1
|
Sanjari-Pour M, Faridi N, Wang P, Bathaie SZ. Protective effect of saffron carotenoids against amyloid beta-induced neurotoxicity in differentiated PC12 cells via the unfolded protein response and autophagy. Phytother Res 2024; 38:4923-4939. [PMID: 36794286 DOI: 10.1002/ptr.7773] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
The preventive effect of saffron against Alzheimer's disease (AD) has been reported. Herein, we studied the effect of Cro and Crt, saffron carotenoids, on the cellular model of AD. The MTT assay, flow cytometry, and elevated p-JNK, p-Bcl-2, and c-PARP indicated the AβOs-induced apoptosis in differentiated PC12 cells. Then, the protective effects of Cro/Crt on dPC12 cells against AβOs were investigated in preventive and therapeutic modalities. Starvation was used as a positive control. RT-PCR and Western blot results revealed the reduced eIF2α phosphorylation and increased spliced-XBP1, Beclin1, LC3II, and p62, which indicate the AβOs-induced autophagic flux defect, autophagosome accumulation, and apoptosis. Cro and Crt inhibited the JNK-Bcl-2-Beclin1 pathway. They altered Beclin1 and LC3II and decreased p62 expressions, leading cells to survival. Cro and Crt altered the autophagic flux by different mechanisms. So, Cro increased the rate of autophagosome degradation more than Crt, while Crt increased the rate of autophagosome formation more than Cro. The application of 4μ8C and chloroquine as the inhibitors of XBP1 and autophagy, respectively, confirmed these results. So, augmentation of the survival branches of UPR and autophagy is involved and may serve as an effective strategy to prevent the progression of AβOs toxicity.
Collapse
Affiliation(s)
- Mariam Sanjari-Pour
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - S Zahra Bathaie
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
- UCLA-DOE Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
2
|
Cetik Yildiz S, Demir C, Cengiz M, Irmak H, Cengiz BP, Ayhanci A. In Vitro Antitumor and Antioxidant Capacity as well as Ameliorative Effects of Fermented Kefir on Cyclophosphamide-Induced Toxicity on Cardiac and Hepatic Tissues in Rats. Biomedicines 2024; 12:1199. [PMID: 38927407 PMCID: PMC11200811 DOI: 10.3390/biomedicines12061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Fermented prebiotic and probiotic products with kefir are very important to slow down and prevent the growth of tumors and to treat cancer by stimulating the immune response against tumor cells. Cyclophosphamide (CPx) is widely preferred in cancer treatment but its effectiveness in high doses is restricted because of its side effects. The aim of this study was to investigate the protective effects of kefir against CPx-induced heart and liver toxicity. In an experiment, 42 Wistar albino rats were divided into six treatment groups: the control (Group 1), the group receiving 150 mg/kg CPx (Group 2), the groups receiving 5 and 10 mg/kg kefir (Groups 3 and 4) and the groups receiving 5 and 10 mg/kg kefir + CPx (Group 5 and 6). Fermented kefirs obtained on different days by traditional methods were mixed and given by gavage for 12 days, while a single dose of CPx was administered intraperitoneally (i.p.) on the 12th day of the experiment. It was observed that alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), ischemia modified albumin (IMA) and Troponin I values, which indicate oxidative stress, increased in the CPx-administered group, and this level approached that of the control in the CPx + kefir groups. Likewise, as a result of the kefir, the rats' CPx-induced histopathological symptoms were reduced, and their heart and liver tissue were significantly improved. In conclusion, it was observed that kefir had a cytoprotective effect against CPx-induced oxidative stress, hepatotoxicity and cardiotoxicity, bringing their biochemical parameters closer to those of the control by suppressing oxidative stress and reducing tissue damage.
Collapse
Affiliation(s)
- Songul Cetik Yildiz
- Department of Medical Services and Techniques, Health Services Vocational School, Mardin Artuklu University, 47200 Mardin, Türkiye;
| | - Cemil Demir
- Department of Medical Services and Techniques, Health Services Vocational School, Mardin Artuklu University, 47200 Mardin, Türkiye;
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, 56100 Siirt, Türkiye;
| | - Halit Irmak
- Department of Computer Sciences, Mardin Artuklu University, 47200 Mardin, Türkiye;
| | | | - Adnan Ayhanci
- Department of Biology, Science Faculty, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye;
| |
Collapse
|
3
|
Haggagy MG, Ahmed LA, Sharaky M, Elhefnawi MM, Omran MM. SIRT1 as a potential key regulator for mediating apoptosis in oropharyngeal cancer using cyclophosphamide and all-trans retinoic acid. Sci Rep 2024; 14:41. [PMID: 38167952 PMCID: PMC10761886 DOI: 10.1038/s41598-023-50478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Although cyclophosphamide (CTX) has been used for recurrent or metastatic head and neck cancers, resistance is usually expected. Thus, we conducted this study to examine the effect of adding all-trans retinoic acid (ATRA) to CTX, to increase efficacy of CTX and reduce the risk of resistance developed. In this study, we investigated the combined effect of ATRA and CTX on the expression of apoptotic and angiogenesis markers in oropharyngeal carcinoma cell line (NO3), and the possible involved mechanisms. ATRA and CTX in combination significantly inhibited the proliferation of NO3 cells. Lower dose of CTX in combination with ATRA exhibited significant cytotoxicity than that of CTX when used alone, implying lower expected toxicity. Results showed that ATRA and CTX modulated oxidative stress; increased NOx and MDA, reduced GSH, and mRNA expression of Cox-2, SIRT1 and AMPK. Apoptosis was induced through elevating mRNA expressions of Bax and PAR-4 and suppressing that of Bcl-xl and Bcl-2, parallel with increased caspases 3 and 9 and decreased VEGF, endothelin-1 and CTGF levels. The primal action of the combined regimen on inflammatory signaling highlights its impact on cell death in NO3 cell line which was mediated by oxidative stress associated with apoptosis and suppression of angiogenesis.
Collapse
Affiliation(s)
- Mahitab G Haggagy
- Clinical Pharmacy Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mahmoud M Elhefnawi
- Biomedical Informatics and Chemoinformatic Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
4
|
Wang X, Yuan P, Zeng M, Sun M, Wang X, Zheng X, Feng W. Allantoin Derived From Dioscorea opposita Thunb Ameliorates Cyclophosphamide-Induced Premature Ovarian Failure in Female Rats by Attenuating Apoptosis, Autophagy and Pyroptosis. Cureus 2023; 15:e50351. [PMID: 38089953 PMCID: PMC10713354 DOI: 10.7759/cureus.50351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 08/20/2024] Open
Abstract
Background and objectives Cyclophosphamide (CP) is widely used as a chemotherapy drug for the treatment of malignant tumors and autoimmune diseases, but it has strong toxic and side effects and can cause permanent damage to the ovaries, which affects women's quality of life. This study aimed to investigate the anti-premature ovarian failure protective effect of allantoin isolated from Dioscorea opposita Thunb. Methods Firstly, 75 mg/kg CP was injected into rats to establish an in vivo model of premature ovarian failure (POF). The POF rats were divided into the normal control group (NC), premature ovarian failure group (POF), and POF group treated with allantoin (ALL I 140 mg/kg and ALL II 70 mg/kg, daily 21 days). It investigated the estrous cycles, hormone levels, apoptosis rate, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitophagy, and protein marker (Bax, Bcl2, LC3B, L-1β, caspase-1 and NLRP3). Results The results indicated that allantoin alleviated cyclophosphamide-induced premature ovarian failure in female rats, decreased the anoestrum, increased the level of estradiol (E2), and decreased the levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), decreased apoptosis rate, MMP, mitophagy and ROS in ovarian granulosa cells of POF rats, down-regulated L-1β, caspase-1, LC3B-II/LC3B-I in ovarian tissue, and up-regulated the Bcl2 and NLRP3. Conclusions Our study revealed the ovarian-protective effect of allantoin in CP-induced premature ovarian failure for the first time, the effect was achieved through attenuation of the apoptosis, autophagy, and pyroptosis. The study underlines the potential clinical application of allantoin as a protectant agent for premature ovarian failure.
Collapse
Affiliation(s)
- Xiaolan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Peipei Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Mo Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Xiaoyang Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, CHN
| |
Collapse
|
5
|
Demir M, Altinoz E, Koca O, Elbe H, Onal MO, Bicer Y, Karayakali M. Antioxidant and anti-inflammatory potential of crocin on the doxorubicin mediated hepatotoxicity in Wistar rats. Tissue Cell 2023; 84:102182. [PMID: 37523948 DOI: 10.1016/j.tice.2023.102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Doxorubicin (DXR) is widely used in cancer treatment. However, it has not yet been possible to prevent the side effects of DXR. The aim of this study was to investigate the hepatoprotective effect of crocin against DXR used in cancer treatment. For this reason; forty Wistar rats (male-250-300 g) were allocated into four groups (n = 10/group): Control, Crocin, DXR and DXR+Crocin. Control and Crocin groups were administered saline and crocin (40 mg/kg, i.p) for 15 days, respectively. DXR group, cumulative dose 12 mg/kg DXR, was administered for 12 days via 48 h intervals in six injections (2 mg/kg each, i.p). DXR+Crocin group, crocin (40 mg/kg-i.p) was administered for 15 days, and DXR was given as in the DXR group. The results revealed that serum liver markers (alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) increased significantly after DXR administration but recovered after crocin therapy. In addition, lipid peroxidation (MDA), and inflammatory cytokine (TNF-α) increased after DXR application and the antioxidative defense system (GSH, SOD, CAT) significantly decreased and re-achieved by crocin treatment. Our results conclude that crocin treatment was related to ameliorated hepatocellular architecture and reduced hepatic oxidative stress and inflammation in rats with DXR-induced hepatotoxicity.
