Imaging Science and TechnologyZhejiang UniversityHangzhouChina
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Zhenghao Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Zihan Zhou
- Center for Brain Imaging Science and TechnologyZhejiang UniversityHangzhouChina
- Stanford University Graduate School of EducationDepartment of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Aimin Bao
- National Human Brain Bank for Health and DiseaseSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouChina
| | - Zheng Wang
- School of Psychological and Cognitive SciencesBeijing Key Laboratory of Behavior and Mental HealthIDG/McGovern Institute for Brain ResearchPeking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- School of Biomedical EngineeringHainan UniversityHaikouChina
| | - Hongjiang Wei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Hongjian He
- Center for Brain Imaging Science and TechnologyZhejiang UniversityHangzhouChina
- School of PhysicsZhejiang UniversityHangzhouChina
- State Key Laboratory of Brain‐Machine IntelligenceZhejiang UniversityHangzhouChina
| |
Collapse
|
15
|
Ji S, Jang J, Kim M, Lee H, Kim W, Lee J, Shin HG. Comparison between R2'-based and R2*-based χ-separation methods: A clinical evaluation in individuals with multiple sclerosis. NMR IN BIOMEDICINE 2024; 37:e5167. [PMID: 38697612 DOI: 10.1002/nbm.5167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Susceptibility source separation, or χ-separation, estimates diamagnetic (χdia) and paramagnetic susceptibility (χpara) signals in the brain using local field and R2' (= R2* - R2) maps. Recently proposed R2*-based χ-separation methods allow for χ-separation using only multi-echo gradient echo (ME-GRE) data, eliminating the need for additional data acquisition for R2 mapping. Although this approach reduces scan time and enhances clinical utility, the impact of missing R2 information remains a subject of exploration. In this study, we evaluate the viability of two previously proposed R2*-based χ-separation methods as alternatives to their R2'-based counterparts: model-based R2*-χ-separation versus χ-separation and deep learning-based χ-sepnet-R2* versus χ-sepnet-R2'. Their performances are assessed in individuals with multiple sclerosis (MS), comparing them with their corresponding R2'-based counterparts (i.e., R2*-χ-separation vs. χ-separation and χ-sepnet-R2* vs. χ-sepnet-R2'). The evaluations encompass qualitative visual assessments by experienced neuroradiologists and quantitative analyses, including region of interest analyses and linear regression analyses. Qualitatively, R2*-χ-separation tends to report higher χpara and χdia values compared with χ-separation, leading to less distinct lesion contrasts, while χ-sepnet-R2* closely aligns with χ-sepnet-R2'. Quantitative analysis reveals a robust correlation between both R2*-based methods and their R2'-based counterparts (r ≥ 0.88). Specifically, in the whole-brain voxels, χ-sepnet-R2* exhibits higher correlation and better linearity than R2*-χ-separation (χdia/χpara from R2*-χ-separation: r = 0.88/0.90, slope = 0.79/0.86; χdia/χpara from χ-sepnet-R2*: r = 0.90/0.92, slope = 0.99/0.97). In MS lesions, both R2*-based methods display comparable correlation and linearity (χdia/χpara from R2*-χ-separation: r = 0.90/0.91, slope = 0.98/0.91; χdia/χpara from χ-sepnet-R2*: r = 0.88/0.88, slope = 0.91/0.95). Notably, χ-sepnet-R2* demonstrates negligible offsets, whereas R2*-χ-separation exhibits relatively large offsets (0.02 ppm in the whole brain and 0.01 ppm in the MS lesions), potentially indicating the false presence of myelin or iron in MS lesions. Overall, both R2*-based χ-separation methods demonstrated their viability as alternatives to their R2'-based counterparts. χ-sepnet-R2* showed better alignment with its R2'-based counterpart with minimal susceptibility offsets, compared with R2*-χ-separation that reported higher χpara and χdia values compared with R2'-based χ-separation.