Collapse
Affiliation(s)
- M Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - O Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - M O Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Y Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - M Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
6
|
Zhang X, Su X, Yu X, Zhang X, Guo X, Hou G, Wang C, Li H. Preparative separation of iridoid glucosides and crocins from Gardeniae Fructus using sequential macroporous resin column chromatography and evaluation of their anti-inflammatory and antioxidant activities. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123887. [PMID: 37714051 DOI: 10.1016/j.jchromb.2023.123887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Iridoid glycosides (geniposide (GP), genipin-1-gentiobioside (GB), etc.) and crocins (crocin Ⅰ (CR1), crocin Ⅱ(CR2), etc.) are two main bioactive components in Gardeniae Fructus (GF), which is a famous traditional Chinese medicine. Iridoid glycosides exhibit many activities and are used to manufacture gardenia blue pigment for the food industry. Crocins are rare natural water-soluble carotenoids that are often used as food colorants. A sequential macroporous resin column chromatography technology composed of HC-500B and HC-900B resins was developed to selectively separate iridoid glucosides and crocins from GF. The adsorption of GP on HC-900B resin was an exothermic process. The adsorption of CR1 on HC-500B resin was an endothermic process. The two kinds of components were completely separated by a sequential resin column. GB and GP were mainly found in product 1 (P1) with purities of 11.38% and 46.83%, respectively, while CR1 and CR2 were mainly found in product 2 (P2) with purities of 12.32% and 1.40%, respectively. The recovery yields of all the compounds were more than 80%. The above results showed that sequential resin column chromatography technology achieved high selectivity and recovery yields. GF extract, P1 and P2 could significantly inhibit the secretion of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that iridoid glycosides and crocins provide a greater contribution to the anti-inflammatory activity of GF. At the same time, compared to the GF extract and P1, P2 exhibited stronger scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, indicating that crocins may provide a significant contribution to the antioxidant activity of GF.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China
| | - Xiangyi Su
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China
| | - Xiaoyue Yu
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China
| | - Xinyue Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China
| | - Xuelin Guo
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China
| | - Guige Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China
| | - Chunhua Wang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China.
| | - Hongjuan Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Valuation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
7
|
Tang Y, Yang H, Yu J, Li Z, Xu Q, Xu Q, Jia G, Sun N. Network pharmacology-based prediction and experimental verification of the involvement of the PI3K/Akt pathway in the anti-thyroid cancer activity of crocin. Arch Biochem Biophys 2023; 743:109643. [PMID: 37211223 DOI: 10.1016/j.abb.2023.109643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Crocin, a unique water-soluble carotenoid extracted from saffron, is known to exert anticancer activity against various cancer types, including thyroid cancer (TC). However, the detailed mechanism underlying the anticancer effect of crocin in TC needs further exploration. Targets of crocin and targets associated with TC were acquired from public databases. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using DAVID. Cell viability and proliferation were assessed using MMT and EdU incorporation assays, respectively. Apoptosis was assessed using TUNEL and caspase-3 activity assays. The effect of crocin on phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) was explored by western blot analysis. A total of 20 overlapping targets were identified as candidate targets of crocin against TC. GO analysis showed that these overlapping genes were significantly enriched in the positive regulation of cell proliferation. KEGG results showed that the PI3K/Akt pathway was involved in the effect of crocin against TC. Crocin treatment inhibited cell proliferation and promoted apoptosis in TC cells. Moreover, we found that crocin inhibited the PI3K/Akt pathway in TC cells. 740Y-P treatment reversed the effects of crocin on TC cells. In conclusion, crocin suppressed proliferation and elicited apoptosis in TC cells via inactivation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yan Tang
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Han Yang
- Department of Endocrinology, Nanshi Hospital Affiliated to Henan University, Nanyang, Henan, 473065, China
| | - Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China.
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Quanxiao Xu
- Department of Oncology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Qiu Xu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China; Key Laboratory of Thyroid Tumor Prevention and Treatment of Nanyang, Nanyang First People's Hospital Affiliated to Henan University, Nanyang, Henan, 473004, China
| | - Na Sun
- Department of Invasive Technology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223302, China
| |
Collapse
|
8
|
Daneshvar A, Jouzdani AF, Firozian F, Asl SS, Mohammadi M, Ranjbar A. Neuroprotective effects of crocin and crocin-loaded niosomes against the paraquat-induced oxidative brain damage in rats. Open Life Sci 2022; 17:1174-1181. [PMID: 36185402 PMCID: PMC9482421 DOI: 10.1515/biol-2022-0468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Paraquat (PQ) is a nonselective herbicide that induces oxidative reactions and multiple-organ failure on exposure. Crocin, a carotenoid obtained from saffron, has demonstrated many therapeutic effects against neural conditions because of its antioxidant properties. In this study, 30 male Wistar rats were divided into 6 groups to evaluate the protective effects of crocin and crocin-loaded niosomes (NC) against PQ in the brain. The levels of total antioxidant capacity (TAC), lipid peroxidation (LPO), total thiol groups (TTG), superoxide dismutase (SOD), and catalase (CAT) activity were measured as the markers of redox status. Histopathological changes in the CA1 region of the hippocampus were evaluated by cresyl violet staining. Results indicated that both crocin and NC were able to attenuate the adverse effects of PQ at the histopathological level, which was following the changes in LPO (P < 0.0001), TAC (P < 0.01), and TTG (P < 0.05) level. The activity of CAT (P < 0.01) and SOD (P < 0.01) could be restored either by crocin or NC. Also, results indicated that nanoformulation of crocin in niosomes appears to be more promising. In conclusion, both crocin and NC showed favourable effects of PQ in the brain of rats, and were determined to be excellent agents to prevent acute toxicities of PQ. Furthermore, these two compounds can be known to provide neuroprotection.
Collapse
Affiliation(s)
- Afsoon Daneshvar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Ali Fathi Jouzdani
- Department of Neuroscience, Neuroscience and Artificial Intelligence Research Group (NAIRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- USERN Office, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzin Firozian
- Department of Pharmaceutics, Faculty of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| |
Collapse
|
9
|
AL-Johani NS, Al-Zharani M, Aljarba NH, Alhoshani NM, Alkeraishan N, Alkahtani S. Antioxidant and Anti-Inflammatory Activities of Coenzyme-Q10 and Piperine against Cyclophosphamide-Induced Cytotoxicity in HuH-7 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8495159. [PMID: 35872848 PMCID: PMC9300329 DOI: 10.1155/2022/8495159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Cyclophosphamide (CP) alkylates DNA and RNA produce crosslinks that cause gene expression and protein synthesis inhibition to exert its anticancer effect. However, adverse effects of CP have restricted the CP application in cancer treatment. We investigate coenzyme-Q10 (Q10) and piperine (P) protective role on CP oxidant and inflammatory effect. HuH-7 cells were exposed to varying concentrations and combinations of Q10, P, and CP and evaluated intracellular ROS generation as well as inflammatory responses upon exposure. Our results showed Q10 and/or P suppressed both basal and CP-induced ROS generation without upsetting the balance in activities of SOD, catalase, and GSH levels. Analysis of proinflammatory cytokine gene expression showed that CP treatment alone only induced expression of IL-6β. However, coexposure of the cells to both Q10 and CP caused significant suppression of basal Cox-2 and TNF-α gene expression, while coexposure of the cells to CP and P with Co-Q10 suppressed basal IL-1β gene expression. Q10 also suppressed CP-induced expression of Cox-1. P and CP suppressed basal expression of IL-6β and IL-12β, while P and Q10 suppressed CP-induced IL1-α gene expression. Taken together, both Q10 and P seem to be inhibiting NFκβ pathway to suppress CP-mediated inflammation. In conclusion, Q10 and/or P induced suppression of ROS generation mediated by CP and also suppressed CP-induced inflammation by inhibiting expression of specific inflammatory cytokine.
Collapse
Affiliation(s)
- Norah S. AL-Johani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Al-Zharani
- Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Biology Department, Riyadh 11623, Saudi Arabia
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Norah M. Alhoshani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nora Alkeraishan
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Yan M, Yan Y, Zhang Z, Wang G, Shi W, Jiang M, Zhao J, Wu X, Zeng H. The Effect of Triptolide Combined With Crocin on Arthritis in Mice: From Side Effect Attenuation to Therapy. Front Pharmacol 2022; 13:908227. [PMID: 35814255 PMCID: PMC9260116 DOI: 10.3389/fphar.2022.908227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical use of triptolide (TP) is restricted due to severe toxicity. This study assessed the protective effect of crocin (CR) as a natural antioxidant against TP-induced toxicity in bovine collagen type II-induced arthritis (CIA) in mice. The mice in the CIA model group showed macroscopic signs of severe arthritis. The anti-arthritis effects in the control, TP + CR, and TP groups were evaluated through assessment of foot volume, arthritis score, and proinflammatory cytokines, and collagen antibody assay. Crocin reduced TP-induced toxicity, as evidenced by evaluation of survival rate, body weight, visceral index, hepatic and renal functions, histopathologic analyses, and antioxidant enzyme activities. Transcriptome sequencing resulted in identification of 76 differentially expressed genes (DEGs) associated with hepatotoxicity between the TP and TP + CR groups. Of these, Three DEGs (Cyp1a2,Gsta4, and Gstp1) were validated using quantitative real-time PCR analysis. In conclusion, CR protected CIA mice from TP-induced toxicity through modulation of the cytochrome P450 and glutathione metabolism pathways.
Collapse
Affiliation(s)
- Min Yan
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yinyin Yan
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenqiang Zhang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guoqiang Wang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenbo Shi
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengyuan Jiang
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junwei Zhao
- Department of Clinical Laboratory, Core Unit of National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Junwei Zhao, ; Xiangxiang Wu, ; Huahui Zeng,
| | - Xiangxiang Wu
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junwei Zhao, ; Xiangxiang Wu, ; Huahui Zeng,
| | - Huahui Zeng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Junwei Zhao, ; Xiangxiang Wu, ; Huahui Zeng,
| |
Collapse
|
11
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
12
|
Li H, Jin J, Xue H, Li Y, Wang T, Shi R, Ma Y. Determination of multiple active constituents in Da-Huang-Xiao-Shi decoction using HPLC-LTQ-Orbitrap mass spectrometry: Application in comparing the differences in the formula and its constituent herbs. Biomed Chromatogr 2022; 36:e5324. [PMID: 34993982 DOI: 10.1002/bmc.5324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022]
Abstract
Da-Huang-Xiao-Shi decoction (DHXSD) is a traditional Chinese medicine formula and is used to treat cholestasis. In this study, we developed a reliable and comprehensive HPLC coupled with linear ion trap-Orbitrap mass spectrometry method for the separation and determination of 21 components including six alkaloids, five anthraquinones, three tannins, three terpenes, two iridoid glycosides, one organic acid, and one flavonoid in DHXSD. A C18 column was eluted by a gradient mobile phase containing at a flow rate of 1 mL/min. Detection was operated with electrospray ionization source in positive and negative ion modes using selective ion monitoring (SIM). The calibration curves for all analytes showed good linearity (r >0.9901), and the inter- and intra-day precision did not exceed 4.98%. The recoveries, repeatability, and stability were also within the acceptable limits. The method was successfully applied to determine multiple active constituents in DHXSD and its constituent herbs. Compared to Da Huang, the total contents of the five anthraquinones were significantly higher in DHXSD. However, the changes of components from Zhi Zi/Huang Bo were complicated in DHXSD. The study could serve as a fundamental reference for establishing comprehensive DHXSD quality control measures and be helpful to understand some compatibility laws of DHXSD.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingyi Jin
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyu Xue
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Abdelghffar EA, El-Nashar HAS, Al-Mohammadi AGA, Eldahshan OA. Orange fruit ( Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food Funct 2021; 12:9443-9455. [PMID: 34606555 DOI: 10.1039/d1fo01905h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Cyclophosphamide (CYP) is a chemotherapy drug widely used in the treatment of several types of cancers and autoimmune disorders. Unfortunately, it causes severe side effects on many organs due to its oxidative stress effect. Objective: The present study aims to tentatively identify the phytochemical constituents of orange fruit (Citrus sinensis) peel extract (OFPE) and elucidate the chemopreventive effects of OFPE on CYP drug induced organ toxicity. Methods: The high performance liquid chromatography coupled with mass spectroscopy (HPLC-MS/MS) technique was used to identify the compounds. Thirty-five male rats were divided into five groups (GP; n = 7): GP1: normal control, GP2: OFPE 0.5 only, GP3: CYP-only, GP4: OFPE 0.25 + CYP, and GP5: OFPE 0.5 + CYP. Results: Twenty-nine compounds of polyphenolic nature, mainly flavonoids, anthocyanidins, phenolic acids and limonoids were characterized by HPLC-MS/MS analysis. Among these compounds, naringin, hesperidin, diosmin, rutin, neohesperidin and limonin were the predominant compounds in the examined extract. Serum cellular markers were found to be decreased significantly upon treatment with OFPE (especially high dose). Also, a significant prophylactic effect against liver, kidney, and heart injuries induced by CYP via decreasing inflammation (serum TNF-α, IL-1β & IL-6) and lipid peroxidation (MDA) was also revealed. Also, an increase in antioxidant levels (serum TAO, and cellular GSH & CAT in tissue homogenates) confirmed the protective efficacy of OFPE against CYP toxicity. Conclusions: The present study reveals some chemopreventive properties and beneficial effects of OFPE on CYP-induced organ toxicity via its antioxidant status and immunoregulatory activities.
Collapse
Affiliation(s)
- Eman A Abdelghffar
- Department of Biology, Collage of Science, Taibah University, Saudi Arabia. .,Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Heba A S El-Nashar
- Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| | | | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| |
Collapse
|
14
|
Protective Effects of Ulva lactuca Polysaccharide Extract on Oxidative Stress and Kidney Injury Induced by D-Galactose in Mice. Mar Drugs 2021; 19:md19100539. [PMID: 34677438 PMCID: PMC8538648 DOI: 10.3390/md19100539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are the key factors that cause many diseases in the human body. Polysaccharides from seaweed have been shown to have significant antioxidant activity both in vivo and in vitro. The ameliorative effect of Ulva lactuca polysaccharide extract (UPE) on renal injury induced by oxidative stress was analyzed. As shown by hematoxylin–eosin staining results, UPE can significantly improve the kidney injury induced by D-galactose (D-gal). Additionally, the protective mechanism of UPE on the kidney was explored. The results showed that UPE could decrease the levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum cystatin C (Cys-C), lipid peroxidation, protein carbonylation, and DNA oxidative damage (8-OHdG) and improve kidney glutathione content. Moreover, UPE significantly increased the activities of superoxide dismutase and glutathione peroxidase and total antioxidant activity in mice. UPE also decreased the levels of inflammatory cytokines TNF-α and IL-6. Further investigation into the expression of apoptotic protein caspase-3 showed that UPE decreased the expression of apoptotic protein caspase-3. These results indicate that UPE has a potential therapeutic effect on renal injury caused by oxidative stress, providing a new theoretical basis for the treatment of oxidative damage diseases in the future.
Collapse
|
15
|
Wanas H, El-Shabrawy M, Mishriki A, Attia H, Emam M, Aboulhoda BE. Nebivolol protects against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammation, and apoptosis. Clin Exp Pharmacol Physiol 2021; 48:811-819. [PMID: 33590494 DOI: 10.1111/1440-1681.13481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 01/18/2023]
Abstract
The usefulness of cyclophosphamide (CP) in the treatment of multiple human malignancies and immunological diseases is hindered by the danger of developing nephrotoxicity. The toxic metabolites of CP are suggested to be responsible for oxidative stress resulted from the production of reactive oxygen species (ROS) and stimulation of lipid peroxidation. Nebivolol (NEB) is a third-generation selective B1 adrenoceptor antagonist, but it has also various pharmacological properties such as anti-inflammation, anti-apoptotic, and antioxidant activities. Thus, the present study aims to explore the potential protective effect of NEB against CP-induced nephrotoxicity. A cumulative dose of CP (75 mg/kg) was administered to albino rats by intraperitoneal injection. The protective effect of NEB was investigated by co-administration of NEB (10 mg/kg orally daily). Administration of NEB with CP significantly improved renal functions and reduced the oxidative renal changes induced by CP injection. Co-administration of NEB ameliorated apoptosis and inflammatory markers that were markedly exaggerated by CP. Our results indicated that NEB could be used as a protective agent against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hanaa Wanas
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohamed El-Shabrawy
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal Mishriki
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hisham Attia
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Emam
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Koski C, Sarkar N, Bose S. Cytotoxic and osteogenic effects of crocin and bicarbonate from calcium phosphates for potential chemopreventative and anti-inflammatory applications in vitro and in vivo. J Mater Chem B 2021; 8:2048-2062. [PMID: 32064472 DOI: 10.1039/c9tb01462d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Delayed healing and nonhealing of bone defects or resected bone sites remains an important clinical concern in the biomedical field. Osteosarcoma is one of the most common types of primary bone cancers. Among calcium phosphates, hydroxyapatite (HA) and tricalcium phosphate (TCP) are the most widely used in various biomedical applications for bone reconstruction and replacement. In this study, crocin, saffron's natural bioactive and anti-inflammatory molecule, and bicarbonate, a neutralizing agent, were directly loaded onto HA disks to evaluate their in vitro release and effect on human osteoblast and osteosarcoma cell lines. This was assessed through release, initial toxicity, drug optimization, final toxicity studies and in vivo anti-inflammatory assessment through H&E indexing. It is hypothesized that the release of crocin, bicarbonate, and the dual release of both agents will decrease osteosarcoma cellular viability with no effect on osteoblast cells. A plateaued release of crocin and bicarbonate was achieved over seven weeks in physiological and acidic environments, where bicarbonate was shown to modulate the release of crocin. Through morphological characterization and MTT assay analysis, bicarbonate showed no toxicity to human fetal osteoblast (hFOB) cells and crocin significantly enhanced osteoblast proliferation. Through drug concentration optimization, all drug loaded samples decreased human osteosarcoma (MG-63) viability by 50% compared to control samples by Day 11, with clear changes in cell spreading and morphology. Moreover, 3D printed TCP scaffolds loaded with crocin and bicarbonate were tested in vivo in order to assess their preliminary effects on inflammation in a rat distal femur model at 4 days. Lower inflammatory cellular recruitment was achieved in the presence of crocin and bicarbonate, compared to the control. These results suggest a pro-apoptotic mechanism against osteosarcoma as well as anti-inflammatory properties of crocin and bicarbonate, elucidating a potential application for osteosarcoma regulation and wound healing for bone tissue regeneration applications.