Collapse
Affiliation(s)
- Sooyeon Ji
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Minjun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyebin Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Woojun Kim
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyeong-Geol Shin
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Kan H, Uchida Y, Kawaguchi S, Kasai H, Hiwatashi A, Ueki Y. Quantitative susceptibility mapping for susceptibility source separation with adaptive relaxometric constant estimation (QSM-ARCS) from solely gradient-echo data. Neuroimage 2024; 296:120676. [PMID: 38852804 DOI: 10.1016/j.neuroimage.2024.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
To separate the contributions of paramagnetic and diamagnetic sources within a voxel, a magnetic susceptibility source separation method based solely on gradient-echo data has been developed. To measure the opposing susceptibility sources more accurately, we propose a novel single-orientation quantitative susceptibility mapping method with adaptive relaxometric constant estimation (QSM-ARCS) for susceptibility source separation. Moreover, opposing susceptibilities and their anisotropic effects were determined in healthy volunteers in the white matter. Multiple spoiled gradient echo and diffusion tensor imaging of ten healthy volunteers was obtained using a 3 T magnetic resonance scanner. After the opposing susceptibility and fractional anisotropy (FA) maps had been reconstructed, the parametric maps were spatially normalized. To evaluate the agreements of QSM-ARCS against the susceptibility source separation method using R2 and R2* maps (χ-separation) by Bland-Altman plots, the opposing susceptibility values were measured using white and deep gray matter atlases. We then evaluated the relationships between the opposing susceptibilities and FAs in the white matter and used a field-to-fiber angle to assess the fiber orientation dependencies of the opposing susceptibilities. The susceptibility maps in QSM-ARCS were successfully reconstructed without large artifacts. In the Bland-Altman analyses, the opposing QSM-ARCS susceptibility values excellently agreed with the χ-separation maps. Significant inverse and proportional correlations were observed between FA and the negative and positive susceptibilities estimated by QSM-ARCS. The fiber orientation dependencies of the negative susceptibility represented a nonmonotonic feature. Conversely, the positive susceptibility increased linearly with the fiber angle with respect to the B0 field. The QSM-ARCS could accurately estimate the opposing susceptibilities, which were identical values of χ-separation, even using gradient echo alone. The opposing susceptibilities might offer direct biomarkers for assessment of the myelin and iron content in glial cells and, through the underlying magnetic sources, provide biologic insights toward clinical transition.
Collapse
Affiliation(s)
- Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | - Yuto Uchida
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Japan
| | | | - Harumasa Kasai
- Department of Radiology, Nagoya City University Hospital, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
17
|
Schumacher K, Prince MR, Blumenfeld JD, Rennert H, Hu Z, Dev H, Wang Y, Dimov AV. Quantitative susceptibility mapping for detection of kidney stones, hemorrhage differentiation, and cyst classification in ADPKD. Abdom Radiol (NY) 2024; 49:2285-2295. [PMID: 38530430 DOI: 10.1007/s00261-024-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND PURPOSE The objective is to demonstrate feasibility of quantitative susceptibility mapping (QSM) in autosomal dominant polycystic kidney disease (ADPKD) patients and to compare imaging findings with traditional T1/T2w magnetic resonance imaging (MRI). METHODS Thirty-three consecutive patients (11 male, 22 female) diagnosed with ADPKD were initially selected. QSM images were reconstructed from the multiecho gradient echo data and compared to co-registered T2w, T1w, and CT images. Complex cysts were identified and classified into distinct subclasses based on their imaging features. Prevalence of each subclass was estimated. RESULTS QSM visualized two renal calcifications measuring 9 and 10 mm and three pelvic phleboliths measuring 2 mm but missed 24 calcifications measuring 1 mm or less and 1 larger calcification at the edge of the field of view. A total of 121 complex T1 hyperintense/T2 hypointense renal cysts were detected. 52 (43%) Cysts appeared hyperintense on QSM consistent with hemorrhage; 60 (49%) cysts were isointense with respect to simple cysts and normal kidney parenchyma, while the remaining 9 (7%) were hypointense. The presentation of the latter two complex cyst subtypes is likely indicative of proteinaceous composition without hemorrhage. CONCLUSION Our results indicate that QSM of ADPKD kidneys is possible and uniquely suited to detect large renal calculi without ionizing radiation and able to identify properties of complex cysts unattainable with traditional approaches.