Collapse
Affiliation(s)
- Caitlin Koski
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
17
|
Elsherbiny NM, Eisa NH, El-Sherbiny M, Said E. Chemo-preventive effect of crocin against experimentally-induced hepatocarcinogenesis via regulation of apoptotic and Nrf2 signaling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103494. [PMID: 32942000 DOI: 10.1016/j.etap.2020.103494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The results of the current study investigated the chemo-preventive effect of crocin against hepatocarcinogenesis in rats with particular focus on the evaluation of the modulatory impact of crocin on apoptotic and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Thioacetamide (TAA) (200 mg/kg, I.P.) was used for experimental induction of hepatocarcinogenesis in rats. Crocin administration significantly attenuated TAA-induced cancerous lesions with concomitant attenuation of impaired liver functions. This was associated with significant enhancement in hepatic Nrf2 and heme oxygenase-1 (HO-1) expression with parallel suppression in Keap-1 expression. Inline, crocin induced a significant improvement in hepatic oxidative status with enhanced antioxidant batteries. Crocin administration significantly suppressed the hepatic content of c-Jun N-terminal kinase (c-JNK) with significant upregulation in TNF-related apoptosis-inducing ligand (TRAIL) and caspase-8 protein expression as well as p53 gene expression; biomarkers of apoptosis. Moreover, hepatic expression of the apoptotic BAX significantly increased and the anti-apoptotic Bcl-2 significantly decreased in the liver specimen; biomarkers of intrinsic apoptosis. In conclusion; crocin attenuates experimentally induced hepato-carcinogenesis via modulation of oxidative/apoptotic signaling. Namely, crocin induced hepatic expression of Nrf2 with downstream modulation of endogenous HO-1 and Keap-1 signaling with modulation of various key players of apoptosis including; c-JNK, p53, TRAIL, caspase-8, BAX, and Bcl-2.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nada H Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt; Almaarefa University, College of Medicine, Riyadh, Saudi Arabia
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
18
|
Hashemzaei M, Mamoulakis C, Tsarouhas K, Georgiadis G, Lazopoulos G, Tsatsakis A, Shojaei Asrami E, Rezaee R. Crocin: A fighter against inflammation and pain. Food Chem Toxicol 2020; 143:111521. [DOI: 10.1016/j.fct.2020.111521] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
|
19
|
Antioxidant potential of Carica papaya Linn (Caricaceae) leaf extract in mice with cyclophosphamide induced oxidative stress. SCIENTIA MEDICA 2020. [DOI: 10.15448/1980-6108.2020.1.34702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIMS: This study aimed to investigate the effects of crude extract of Carica papaya leaves on oxidative stress in mice induced by cyclophosphamide, as well as phytochemical profile characterization of this extract.METHODS: The male Swiss mice received 15 days of treatment with the extract (500 mg kg-1, via gavage) and intraperitoneal injection of cyclophosphamide (75 mg kg-1) or saline (0.9%) on the 15th day. After 24 h the last treatment, the animals were anesthetized for blood withdrawal, sacrificed and removal of the organs for analyses (liver, kidney and heart). In the biochemical tests were determined: hematological parameters in blood, aminotransferases, alkaline phosphatase, glucose and total cholesterol dosages in plasma, enzymatic and non-enzymatic antioxidants and lipid damage marker were evaluated in different tissues, besides genotoxic and histopathological analyzes.RESULTS: In the extract of Carica papaya leaves, the flavonoids quercetin-3β-D-glucoside and rutin were identified, besides present positive results for alkaloids, saponins and tannins. This extract increased the activity of glutathione-S-transferase and catalase enzymes in the liver and reduced the levels of reduced glutathione in the kidneys and hematocrit levels, red cell count, and hemoglobin. It promoted the decrease of the reactive species of thiobarbituric acid (TBARS) in the kidneys and the activity of enzyme aspartate aminotransferase in the plasma and was antimutagenic in the micronucleus test.CONCLUSIONS: The study showed that extract of Carica papaya was beneficial against oxidative events and prevented DNA damage. The extract also showed hepatotoxicity, therefore prolonged infusion of papaya leaves is not advisable.
Collapse
|
20
|
Patwa J, Khan S, Jena G. Nicotinamide attenuates cyclophosphamide-induced hepatotoxicity in SD rats by reducing oxidative stress and apoptosis. J Biochem Mol Toxicol 2020; 34:e22558. [PMID: 32609954 DOI: 10.1002/jbt.22558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/14/2020] [Accepted: 05/29/2020] [Indexed: 01/15/2023]
Abstract
Cyclophosphamide (CP) is a widely used anticancer and immunosuppressant drug. Nevertheless, clinical utilization of CP is limited due to considerable adverse effects and toxicities. Nicotinamide (NMD) is a micronutrient and the effect of NMD against CP-induced hepatotoxicity is yet unexplored. The present study was designed to evaluate the chemoprotective effect of NMD against CP-induced hepatic injury in Sprague-Dawley rats. Hepatotoxicity was induced by the administration of CP (30 mg/kg/day) for 10 consecutive days by intraperitoneal injection. The chemoprotective effect of NMD treatment (200 mg/kg) against CP-induced hepatotoxicity was evaluated by the oxidative stress, liver function, histopathological changes, and DNA damage. NMD cotreatment significantly reduced CP-induced oxidative stress, histological changes, and apoptosis in the liver. The present study demonstrated that NMD treatment ameliorated CP-induced hepatic damage by improving the antioxidant system and reducing DNA damage. The present findings revealed that NMD supplementation might be useful to reduce CP-associated hepatotoxicity, and thereby can increase the therapeutic utility of CP.
Collapse
Affiliation(s)
- Jayant Patwa
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Sabbir Khan
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
21
|
El kiki SM, Omran MM, Mansour HH, Hasan HF. Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Mol Biol Rep 2020; 47:5115-5126. [DOI: 10.1007/s11033-020-05582-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
|
22
|
Abdelzaher WY, AboBakr Ali AHS, El-Tahawy NFG. Mast cell stabilizer modulates Sirt1/Nrf2/TNF pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of cyclophosphamide hepatotoxicity. Immunopharmacol Immunotoxicol 2020; 42:101-109. [PMID: 32066295 DOI: 10.1080/08923973.2020.1727499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives: Cyclophosphamide (CYC) is the most common cytotoxic alkylating agent which considered as chemotherapy but its clinical usefulness is challenged with different forms of organ damage including hepatotoxicity. Hepatic mast cells (MC) have an important role in the pathophysiology of liver toxicity. We aimed to evaluate the possible protective effect of mast cell stabilizer, ketotifen in CYC induced-hepatotoxicity.Materials and methods: Twenty-four adult male albino Wistar rats were divided into four groups: control group, ketotifen group (received ketotifen 10 mg/kg/day, p.o.) for 14 days, CYC group (received CYC 200 mg/kg i.p.) as a single dose at the ninth day and ketotifen plus CYC group (received ketotifen and CYC). We measured serum enzyme biomarkers [alanine transaminase (ALT) and aspartate transaminase (AST)], total antioxidant capacity (TAC), interluken-1β (IL-1β), tissue malondialdehyde (MDA), nitric oxide (NOx), reduced glutathione (GSH), P-glycoprotein (P-gp), Sirtuin type 1 (Sirt1) and Nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Furthermore; histological changes, tumor necrosis factor (TNF) and caspase-3 immuno-expressions were evaluated.Results: CYC group showed hepatotoxic effect in the form of a significant increase in ALT, AST, MDA, NOx, IL-1β levels; TNF and caspase-3 immuno-expression. Moreover; it showed toxic histological changes of marked liver injury meanwhile, there is a significant decrease in TAC, GSH, P-gp, Sirt1, and Nrf2 levels. Ketotifen showed a significant improvement in all parameters.Conclusion: Mast cell stabilizer, ketotifen possesses potent ameliorative effects against the hepatotoxic effect of CYC by reducing oxidative stress, inflammatory process, and apoptosis through regulation of Sirt1/Nrf2/TNF pathway.
Collapse
|
23
|
Azizi M, Abbasi N, Mohamadpour M, Bakhtiyari S, Asadi S, Shirzadpour E, Aidy A, Mohamadpour M, Amraei M. Investigating the effect of Crocus sativus L. petal hydroalcoholic extract on inflammatory and enzymatic indices resulting from alcohol use in kidney and liver of male rats. J Inflamm Res 2019; 12:269-283. [PMID: 31632125 PMCID: PMC6790211 DOI: 10.2147/jir.s216125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background Studies have shown that consumption of high levels of alcohol causes many negative effects on the liver and kidneys where antioxidant ingredients can be a proper solution to reducing the resulting damages. So, the present study investigated the effect of hydroalcoholic extract of Crocus sativus L. (saffron) petal with antioxidant properties on the changes in inflammatory and enzymatic indices resulting from alcohol use in the male rats’ kidney and liver. Materials and methods After preparing the extract, LD50 was determined and high-performance liquid chromatography (HPLC) was employed to specify the type and the rate of the active ingredients of the extract. Then, 36 male Wistar rats were randomly assigned into six groups (n=6). The first group was only administered with normal saline and the second group only received ethyl alcohol 6 mL/kg/day·BW. The third and the fourth groups received ethyl alcohol 6 mL/kg/day·BW plus 167.5 and 335 mg/kg/day·BW saffron petal extract for 8 weeks. The fifth and the sixth groups received ethyl alcohol 6 mL/kg/day·BW for the first 8 weeks and were subsequently gavage fed on saffron extract for 167.5 and 335 mg/kg/day·BW, respectively, during the next 8 weeks. In the beginning and after the termination of the treatment, blood samples were collected from all rats. Results The LD50 of the extract was about 670 mg/kg. The HPLC results indicated that the extract contains important antioxidant ingredients. At the end of the study, the serum concentration of the inflammatory indices, renal enzymes, and hepatic enzymes experienced a significant reduction in all of the intervened groups compared to the negative control group (minimum significant difference: P<0.05) except for the treatment group 1. Conclusion Based on the current results, the extract has a protective effect in a dosage-dependent way and greater protective roles were documented for higher dosages.
Collapse
Affiliation(s)
- Monireh Azizi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Department of Pharmacology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mojtaba Mohamadpour
- Student Research Committee, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sirous Asadi
- Student Research Committee, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ehsan Shirzadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Aidy
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahmoud Mohamadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mansour Amraei
- Biotechnology and Medicinal Plants Research Center, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
24
|
Rao SV, Hemalatha P, Yetish S, Muralidhara M, Rajini PS. Prophylactic neuroprotective propensity of Crocin, a carotenoid against rotenone induced neurotoxicity in mice: behavioural and biochemical evidence. Metab Brain Dis 2019; 34:1341-1353. [PMID: 31214956 DOI: 10.1007/s11011-019-00451-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
Previously we have demonstrated the potential neuroprotective propensity of saffron and Crocin (CR) employing a Drosophila model of Parkinsonism. Rotenone (ROT) has been extensively used as a model neurotoxin to induce Parkinson's disease (PD) like symptoms in mice. In the present study, as a proof of concept we evaluated the efficacy of CR prophylaxis (25 mg/ kg bw/d, 7d) to attenuate ROT(0.5 mg/Kg bw/d,7d) -induced neurotoxic effects in male mice focussing on neurobehavioural assessments and biochemical determinants in the striatum. CR prophylaxis significantly alleviated ROT-induced behavioural alterations such as increased anxiety, diminished exploratory behaviour, decreased motor co-ordination, and grip strength. Concomitantly, we evidenced diminution of oxidative stress markers, enhanced levels of antioxidant enzyme and mitochondrial enzyme function in the striatal region. Further, varying degree of restoration of cholinergic function, dopamine and α-synuclein levels were discernible suggesting the possible mechanism/s of action of CR in this model. Based on our earlier data in flies and in worm model, we propose its use as an adjuvant therapeutic agent in oxidative stress-mediated neurodegenerative conditions such as PD.
Collapse
Affiliation(s)
- Sriranjini Venkata Rao
- Department of Biochemistry, Mysuru, India.
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India.
| | - P Hemalatha
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | - S Yetish
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| | | | - Padmanabhan S Rajini
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570 020, India
| |
Collapse
|
25
|
Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant Properties of Crocus Sativus L. and Its Constituents and Relevance to Neurodegenerative Diseases; Focus on Alzheimer's and Parkinson's Disease. Curr Neuropharmacol 2019; 17:377-402. [PMID: 29564976 PMCID: PMC6482475 DOI: 10.2174/1570159x16666180321095705] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Reactive oxygen species and reactive nitrogen species, which are collectively called reactive oxygen-nitrogen species, are the inevitable by-products of cellular metabolic redox reactions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reactions of biotransformation of exogenous and endogenous substrata in endoplasmic reticulum, eicosanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medicinal plants, there is growing interest in Crocus Sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Turkey, Iran, India, China, Egypt and Mexico. OBJECTIVE The present study aims to address the protective role of Crocus Sativus L. in neurodegeneration with an emphasis in Parkinson's and Alzheimer's disease. MATERIALS AND METHODS An electronic literature search was conducted by two of the authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Hence, the authors focused on the literature concerning the role of Crocus Sativus L. on its anti-oxidant and neuroprotective properties. CONCLUSION Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as antioxidants, anti-inflammatory, and neuroprotective agents.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/Oncology Unit, Athens, Greece
| | - Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/Oncology Unit, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, School of Food Biotechnology and Development, Agricultural University of Athens, Greece
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
26
|
Elkady MA, Shalaby S, Fathi F, El-Mandouh S. Effects of quercetin and rosuvastatin each alone or in combination on cyclophosphamide-induced premature ovarian failure in female albino mice. Hum Exp Toxicol 2019; 38:1283-1295. [PMID: 31370695 DOI: 10.1177/0960327119865588] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cyclophosphamide (CP) causes premature ovarian failure (POF) due to ovarian toxicity. The toxicity mechanism is attributed to oxidative stress, inflammation, and apoptosis. We assessed whether quercetin and rosuvastatin could promote ovarian protection against CP ovotoxicity. METHODS A total of 80 female BALB/c mice were randomly assigned; 10 mice into each of eight groups. Group 1 (control), group 2 (EH), group 3 (CP), group 4 (QH), group 5 (QL), group 6 (RH), group 7 (RL), and group 8 (COM). RESULTS Quercetin and rosuvastatin groups (4:8) showed signs of restored ovarian function in the form of a significant, dose-dependent increase in primordial follicles number, serum anti-Mullerian hormone level, and ovarian tissue glutathione level (p < 0.05) versus group 3, and a significant, dose-dependent decrease in atretic follicles number and ovarian tissue level of malondialdehyde (p < 0.05) versus group 3. Immunohistochemistry analysis demonstrated a lower expression of caspase and nuclear factor-kappa B of groups (4:8) versus group 3, although quercetin and rosuvastatin showed a nonsignificant reduction in tumor volume. CONCLUSIONS We demonstrated the protective effect of quercetin and rosuvastatin against ovarian toxicity and POF induced by CP without compromising its antitumor effect.
Collapse
Affiliation(s)
- M A Elkady
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - S Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - F Fathi
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - S El-Mandouh
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
27
|
Yaribeygi H, Noroozadeh A, Mohammadi MT, Johnston TP, Sahebkar A. Crocin Improves Oxidative Stress by Potentiating Intrinsic Anti-Oxidant Defense Systems in Pancreatic Cells During Uncontrolled Hyperglycemia. J Pharmacopuncture 2019; 22:83-89. [PMID: 31338247 PMCID: PMC6645341 DOI: 10.3831/kpi.2019.22.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/01/2018] [Accepted: 05/09/2019] [Indexed: 01/20/2023] Open
Abstract
Introduction Oxidative stress (OS) during uncontrolled hyperglycemia has a pivotal role in pancreatic dysfunction. Our study aimed to demonstrate that crocin can potentiate anti-oxidant defense systems of pancreatic cells to improve oxidative stress. Methods Male Wistar rats were divided randomly into four groups: a normal group, a normal-treated group, a diabetic group and a diabetic-treated group (n = 6 rats per group). Diabetes was induced by a single dose of streptozotocin (45 mg/kg/IV). The treated groups received crocin daily for 8 weeks (40 mg/kg/IP). At the end of the experiment, rats were sacrificed and pancreas tissue was obtained. Subsequently, the concentrations of malondialdehyde (MDA), nitrate and glutathione as well as the enzymatic activities of catalase and superoxide dismutase (SOD) were determined in all animals. Data were analyzed by two-way ANOVA with appropriate post hoc testing and a probability value of P < 0.05 was considered to represent a statistically significant difference in mean values. Results Uncontrolled hyperglycemia weakened the anti-oxidant system by decreasing SOD and catalase enzyme activity in pancreatic tissues and induced OS by increasing the MDA content in diabetic non-treated animals. Crocin potentiated the anti-oxidant defense system by increasing the activity of both SOD and catalase, and improved OS by diminishing MDA production in pancreatic cells of rats contained in the diabetic-treated group. Conclusion Based on our results, it is concluded that uncontrolled hyperglycemia can weaken the anti-oxidant defense system and cause the development of OS. Also, crocin can improve OS in pancreatic cells by potentiating the anti-oxidant defense system.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Chronic Kidney Diseases Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Noroozadeh
- Department of Physiology and Biophysics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Biophysics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Cosgun BE, Erdemli ME, Gul M, Gul S, Bag HG, Erdemli Z, Altinoz E. Crocin (active constituent of saffron) improves CCl4-induced liver damage by modulating oxidative stress in rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2017-0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Background
CCl4 is a widely used xenobiotic for the purpose of causing liver damage in experimental studies. In this study, we aimed to reveal the effects of crocin on liver injury caused by CCl4 via free radical scavenging properties.
Materials and methods
Animals were divided into five groups of 10: control; corn oil; crocin; CCl4; CCl4 + crocin. Tissue samples were carefully removed and separated for biochemical and histological investigations.
Results
CCl4 administration led to significant increases in MDA, SOD, CAT and TOS in liver tissue, and AST, ALT and ALP levels in plasma (p < 0.05). In addition, CCl4 caused significant decreases in GSH and TAS (p < 0.05). When animals were treated with crocin, high MDA, SOD, CAT, TOS levels, and AST and ALP activities decreased and GSH and TAS levels increased. Control group exhibited normal histological appearance; however extensive necrosis areas were detected in the CCl4 group. In the CCl4 + crocin group, pathological changes were markedly decreased and the appearance of liver tissue was almost similar to the control groups.
Conclusion
Our results showed that crocin suppresses oxidative stress with antioxidant properties and has a protective effect on tissue damage caused by CCl4.
Collapse
|
29
|
Ashktorab H, Soleimani A, Singh G, Amin A, Tabtabaei S, Latella G, Stein U, Akhondzadeh S, Solanki N, Gondré-Lewis MC, Habtezion A, Brim H. Saffron: The Golden Spice with Therapeutic Properties on Digestive Diseases. Nutrients 2019; 11:nu11050943. [PMID: 31027364 PMCID: PMC6567082 DOI: 10.3390/nu11050943] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Saffron is a natural compound that has been used for centuries in many parts of the world as a food colorant and additive. It was shown to have the ability to mitigate various disorders through its known anti-inflammatory and anti-oxidant properties. Several studies have shown the effectiveness of saffron in the treatment of various chronic diseases like inflammatory bowel diseases, Alzheimer's, rheumatoid arthritis as well as common malignancies of the colon, stomach, lung, breast, and skin. Modern day drugs generally have unwanted side effects, which led to the current trend to use naturally occurring products with therapeutic properties. In the present review, the objective is to systematically analyze the wealth of information regarding the potential mechanisms of action and the medical use of saffron, the "golden spice", especially in digestive diseases. We summarized saffron influence on microbiome, molecular pathways, and inflammation in gastric, colon, liver cancers, and associated inflammations.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Akbar Soleimani
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Gulshan Singh
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, UAE.
| | - Solmaz Tabtabaei
- Department of Chemical Engineering; Howard University, Washington, DC 20059, USA.
| | - Giovanni Latella
- Gastroenterology, Hepatology and Nutrition division, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University Medical Sciences, Tehran 14167-53955, Iran.
| | - Naimesh Solanki
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Marjorie C Gondré-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Hassan Brim
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, Washington, DC 20059, USA.