Collapse
Affiliation(s)
- Karl Schumacher
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jon D Blumenfeld
- The Rogosin Institute, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hanna Rennert
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongxiu Hu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Hreedi Dev
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Lee J, Ji S, Oh SH. So You Want to Image Myelin Using MRI: Magnetic Susceptibility Source Separation for Myelin Imaging. Magn Reson Med Sci 2024; 23:291-306. [PMID: 38644201 PMCID: PMC11234950 DOI: 10.2463/mrms.rev.2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
In MRI, researchers have long endeavored to effectively visualize myelin distribution in the brain, a pursuit with significant implications for both scientific research and clinical applications. Over time, various methods such as myelin water imaging, magnetization transfer imaging, and relaxometric imaging have been developed, each carrying distinct advantages and limitations. Recently, an innovative technique named as magnetic susceptibility source separation has emerged, introducing a novel surrogate biomarker for myelin in the form of a diamagnetic susceptibility map. This paper comprehensively reviews this cutting-edge method, providing the fundamental concepts of magnetic susceptibility, susceptibility imaging, and the validation of the diamagnetic susceptibility map as a myelin biomarker that indirectly measures myelin content. Additionally, the paper explores essential aspects of data acquisition and processing, offering practical insights for readers. A comparison with established myelin imaging methods is also presented, and both current and prospective clinical and scientific applications are discussed to provide a holistic understanding of the technique. This work aims to serve as a foundational resource for newcomers entering this dynamic and rapidly expanding field.
Collapse
Affiliation(s)
- Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sooyeon Ji
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Se-Hong Oh
- Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| |
Collapse
|
19
|
Zhou J, Wearn A, Huck J, Hughes C, Baracchini G, Tremblay-Mercier J, Poirier J, Villeneuve S, Tardif CL, Chakravarty MM, Daugherty AM, Gauthier CJ, Turner GR, Spreng RN. Iron Deposition and Distribution Across the Hippocampus Is Associated with Pattern Separation and Pattern Completion in Older Adults at Risk for Alzheimer's Disease. J Neurosci 2024; 44:e1973232024. [PMID: 38388425 PMCID: PMC11079967 DOI: 10.1523/jneurosci.1973-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Elevated iron deposition in the brain has been observed in older adult humans and persons with Alzheimer's disease (AD), and has been associated with lower cognitive performance. We investigated the impact of iron deposition, and its topographical distribution across hippocampal subfields and segments (anterior, posterior) measured along its longitudinal axis, on episodic memory in a sample of cognitively unimpaired older adults at elevated familial risk for AD (N = 172, 120 females, 52 males; mean age = 68.8 ± 5.4 years). MRI-based quantitative susceptibility maps were acquired to derive estimates of hippocampal iron deposition. The Mnemonic Similarity Task was used to measure pattern separation and pattern completion, two hippocampally mediated episodic memory processes. Greater hippocampal iron load was associated with lower pattern separation and higher pattern completion scores, both indicators of poorer episodic memory. Examination of iron levels within hippocampal subfields across its long axis revealed topographic specificity. Among the subfields and segments investigated here, iron deposition in the posterior hippocampal CA1 was the most robustly and negatively associated with the fidelity memory representations. This association remained after controlling for hippocampal volume and was observed in the context of normal performance on standard neuropsychological memory measures. These findings reveal that the impact of iron load on episodic memory performance is not uniform across the hippocampus. Both iron deposition levels as well as its spatial distribution, must be taken into account when examining the relationship between hippocampal iron and episodic memory in older adults at elevated risk for AD.
Collapse
Affiliation(s)
- Jing Zhou
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Alfie Wearn
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Julia Huck
- Physics Department, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Department of Radiology, Université de Sherbrooke, Sherbrooke, Quebec J1G 1E4, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of Science, University of Sherbrooke, Quebec J1K 0A5, Canada
| | - Colleen Hughes
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | - Judes Poirier
- StoP-AD Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Sylvia Villeneuve
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- StoP-AD Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Christine Lucas Tardif
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Cerebral Imaging Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, Michigan 48202
| | - Claudine J Gauthier
- Physics Department, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Montreal Heart Institute, Montreal, Quebec H1T 1C8, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- StoP-AD Centre, Douglas Mental Health Institute Research Centre, Montreal, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 1A1, Canada
- Departments of Psychiatry and Psychology, McGill University, Montréal, Quebec H3A 1G1, Canada
| |
Collapse
|
20
|
Bilgic B, Costagli M, Chan KS, Duyn J, Langkammer C, Lee J, Li X, Liu C, Marques JP, Milovic C, Robinson SD, Schweser F, Shmueli K, Spincemaille P, Straub S, van Zijl P, Wang Y. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-magnetic tissue properties study group. Magn Reson Med 2024; 91:1834-1862. [PMID: 38247051 PMCID: PMC10950544 DOI: 10.1002/mrm.30006] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.