| |
Collapse
|
30
|
Omole JG, Ayoka OA, Alabi QK, Adefisayo MA, Asafa MA, Olubunmi BO, Fadeyi BA. Protective Effect of Kolaviron on Cyclophosphamide-Induced Cardiac Toxicity in Rats. J Evid Based Integr Med 2019; 23:2156587218757649. [PMID: 29468886 PMCID: PMC5871040 DOI: 10.1177/2156587218757649] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cyclophosphamide (CP) is a nitrogen mustard alkylating drug used for the treatment of chronic and acute malignant lymphomas, myeloma, leukemia, neuroblastoma, adenocarcinoma, retinoblastoma, breast carcinoma, and immunosuppressive therapy. Despite its vast therapeutic uses, it is known to cause severe cardiac toxicity. Kolaviron (KV), a Garcinia kola seed extract containing a mixture of flavonoids, is reputed for its antioxidant and membrane stabilizing properties. OBJECTIVE This study investigated the protective effect of KV on CP-induced cardiotoxicity in rats. METHODS Thirty rats were used, and they were divided into 6 groups of 5 rats each. Group I received 2 mL/kg propylene glycol orally for 14 days; group II received CP (50 mg/kg/d, intraperitoneally [i.p.]) for 3 days; groups III and IV received 200 and 400 mg/kg/d KV, respectively, orally for 14 days and groups V and VI were pretreated with 200 and 400 mg/kg/d KV, respectively, orally for 14 days followed by CP (50 mg/kg/d, i.p.) for 3 days. RESULTS CP treatment resulted in a significantly lower food consumption and body weight in rats. The lactate dehydrogenase and creatine kinase enzymes in cardiac tissues of rats treated with CP were significantly higher. In cardiac tissues, 3-day doses of CP resulted in significantly higher heart weight, cardiac troponin I, myeloperoxidase, malondialdehyde, hydrogen peroxide and lower superoxide dismutase, catalase, glutathione peroxidase activities, and reduced glutathione levels. Histological examination of cardiac tissues showed sign of necrosis of myocardium after CP treatment. However, administration of KV at 200 and 400 mg/kg for 14 days prior to CP treatment, increase food consumption, body weight, and attenuates the biochemical and histological changes induced by CP. CONCLUSIONS These results revealed that KV attenuates CP-induced cardiotoxicity by inhibiting oxidative stress and preserving the activity of antioxidant enzymes.
Collapse
Affiliation(s)
| | | | - Quadri Kunle Alabi
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,2 Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Modinat Adebukola Adefisayo
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,3 University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | | | | | - Benson Akinloye Fadeyi
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,4 Federal Teaching Hospital, Ido-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
31
|
Zhou Y, Xu Q, Shang J, Lu L, Chen G. Crocin inhibits the migration, invasion, and epithelial-mesenchymal transition of gastric cancer cells via miR-320/KLF5/HIF-1α signaling. J Cell Physiol 2019; 234:17876-17885. [PMID: 30851060 DOI: 10.1002/jcp.28418] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/31/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
The biological activities of crocin, one of the main bioactive compounds of saffron, include anti-inflammatory, antioxidant, antidepressant, and anticancer effects. Crocin has been shown to trigger the apoptosis of gastric cancer cells, but its effect on the metastasis of gastric cancer cells remains unclear. Krüppel-like factor 5 (KLF5) and hypoxia-inducible factor-1α (HIF-1α) are important transcription factors in the development of gastric cancer. KLF5 and HIF-1α expression were analyzed in gastric cancer tissues and cells. Following exposure to crocin, AGS and HGC-27 gastric cancer cells were assessed with regard to migration, invasion, and epithelial-mesenchymal transition (EMT) as well as the expression of KLF5, HIF-1α, and microRNA-320 (miR-320). The miR-320/KLF5/HIF-1α signaling pathway became the focus for further investigation of the mechanism of crocin in gastric cancer cell migration, invasion, and EMT. KLF5 and HIF-1α expression were elevated in gastric cancer tissues and cells, and KLF5 expression was positively correlated with the HIF-1α level in gastric cancer tissues. Crocin was associated with reduced expression of KLF5 and HIF-1α, whereas miR-320 expression was increased. Crocin also inhibited the migration, invasion, and EMT of gastric cancer cells. Upregulation of KLF5 attenuated crocin's function and elevated HIF-1α expression. Dual-luciferase reporter assay demonstrated that KLF5 was a target gene of miR-320. Crocin modulated KLF5 expression via elevation of miR-320 expression. In conclusion, crocin inhibits the EMT, migration, and invasion of gastric cancer cells, and this activity is mediated through miR-320/KLF5/HIF-1α signaling.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qihua Xu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjuan Shang
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Lu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyan Chen
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2018; 218:112-131. [PMID: 30552952 DOI: 10.1016/j.lfs.2018.12.018] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CP) is an important anticancer drug which belongs to the class of alkylating agent. Cyclophosphamide is mostly used in bone marrow transplantation, rheumatoid arthritis, lupus erythematosus, multiple sclerosis, neuroblastoma and other types of cancer. Dose-related cardiotoxicity is a limiting factor for its use. CP-induced cardiotoxicity ranges from 7 to 28% and mortality ranges from 11 to 43% at the therapeutic dose of 170-180 mg/kg, i.v. CP undergoes hepatic metabolism that results in the production of aldophosphamide. Aldophosphamide decomposes into phosphoramide mustard & acrolein. Phosphoramide is an active neoplastic agent, and acrolein is a toxic metabolite which acts on the myocardium and endothelial cells. This is the first review article that talks about cyclophosphamide-induced cardiotoxicity and the different signaling pathways involved in its pathogenicity. Based on the available literature, CP is accountable for cardiomyocytes energy pool alteration by affecting the heart fatty acid binding proteins (H-FABP). CP has been found associated with cardiomyocytes apoptosis, inflammation, endothelial dysfunction, calcium dysregulation, endoplasmic reticulum damage, and mitochondrial damage. Molecular mechanism of cardiotoxicity has been discussed in detail through crosstalk of Nrf2/ARE, Akt/GSK-3β/NFAT/calcineurin, p53/p38MAPK, NF-kB/TLR-4, and Phospholamban/SERCA-2a signaling pathway. Based on the available literature we support the fact that metabolites of CP are responsible for cardiotoxicity due to depletion of antioxidants/ATP level, altered contractility, damaged endothelium and enhanced pro-inflammatory/pro-apoptotic activities resulting into cardiomyopathy, myocardial infarction, and heart failure. Dose adjustment, elimination/excretion of acrolein and maintenance of endogenous antioxidant pool could be the therapeutic approach to mitigate the toxicities.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biosciences, Jamia Millia Islamia,110025 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
33
|
Hatziagapiou K, Lambrou GI. The Protective Role of Crocus Sativus L. (Saffron) Against Ischemia- Reperfusion Injury, Hyperlipidemia and Atherosclerosis: Nature Opposing Cardiovascular Diseases. Curr Cardiol Rev 2018; 14:272-289. [PMID: 29952263 PMCID: PMC6300793 DOI: 10.2174/1573403x14666180628095918] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background: Reactive oxygen species and reactive nitrogen species, which are collective-ly called reactive oxygen-nitrogen species, are inevitable by-products of cellular metabolic redox reac-tions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reac-tions of biotransformation of exogenous and endogenous substrate in endoplasmic reticulum, eico-sanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medici-nal plants, there is growing interest in Crocus Sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Tur-key, Iran, India, China, Egypt and Mexico. Objective: The present study aims to address the anti-toxicant role of Crocus Sativus L. in the case of cardiovascular disease and its role towards the cardioprotective role of Crocus Sativus L. Materials and Methods: An electronic literature search was conducted by the two authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to deter-mine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: Our review has indicated that scientific literature confirms the role of Crocus Sativus L. as a cardiovascular-protective agent. The literature review showed that Saffron is a potent cardiovascular-protective agent with a plethora of applications ranging from ischemia-reperfusion injury, diabetes and hypertension to hyperlipidemia. Conclusion: Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as a cardiovascular-protective agent and in particular, Crocus Sativus L. manifests beneficial results against ischemia-reperfusion injury, hypertension, hy-perlipidemia and diabetes
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| |
Collapse
|
34
|
Wang G, Zhang B, Wang Y, Han S, Wang C. Crocin promotes apoptosis of human skin cancer cells by inhibiting the JAK/STAT pathway. Exp Ther Med 2018; 16:5079-5084. [PMID: 30542463 PMCID: PMC6257247 DOI: 10.3892/etm.2018.6865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/08/2018] [Indexed: 11/07/2022] Open
Abstract
Pro-apoptotic effect and mechanism of crocin on skin cancer cells were investigated. After human skin cancer cells A431 and SCL-1 were processed with different concentrations of crocin in vitro (0, 0.2, 0.4, 0.8 and 1.0 mmol/l), cell viability was examined utilizing the methyl thiazolyl tetrazolium assay (MTT). After 24 h incubation, the cell viability of A431 and SCL-1 decreased with increasing concentration of crocin. This indicated that crocin is capable of inhibiting the cloning ability and proliferative ability of human skin cancer cells A431 and SCL-1 in a dose-dependent manner. Flow cytometry results showed that crocin blocked A431 and SCL-1 cells in G0/G1 phase, and promoted apoptosis. The results of western blot analysis showed that the expression of Bid, procaspase-3 and ciprofloxacin in A431 and SCL-1 cells were positively correlated with crocin, while the expression of anti-apoptotic protein Bcl-2 was downregulated, which was negatively correlated with the concentration of crocin. The detection of JAK/STAT signaling pathway showed that the expression of Jak2 and Stat3 was downregulated, which was negatively correlated with crocin concentration. Crocin can significantly inhibit the proliferation of human skin cancer cells and induce cell cycle arrest in G0/G1 phase. Moreover, it can promote apoptosis of the cells. The apoptosis mechanism may be related to the downregulation of JAK/STAT pathway.