Collapse
Affiliation(s)
- Berkin Bilgic
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Kwok-Shing Chan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jeff Duyn
- Advanced MRI Section, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Carlos Milovic
- School of Electrical Engineering (EIE), Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute at the University at Buffalo, Buffalo, New York, USA
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pascal Spincemaille
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Wang
- MRI Research Institute, Departments of Radiology and Biomedical Engineering, Cornell University, New York, New York, USA
| |
Collapse
|
21
|
Yang J, Lv M, Han L, Li Y, Liu Y, Guo H, Feng H, Wu Y, Zhong J. Evaluation of brain iron deposition in different cerebral arteries of acute ischaemic stroke patients using quantitative susceptibility mapping. Clin Radiol 2024; 79:e592-e598. [PMID: 38320942 DOI: 10.1016/j.crad.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
AIM To investigate differences in iron deposition between infarct and normal cerebral arterial regions in acute ischaemic stroke (AIS) patients using quantitative susceptibility mapping (QSM). MATERIALS AND METHODS Forty healthy controls and 40 AIS patients were recruited, and their QSM images were obtained. There were seven regions of interest (ROIs) in AIS patients, including the infarct regions of responsible arteries (R1), the non-infarct regions of responsible arteries (R2), the contralateral symmetrical sites of lesions (R3), and the non-responsible cerebral arterial regions (R4, R5, R6, R7). For the healthy controls, the cerebral arterial regions corresponding to the AIS patient group were selected as ROIs. The differences in corresponding ROI susceptibilities between AIS patients and healthy controls and the differences in susceptibilities between infarcted and non-infarct regions in AIS patients were compared. RESULTS The susceptibilities of infarct regions in AIS patients were significantly higher than those in healthy controls (p<0.0001). There was no significant difference in non-infarct regions between the two groups (p>0.05). The susceptibility of the infarct regions in AIS patients was significantly higher than those of the non-infarct region of responsible artery and non-responsible cerebral arterial regions (p<0.01). CONCLUSIONS Abnormal iron deposition detected by QSM in the infarct regions of AIS patients may not affect iron levels in the non-infarct regions of responsible arteries and normal cerebral arteries, which may open the door for potential new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- J Yang
- Department of Radiology, Zigong First People's Hospital, Zigong, China
| | - M Lv
- Department of Radiology, Zigong First People's Hospital, Zigong, China
| | - L Han
- North Sichuan Medical College, Nanchong, China
| | - Y Li
- Department of Radiology, Zigong First People's Hospital, Zigong, China
| | - Y Liu
- Department of Radiology, Zigong First People's Hospital, Zigong, China
| | - H Guo
- Department of Radiology, Zigong First People's Hospital, Zigong, China
| | - H Feng
- Department of Radiology, Zigong First People's Hospital, Zigong, China
| | - Y Wu
- MR Scientific Marketing, SIEMENS Healthineers Ltd., Shanghai, China
| | - J Zhong
- Department of Radiology, Zigong First People's Hospital, Zigong, China.