Collapse
Affiliation(s)
- Gongfeng Wang
- Department of Traditional Chinese Medicine, The Third People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Baofang Zhang
- Department of Traditional Chinese Medicine, The Third People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Yanyan Wang
- Department of Traditional Chinese Medicine, The Third People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Shunli Han
- Department of Traditional Chinese Medicine, The Third People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Chenghong Wang
- Department of Traditional Chinese Medicine, The Third People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
35
|
Iranshahy M, Iranshahi M, Abtahi SR, Karimi G. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: A review. Food Chem Toxicol 2018; 120:261-276. [DOI: 10.1016/j.fct.2018.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
|
36
|
The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. Int Immunopharmacol 2018; 61:29-36. [DOI: 10.1016/j.intimp.2018.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/29/2018] [Accepted: 05/13/2018] [Indexed: 12/27/2022]
|
37
|
Caglayan C, Temel Y, Kandemir FM, Yildirim S, Kucukler S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20968-20984. [PMID: 29766429 DOI: 10.1007/s11356-018-2242-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Cyclophosphamide (CP) is a common chemotherapeutic agent that is effective against a wide variety of tumors. The associated hepatotoxicity and nephrotoxicity, however, limit its therapeutic use. Naringin (NG) is a natural flavanone glycoside that has pharmacological and therapeutic activities, such as anti-inflammation, anti-apoptotic, and antioxidant properties. Therefore, the present study was undertaken to evaluate the protective effect of NG against CP-induced hepatotoxicity and nephrotoxicity in rats. Rats were pre-treated with NG (50 and 100 mg/kg b.w.) for 7 days before administering a single dose of CP (200 mg/kg b.w.) on the seventh day. CP-induced hepatotoxicity and nephrotoxicity were associated with an increase in serum toxicity markers and a decrease in antioxidant enzyme activities. CP also induced inflammatory responses by increasing the levels of tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), and interleukin-1β (IL-1β), and activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, it activated the apoptotic and autophagic pathway by increasing cysteine aspartate-specific protease-3 (caspase-3) expression and light chain 3B (LC3B) level and also increased the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is the marker of oxidative DNA damage. Pre-treatment with NG (50 and 100 mg/kg), however, significantly decreased serum toxicity markers, increased antioxidant enzyme activities, and regulated inflammation, apoptosis, autophagy, and oxidative DNA damage in hepatic and renal tissues. These results indicated that NG was an effective protectant against CP-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Yusuf Temel
- Department of Solhan School of Health Services, Bingol University, Bingol, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
38
|
Gedik S, Erdemli ME, Gul M, Yigitcan B, Gozukara Bag H, Aksungur Z, Altinoz E. Investigation of the protective effects of crocin on acrylamide induced small and large intestine damage in rats. Biotech Histochem 2018; 93:267-276. [PMID: 29644878 DOI: 10.1080/10520295.2018.1432888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We investigated repair of acrylamide (AA) induced damage in intestines by administration of crocin. We used 40 male Wistar rats in four groups of 10 animals: control, AA, crocin, and AA + crocin groups. We investigated biochemical and histological changes to small and large intestine. AA ingestion decreased glutathione (GSH) levels and total antioxidant status (TAS) in the intestine compared to the control group, while superoxide dismutase (SOD) and catalase (CAT) activities, and total oxidant status (TOS) and malondialdehyde (MDA) levels were increased. Villi were shortened and villus degeneration was observed in ileum of the AA group. Degeneration of surface epithelium and Liberkühn crypts were observed in colon sections. GSH and TAS levels increased after administration of AA together with crocin, while SOD and CAT levels and TOS and MDA levels decreased; significant recovery of histological damage also was observed. We found that crocin exhibits protective effects on AA induced small and large intestine damage by inhibiting oxidative stress.
Collapse
Affiliation(s)
- S Gedik
- a Department of Chemistry, Faculty of Sciences , Karabuk University , Karabuk
| | - M E Erdemli
- b Department of Medical Biochemistry, Medical Faculty , Nigde Omer Halisdemir University , Nigde
| | - M Gul
- c Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya
| | - B Yigitcan
- c Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya
| | - H Gozukara Bag
- d Department of Biostatistics, Medical Faculty , Inonu University , Malatya
| | - Z Aksungur
- e Department of Medical Biochemistry, Medical Faculty , Inonu University , Malatya
| | - E Altinoz
- f Department of Medical Biochemistry, Medical Faculty , Karabuk University , Karabuk , Turkey
| |
Collapse
|
39
|
The Natural Carotenoid Crocetin and the Synthetic Tellurium Compound AS101 Protect the Ovary against Cyclophosphamide by Modulating SIRT1 and Mitochondrial Markers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8928604. [PMID: 29270246 PMCID: PMC5705900 DOI: 10.1155/2017/8928604] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023]
Abstract
Cancer therapies are associated with increased infertility risk due to accelerated reproductive aging. Oxidative stress (OS) is a potential mechanism behind ovarian toxicity by cyclophosphamide (CPM), the most ovotoxic anticancer drug. An important sensor of OS is SIRT1, a NAD+-dependent deacetylase which regulates cellular defence and cell fate. This study investigated whether the natural carotenoid crocetin and the synthetic compound AS101 protect the ovary against CPM by modulating SIRT1 and mitochondrial markers. We found that the number of primordial follicles of female CD1 mice receiving crocetin plus CPM increased when compared with CPM alone and similar to AS101, whose protective effects are known. SIRT1 increased in CPM mouse ovaries revealing the occurrence of OS. Similarly, mitochondrial SIRT3 rose, whilst SOD2 and the mitochondrial biogenesis activator PGC1-α decreased, suggesting the occurrence of mitochondrial damage. Crocetin and AS101 administration prevented SIRT1 burst suggesting that preservation of redox balance can help the ovary to counteract ovarian damage by CPM. Decreased SIRT3 and increased SOD2 and PGC1-α in mice receiving crocetin or AS101 prior to CPM provide evidence for mitochondrial protection. Present results improve the knowledge of ovarian damage by CPM and may help to develop interventions for preserving fertility in cancer patients.
Collapse
|
40
|
Gedik S, Erdemli ME, Gul M, Yigitcan B, Gozukara Bag H, Aksungur Z, Altinoz E. Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats. Biomed Pharmacother 2017; 95:764-770. [DOI: 10.1016/j.biopha.2017.08.139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022] Open
|
41
|
Possible protective effect of royal jelly against cyclophosphamide induced prostatic damage in male albino rats; a biochemical, histological and immuno-histo-chemical study. Biomed Pharmacother 2017; 90:15-23. [PMID: 28340377 DOI: 10.1016/j.biopha.2017.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022] Open
Abstract
Almost all the chemotherapy treat many cancer types effectively, but it leads to severe side effects. Chemotherapy like cyclophosphamide (CP) not works only on the active cells, such as cancer cells, but also acts on the healthy cells. Royal jelly (RJ) was reported to have a lot of therapeutic effects besides being an anti-oxidant and anti-cancer agent. The purpose of this study was to assess the possible protective role of RJ in ameliorating the toxic effects of CP overdose in the rat prostatic tissue. The rats were separated into 4 groups; control group, RJ group, CP group and RJ with CP group. Prostatic specimens were processed for biochemical, histological and immune-histo-chemical studies. The mean area fractions of eNOS and Bax expression were measured in all groups, and statistical analysis was carried out. The results showed that in CP treated group, there were marked biological changes in the form of significant increase in prostatic malondialdehyde (MDA) and C - reactive protein (CRP). Additionally there was a significant decrease in glutathione peroxidase (GPx) in prostatic tissue if compared with the control group. Furthermore, the histological changes showed marked acinar and stromal prostatic degeneration. Most prostatic acini showed less PAS reaction and more (eNOS and Bax) expression if compared with the control group. Concomitant administration of RJ with CP revealed a noticeable amelioration of these biochemical and histological changes. In conclusion, RJ provided biochemical and histo-pathological improvement in CP induced prostatic tissue toxicity. These findings revealed that this improvement was associated with a decrease in the tissue oxidative damage and apoptosis.
Collapse
|
42
|
Finley JW, Gao S. A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1005-1020. [PMID: 28098452 DOI: 10.1021/acs.jafc.6b04398] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, in which the death of brain cells causes memory loss and cognitive decline. Several factors are thought to play roles in the development and course of AD. Existing medical therapies only modestly alleviate and delay cognitive symptoms. Current research has been focused on developing antibodies to remove the aggregates of amyloid-β (Aβ) and tau protein. This approach has achieved removal of Aβ; however, no cognitive improvement in AD patients has been reported. The biological properties of saffron, the dry stigma of the plant Crocus sativus L., and particularly its main constituent crocin, have been studied extensively for many conditions including dementia and traumatic brain injury. Crocin is a unique antioxidant because it is a water-soluble carotenoid. Crocin has shown potential to improve learning and memory as well as protect brain cells. A search of the studies on saffron and crocin that have been published in recent years for their impact on AD as well as crocin's effects on Aβ and tau protein has been conducted. This review demonstrates that crocin exhibits multifunctional protective activities in the brain and could be a promising agent applied as a supplement or drug for prevention or treatment of AD.
Collapse
Affiliation(s)
- John W Finley
- Adjunct Professor, Department of Nutrition and Food Science, 111 Food Science Building, Louisiana State University , Baton Rouge, Louisiana 70803, United States
- 14719 Secret Harbor Place, Bradenton, Florida 34202, United States
| | - Song Gao
- Quality Phytochemicals LLC , 13 Dexter Road, East Brunswick, New Jersey 08816, United States
| |
Collapse
|
43
|
Ansari FA, Ali SN, Mahmood R. Crocin protects human erythrocytes from nitrite-induced methemoglobin formation and oxidative damage. Cell Biol Int 2016; 40:1320-1331. [DOI: 10.1002/cbin.10687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/26/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Fariheen Aisha Ansari
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh Uttar Pradesh 202002 India
| | - Shaikh Nisar Ali
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh Uttar Pradesh 202002 India
| | - Riaz Mahmood
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh Uttar Pradesh 202002 India
| |
Collapse
|
44
|
Yan X, Zhang Q, Feng F. Chemical profiling approach to evaluate the influence of traditional and simplified decoction methods on the holistic quality of Da-Huang-Xiao-Shi decoction using high-performance liquid chromatography coupled with diode-array detection and time-of-flight mass spectrometry. J Sep Sci 2016; 39:1442-53. [PMID: 26914461 DOI: 10.1002/jssc.201501326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Da-Huang-Xiao-Shi decoction, consisting of Rheum officinale Baill, Mirabilitum, Phellodendron amurense Rupr. and Gardenia jasminoides Ellis, is a traditional Chinese medicine used for the treatment of jaundice. As described in "Jin Kui Yao Lue", a traditional multistep decoction of Da-Huang-Xiao-Shi decoction was required while simplified one-step decoction was used in recent repsorts. To investigate the chemical difference between the decoctions obtained by the traditional and simplified preparations, a sensitive and reliable approach of high-performance liquid chromatography coupled with diode-array detection and electrospray ionization time-of-flight mass spectrometry was established. As a result, a total of 105 compounds were detected and identified. Analysis of the chromatogram profiles of the two decoctions showed that many compounds in the decoction of simplified preparation had changed obviously compared with those in traditional preparation. The changes of constituents would be bound to cause the differences in the therapeutic effects of the two decoctions. The present study demonstrated that certain preparation methods significantly affect the holistic quality of traditional Chinese medicines and the use of a suitable preparation method is crucial for these medicines to produce special clinical curative effect. This research results elucidated the scientific basis of traditional preparation methods in Chinese medicines.
Collapse
Affiliation(s)
- Xuemei Yan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qianying Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Fang Feng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
45
|
Hajizadeh Maleki B, Tartibian B, Mooren FC, Yaghoob Nezhad F, Yaseri M. Saffron supplementation ameliorates oxidative damage to sperm DNA following a 16-week low-to-intensive cycling training in male road cyclists. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Chen S, Zhao S, Wang X, Zhang L, Jiang E, Gu Y, Shangguan AJ, Zhao H, Lv T, Yu Z. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res 2016; 4:775-83. [PMID: 26798587 DOI: 10.3978/j.issn.2218-6751.2015.11.03] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Crocin is the major constituent of saffron, a naturally derived Chinese medicine obtained from the dried stigma of the Crocus sativus flower. It has a variety of pharmacological effects, including anti-oxidative, immunity enhancement, and anti-tumorigenic properties; however, the molecular mechanisms underlying these effects remain unknown. METHODS To investigate the effects of crocin on proliferation and apoptosis of lung adenocarcinoma cells, lung adenocarcinoma cell lines, A549 and SPC-A1, were treated with crocin at different dosages. Cell morphological changes were observed by light microscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the inhibitory effect of crocin on cell proliferation and sensitivity to chemotherapeutic drugs. Flow cytometry was used to characterize cell apoptosis and cell cycle profiles. Reverse transcription-polymerase chain reaction was used to detect mRNA levels of apoptosis-related genes. RESULTS Crocin inhibited cell proliferation and induced apoptosis in A549 and SPC-A1 cells in a concentration-dependent manner, accompanied with an increase of G0/G1 arrest. Crocin significantly increased the mRNA levels of both p53 and B-cell lymphoma 2-associated X protein (Bax), while decreasing B-cell lymphoma 2 (Bcl-2) mRNA expressions. In addition, crocin combined with either cisplatin or pemetrexed showed additive effects on cell proliferation in two lung cancer cell lines. CONCLUSIONS Crocin significantly suppressed the proliferation of human lung adenocarcinoma cells and enhanced the chemo sensitivity of these cells to both cisplatin and pemetrexed. The actions of molecular mechanism could be through the induction of cell cycle arrest and apoptosis by p53 and Bax up-regulation but Bcl-2 down-regulation.
Collapse
Affiliation(s)
- Shuangshuang Chen
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Shuang Zhao
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Xinxing Wang
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Luo Zhang
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Enze Jiang
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Yuan Gu
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Anna Junjie Shangguan
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Hong Zhao
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Tangfeng Lv
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| | - Zhenghong Yu
- 1 Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210002, China ; 2 Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China ; 3 Mingde Hospital affiliated with Nanjing Medical University, Nanjing 210000, China ; 4 Changzhou TCM Hospital, Changzhou 213000, China ; 5 Shanghai Medical College of Fudan University, Shanghai 200433, China ; 6 Weinberg college of Arts and Sciences at Northwestern University, Evanston, Illinois 60204, USA ; 7 Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA ; 8 Department of Respiratory Medicine, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
47
|
Antihepatotoxic efficacy of Mangifera indica L. polysaccharides against cyclophosphamide in rats. Chem Biol Interact 2016; 244:113-20. [DOI: 10.1016/j.cbi.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/26/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
|
48
|
Mansour HH, El Kiki SM, Hasan HF. Protective effect of N-acetylcysteine on cyclophosphamide-induced cardiotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:417-422. [PMID: 26262887 DOI: 10.1016/j.etap.2015.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Abstract
Cyclophosphamide (CP) is an oxazaphosphorine nitrogen mustard alkylating drug used for the treatment of chronic and acute leukemias, lymphoma, myeloma, and cancers of the breast and ovary. It is known to cause severe cardiac toxicity. This study investigated the protective effect of N-Acetylcysteine (NAC) on CP-induced cardiotoxicity in rats. CP resulted in a significant increase in serum aminotransferases, creatine kinase (CK), lactate dehydrogenase(LDH) enzymes, asymmetric dimethylarginine and tumor necrosis factor-α and significant decrease in total nitrate/nitrite(NOx). In cardiac tissues, a single dose of CP (200mg/kg, i.p.) resulted in significant increase in malondialdehyde and NOx and a significant decrease in reduced glutathione content, glutathione peroxidase, catalase, and superoxide dismutase activities. Interestingly, Administration of NAC (200mg/kg, i.p.) for 5 days prior to CP attenuates all the biochemical changes induced by CP. These results revealed that NAC attenuates CP-induced cardiotoxicity by inhibiting oxidative and nitrosative stress and preserving the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, PO Box 29, Nasr City, Cairo, Egypt.
| | - Shereen M El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, PO Box 29, Nasr City, Cairo, Egypt
| | - Hesham F Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
49
|
Zhang GF, Zhang Y, Zhao G. Crocin protects PC12 cells against MPP(+)-induced injury through inhibition of mitochondrial dysfunction and ER stress. Neurochem Int 2015. [PMID: 26209153 DOI: 10.1016/j.neuint.2015.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular machinery that mediates neuronal injury in neurodegenerative conditions such as Parkinson's disease (PD) remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Crocin, one of the water-soluble carotenoids isolated from the Crocus sativus L (saffron) stigma, has been reported to exert therapeutic potential in many disease models. Here, we establish an in vitro PD model using 1-methyl-4-phenylpyridinium (MPP(+))-injured PC12 cells to investigate the protective effects of crocin. Crocin treatment significantly attenuated MPP(+)-induced cell injury and apoptosis with little toxicity, and these protective effects were still observed even if crocin treatment was delayed to 6 h after injury. Crocin also inhibited MPP(+)-induced mitochondrial dysfunction, as evidenced by preservation of mitochondrial membrane potential (MMP) and ATP synthesis, which correlates with suppressed endoplasmic reticulum (ER) stress through inhibiting ER chaperone and ER related apoptotic factors. In addition, ER calcium release and morphological changes in ER lumen after MPP(+) exposure were all partially prevented by crocin. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that crocin-induced protection and inhibition of ER stress was mediated by inverting MPP(+)-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of ER stress in mediating PD related neuronal injury via the regulation of CHOP-Wnt pathway, and suggests the therapeutic values of crocin against ER stress-associated cytotoxicity.
Collapse
Affiliation(s)
- Guo-Feng Zhang
- Department of Neurology, Chinese People's Liberation Army The Fourth Military Medical University First Affiliated Hospital, Xi'an, Shaanxi 710032, China
| | - Yi Zhang
- Intensive Care Unit, ICU, Shaanxi People's Hospital, Xi'an, Shaanxi 710068, China
| | - Gang Zhao
- Department of Neurology, Chinese People's Liberation Army The Fourth Military Medical University First Affiliated Hospital, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
50
|
Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. ACTA ACUST UNITED AC 2015; 23:31. [PMID: 25928729 PMCID: PMC4418072 DOI: 10.1186/s40199-015-0112-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
Saffron (Crocus sativus) is an extensively used food additive for its color and taste. Since ancient times this plant has been introduced as a marvelous medicine throughout the world. The wide spectrum of saffron pharmacological activities is related to its major constituents including crocin, crocetin and safranal. Based on several studies, saffron and its active ingredients have been used as an antioxidant, antiinflammatory and antinociceptive, antidepressant, antitussive, anticonvulsant, memory enhancer, hypotensive and anticancer. According to the literatures, saffron has remarkable therapeutic effects. The protective effects of saffron and its main constituents in different tissues including brain, heart, liver, kidney and lung have been reported against some toxic materials either natural or chemical toxins in animal studies. In this review article, we have summarized different in vitro and animal studies in scientific databases which investigate the antidotal and protective effects of saffron and its major components against natural toxins and chemical-induced toxicities. Due to the lake of human studies, further investigations are required to ascertain the efficacy of saffron as an antidote or a protective agent in human intoxication.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|