| |
Collapse
|
22
|
Guan X, Lancione M, Ayton S, Dusek P, Langkammer C, Zhang M. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping. Neuroimage 2024; 289:120547. [PMID: 38373677 DOI: 10.1016/j.neuroimage.2024.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Scott Ayton
- Florey Institute, The University of Melbourne, Australia
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Auenbruggerplatz 22, Prague 8036, Czechia
| | | | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| |
Collapse
|
23
|
Lao G, Liu Q, Li Z, Guan X, Xu X, Zhang Y, Wei H. Sub-voxel quantitative susceptibility mapping for assessing whole-brain magnetic susceptibility from ages 4 to 80. Hum Brain Mapp 2023; 44:5953-5971. [PMID: 37721369 PMCID: PMC10619378 DOI: 10.1002/hbm.26487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
The evolution of magnetic susceptibility of the brain is mainly determined by myelin in white matter (WM) and iron deposition in deep gray matter (DGM). However, existing imaging techniques have limited abilities to simultaneously quantify the myelination and iron deposition within a voxel throughout brain development and aging. For instance, the temporal trajectories of iron in the brain WM and myelination in DGM have not been investigated during the aging process. This study aimed to map the age-related iron and myelin changes in the whole brain, encompassing myelin in DGM and iron deposition in WM, using a novel sub-voxel quantitative susceptibility mapping (QSM) method. To achieve this, a cohort of 494 healthy adults (18-80 years old) was studied. The sub-voxel QSM method was employed to obtain the paramagnetic and diamagnetic susceptibility based on the approximatedR 2 ' map from acquiredR 2 * map. The linear relationship betweenR 2 * andR 2 ' maps was established from the regression coefficients on a small cohort data acquired with both 3D gradient recalled echo data andR 2 mapping. Large cohort sub-voxel susceptibility maps were used to create longitudinal and age-specific atlases via group-wise registration. To explore the differential developmental trajectories in the DGM and WM, we employed nonlinear models including exponential and Poisson functions, along with generalized additive models. The constructed atlases reveal the iron accumulation in the posterior part of the putamen and the gradual myelination process in the globus pallidus with aging. Interestingly, the developmental trajectories show that the rate of myelination differs among various DGM regions. Furthermore, the process of myelin synthesis is paralleled by an associated pattern of iron accumulation in the primary WM fiber bundles. In summary, our study offers significant insights into the distinctive developmental trajectories of iron in the brain's WM and myelination/demyelination in the DGM in vivo. These findings highlight the potential of using sub-voxel QSM to uncover new perspectives in neuroscience and improve our understanding of whole-brain myelination and iron deposit processes across the lifespan.
Collapse
Affiliation(s)
- Guoyan Lao
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenghao Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
| | - Yuyao Zhang
- School of Information and Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Hongjiang Wei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
24
|
Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, Zun Z, Prince MR, Wang Y. QSM Throughout the Body. J Magn Reson Imaging 2023; 57:1621-1640. [PMID: 36748806 PMCID: PMC10192074 DOI: 10.1002/jmri.28624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jiahao Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | | | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
25
|
Cogswell PM, Fan AP. Multimodal comparisons of QSM and PET in neurodegeneration and aging. Neuroimage 2023; 273:120068. [PMID: 37003447 PMCID: PMC10947478 DOI: 10.1016/j.neuroimage.2023.120068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Audrey P Fan
- Department of Biomedical Engineering and Department of Neurology, University of California, Davis, 1590 Drew Avenue, Davis, CA 95618, USA
| |
Collapse
|
26
|
Dimov AV, Gillen KM, Nguyen TD, Kang J, Sharma R, Pitt D, Gauthier SA, Wang Y. Magnetic Susceptibility Source Separation Solely from Gradient Echo Data: Histological Validation. Tomography 2022; 8:1544-1551. [PMID: 35736875 PMCID: PMC9228115 DOI: 10.3390/tomography8030127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data (R2*QSM) allows separation of dia- and para-magnetic components (e.g., myelin and iron) that contribute constructively to R2* value but destructively to the QSM value of a voxel. This R2*QSM technique is validated against quantitative histology—optical density of myelin basic protein and Perls’ iron histological stains of rim and core of 10 ex vivo multiple sclerosis lesions, as well as neighboring normal appearing white matter. We found that R2*QSM source maps are in good qualitative agreement with histology, e.g., showing increased iron concentration at the edge of the rim+ lesions and myelin loss in the lesions’ core. Furthermore, our results indicate statistically significant correlation between paramagnetic and diamagnetic tissue components estimated with R2*QSM and optical densities of Perls’ and MPB stains. These findings provide direct support for the use of R2*QSM magnetic source separation based solely on GRE complex data to characterize MS lesion composition.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Kelly M. Gillen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Jerry Kang
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - Ria Sharma
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
| | - David Pitt
- Department of Neurology, Yale Medicine, New Haven, CT 06511, USA;
| | - Susan A. Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10022, USA;
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (A.V.D.); (K.M.G.); (T.D.N.); (J.K.); (R.S.)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
- Correspondence:
| |
Collapse
|